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ABSTRACT

Within this paper a method for morphing audio signals is pre-
sented. The theory is based on general frames and the modification
of the signals is done via frame multiplier. Searching this frame
multiplier with given input and output signal, an inverse problem
occurs and a priori information is added with regularization terms.
A closed-form solution is obtained by a diagonal approximation,
i.e. using only the diagonal entries in the signal transformations.
The proposed solutions for different regularization terms are ap-
plied to Gabor frames and to the constant-Q transform, based on
non-stationary Gabor frames.

1. INTRODUCTION AND MOTIVATION

What does it mean to convert one signal into another? In this paper
a sound-signal modification is performed by morphing one sound
into another, i.e. it is assumed that there exist sounds "in between"
two given, distinct sounds. This morphing enables to interpolate
between two sounds with sufficient similarity, i.e. in the case of
instrument morphing, the same fundamental frequency.
Existing methods are based on parametric models based on param-
eter interpolation [1, 2].Our method allows to observe the modifi-
cation necessary for morphing directly in the time-frequency do-
main. In our task the input and output signals are given and the
transfer function which is modeled as a frame multiplier has to
be estimated. Hence, the preferred output is given and we would
like to compute the cause for this output. Reformulating the prob-
lem into a minimization of a functional, the estimation is trans-
formed into a linear inverse problem. In order to add some a priori
information to the minimization problem, we add regularization
terms. Such an inverse problem normally can be solved by itera-
tive shrinkage methods [3, 4] among others, because otherwise a
huge matrix system must be inverted. One possible simplification,
to gain a better understanding and to obtain a closed-form solution
of satisfactory quality, is to perform a diagonal approximation, i.e.
considering only the diagonal entries of the matrix from the signal
transformations. Stating the exact solution for several regulariza-
tion terms is the main result of this paper and can be found in
Theorem 3.1 in Section 3.1.
Moreover we perform some numerical experiments using the ob-
tained solutions in MATLAB. In these experiments Gabor frames
and non-stationary Gabor frames leading to a constant-Q trans-
form, as described in Section 4, are considered. Additional ex-
periments as well as the MATLAB code and corresponding sounds
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can be found on the website [5]. This paper is a generalization of
the first author’s master thesis [6]. The basic principles have been
developed, in the context of Gabor multipliers, in [7, 8, 9, 10].

2. BASICS

Frames generalize the concept of a basis, in the sense that the
frame functions need not be linearly independent. The resulting
redundancy leads to increased stability against noise or data loss.
In the following we consider a general Hilbert spaceH, for exam-
ple L2(Rd) or CL.

Definition 2.1 ([11]). (Frame, Frame Bounds, Tight Frame)
A sequence {ej : j ∈ J} ⊆ H is called a frame if there exist
A,B > 0 such that ∀f ∈ H

A‖f‖2 ≤
∑
j∈J

|〈f, ej〉|2 ≤ B‖f‖2. (1)

Any two constants A,B satisfying equation (1) are called frame
bounds. If A = B, then we call {ej : j ∈ J} a tight frame.

If H = CL, the coefficient space is also finite dimensional,
i.e. |J | = K <∞.
The following important operators included in a signal processing
procedure will help to develop the theory of our problem.

Definition 2.2 ([11]). (Analysis-, Synthesis- and Frame opera-
tor)
Let {ej : j ∈ J} be a sequence in a Hilbert spaceH and f ∈ H,
then the coefficient operator or analysis operator T : H → `2(J)
is defined as

(T f)j = 〈f, ej〉 = cj j, ∈ J (2)

The adjoint of the analysis operator T ∗ : `2(J) → H is the syn-
thesis operator or reconstruction operator and is defined for a fi-
nite sequence c̃ = (c̃j)j∈J ∈ `2(J) by

T ∗c̃ =
∑
j∈J

c̃jej ∈ H. (3)

Combining these two operators leads to the definition of the frame
operator S : H → H

Sf = T ∗T f =
∑
j∈J

〈f, ej〉ej . (4)

In the following proposition we introduce dual frames which yield
a reconstruction formula.
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Proposition 2.3 ([11]). (Dual frame)
If {ej : j ∈ J} is a frame with frame bounds A,B > 0, then
{S−1ej : j ∈ J} is a frame with frame bounds B−1, A−1 >
0, the so-called dual frame. Every f ∈ H has non-orthogonal
expansions

f =
∑
j∈J

〈f, S−1ej〉ej =
∑
j∈J

〈f, ej〉S−1ej ,

where both sums converge unconditionally inH.

A signal processing step between the analysis and the synthesis
operator in Definition 2.2, where the coefficients are multiplied by
weights wj , j ∈ J, can be performed. Thus

c̃j = wj · cj .

This leads to the the following definition:

Definition 2.4 ([12]). (Frame multiplier)
Let H1,H2 be Hilbert spaces, let (gj)j∈J ⊆ H1 and (γj)j∈J ⊆
H2 be frames. Fix a sequence m = (mj)j∈J ∈ l∞, then we
define the frame multiplier

Mm;g,γ : H1 → H2

for the frames (gj) and (γj), as

Mm;g,γ(f) =
∑
j

mj〈f, gj〉γj .

The sequence (mj)j∈J mentioned in this definition is called the
symbol mask of M and can be interpreted as a time-frequency
transfer function.
In the following section, we are going to introduce the inverse
problem which leads to the estimation of a set of masks, in de-
pendence on a regularization parameter λ, for the controlled mod-
ification of one given sound towards a given target sound.

3. ESTIMATION OF THE FRAME MULTIPLIER

In this section, we consider a normed tight frame (i.e. A = B = 1)
(gj)j∈J ⊆ H. Assume the input and output signal s, z ∈ H to be
given, hence the relation

z = Mm;gs

to be valid. Now we want to identify the linear system, where the
system is treated as a frame multiplier. Let T and T ∗ be fixed, we
can reformulate optimality as the minimization of a functional and
its estimation can therefore be transformed into a linear inverse
problem:

m̃ = arg min
m
‖z − T ∗g mTgs‖22.

To gain more stability in order to solve the inverse problem, we
add a regularization term. We therefore have to minimize the ex-
pression

Φ(m) = ‖z − T ∗g mTgs‖22 + λr(m), (5)

where r(m) : `∞ → R+ is a regularization term and λ ∈ R+

is a regularization parameter. The choice of regularization term is
discussed in the next section,Theorem 3.1.

3.1. Diagonal Approximation

Since the frames used in analysis and synthesis usually lack or-
thogonality iterative methods need to be employed to obtain an
exact solution of (5), cp. [3]. In the special case of Gabor frames it
has been shown [7, 8] that an approximate solution can be achieved
by reducing the term T ∗g mTgs to its diagonal entries. We will
address a different example, namely non-stationary Gabor frames
leading to a constant-Q transform. The diagonal case brings us to
closed-form solutions. These solutions lead to satisfactory quality
for example in experiments on audio signals as has been observed
in the experimental Section 4.
Using these solutions, iterative algorithms can be applied to achieve
exact solutions of equation 5. However the difference in percep-
tion is marginal, but the computational effort increases.
For some further information we refer to [13], [7], [8] and [14]. In
order to achieve a diagonal approximation, we reformulate (5) in
the transform domain

Φ(m) = ‖T ∗g (Tgz −mTgs)‖22 + λr(m).

Reducing to the diagonal and writing S = Tgs and Z = Tgz,
leads to

Φ(m) = ‖Z −m · S‖22 + λr(m). (6)
If the source equals the target, the mask m should be equal to
1 and the regularization term should vanish. This motivates the
choice of regularization terms with entries m − ~1. If Z and S
are different, we can use different terms of regularization. The
regularization term helps us to indicate some a priori information
in the shape of the solution (the transformed signal). The choice of
r(m) is discussed in Remark 3.2. The parameter λ helps balancing
between these a priori information of the form and the properties of
reconstructing the mask [7]. We are now going to present different
choices of regularization terms by stating the following theorem.
Theorem 3.1. Let Φ : CL → R be a functional of the form

Φ(m) = ‖Z −m · S‖22 + λr(m), (7)

where λ ∈ R+ and r : CL → R is a regularization term. Minimiz-
ing this functional for different solutions with respect to different
regularization terms as follows:
a) r(m) = ‖m− 1‖22 leads to the solution

m̃` =
S`Z` + λ

|S`|2 + λ
∀` ∈ {0, ..., L}.

b) r(m) = ‖ |m| − 1‖22 leads to the solution

m̃` =
|Z`S`|+ λ

|S`|2 + λ
· ei arg(S`Z`) ∀` ∈ {0, ..., L}.

c) r(m) = ‖m− 1‖1 leads to the solution

m̃` =

{
|S`||Z`−S`|−λ2

|S`|2
· eiϕ + 1 if |S`| |T` − S`| > λ

2

1 else
,

where ϕ = arg(S`(Z` − S`)) ∀` ∈ {0, ..., L}.
d) r(m) = ‖ |m| − 1‖1 leads to the solution

m̃` =


|Z`S`|−λ2
|S`|2

ei arg(S`Z`) if |Z`S`|
|S`|2

> 1 + λ
2|S`|2

|Z`S`|+λ
2

|S`|2
ei arg(S`Z`) if |Z`S`|

|S`|2
< 1− λ

2|S`|2

1 else

∀` ∈ {0, ..., L}.
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Note that some of these solution formulas can be found for the case
of Gabor multipliers in [7, 8]. Since we found them to be useful in
the general case of frame multipliers [12], we include their proof
in the appendix, Section 7.

Remark 3.2. Let Φ : CL → R be as in (7). Then the different
regularization terms have the following properties:
a) r(m) = ‖m− 1‖22 helps to control the total energy. Moreover,

if we use normed tight frame bounds, i.e. A = B = 1,we favor
a multiplier close to the identity operator. This regularization
term produces spurious oscillations in the mask m̃, caused by
a bad estimation of the phase. A simple calculation shows the
reason of the oscillations. Let (j, k) be a point of the time-
frequency plane and let the input and the output signal have
a phase difference of π, i.e. Z = Seiπ . Then m̃ at the point
(j, k) is given by

m̃ =
SZ + λ

|S|2 + λ
=
|S|2 eiπ + λ

|S|2 + λ
.

This short calculation shows the presence of amplitude modu-
lations of the mask due to the diagonal approximation, cp. [7,
p. 43 et seq.].

b) r(m) = ‖ |m| − 1‖22 gives us the possibility of avoiding spu-
rious oscillations of the amplitude of m̃, apart from that fact it
has the same properties as the previous regularization term in
a).

c) r(m) = ‖m− 1‖1 yields sparsity, where the mask is forced to
stay close to 1 which corresponds to "no transformation". This
regularization term also produces spurious oscillations.

d) r(m) = ‖ |m| − 1‖1 forces m̃ to sparsity of the deviation
from the absolute value 1 and also avoids the oscillations of the
previous regularization term in c). For some more information
on this regularization term consider [14].

In the next section we will visualize these properties by analyzing
examples for diagonal approximation with different regularization
terms.

4. NUMERICAL EXPERIMENTS

4.1. Two examples of frames used in audio processing

The results in Section 3.1 hold for general frames and in particu-
lar also in higher dimensions, that is, for frames for L2(Rd) with
d > 1. This can be interesting for image or video processing. In
the current work, however, we focus on audio signals and present
some numerical simulations using classical Gabor frames [11] on
the one hand and a constant-Q transform based on non-stationary
time-frequency Gabor frames, [15, 16] on the other hand. We
briefly introduce the necessary notions next.
The frame elements of Gabor frame are given by time-frequency
shifted versions of a non-zero window function g ∈ H, i.e.
G(g, a, b) = {gn,k = TakMbng : k, n,∈ Z}. Here, Takg(t) =
g(t−ak) andMbng(t) = g(t)·e2πibn denote time- and frequency
shift, respectively.
For the non-stationary Gabor frame-based constant-Q transform,
the construction of Gabor frames is generalized as to allow for
windows with adaptive bandwidth. To this end, the frame ele-
ments are given by {gn,k = Tnakgk : k, n,∈ Z}. Thus, while
the time-shifts are carried out along a regular lattice as in the Ga-
bor case, the frequency shifts are replaced by choosing a separate

window for each desired frequency band. Accordingly, the time-
shift parameter ak can be chosen separately for each band. For
all details, in particular regarding the precise choice of parameters
for the constant-Q transform, we refer to [15, 16]. We note that
for both Gabor frames and and non-stationary Gabor frames, care-
ful choice of windows and sampling parameters a, b leads to the
situation of painless non-orthogonal expansions, [17], for which
straight-forward inversion is possible.
Implementations along with excellent documentation for both Ga-
bor frames and the constant-Q transform can be found in the LTFAT-
toolbox, [18, 19] and [16].

4.2. Experimental setup

In this section we describe the setup for the subsequent numerical
experiments. All mentioned MATLAB routines are found on the
website [5]. We want to find the best fitting multiplier of the in-
verse problem (5) using different regularization terms introduced
in Theorem 3.1. To do so, we use an input and an output signal
with sufficient similarity. In the following two experiments we
use the sound of a flute and a violin of the VSL [20] playing the
same fundamental frequency and vowels sang by a man [21] and a
woman [22], also using the same fundamental frequency for suffi-
cient similarity. The sound files are sampled with a rate of 44100
Hertz. To make the sound files the same length, we use the MAT-
LAB code samesize_power2.m which fades out the signals
with exponential decrease. Moreover, to display the spectrogram
of our sounds we use a logarithmic scale, cp. [6, p.24].
In order to show that different classes of frames can be used, we
will consider Gabor frames and non-stationary Gabor frames as
introduced in Section 4.1, within the numerical examples. The
MATLAB code diagaprox.m is used to do the numerical cal-
culations with Gabor frames by using the closed-form solutions
stated in Theorem 3.1 and the code diagaprox_cq.m does this
by using a constant-Q transform, based on non-stationary Gabor
frames. Note that in the finite discrete case underlying the numer-
ical implementationsH = CL.
The algorithm basically uses the following steps:
• Input: s (source signal), z (target signal) of the same length

(here 1 second) due to samesize_power2.m, a preferred
norm and λ.

• Tranformation done with:

– Gabor transform [dgt.m] of s→ S and z → Z with
a Hann-window and the parameters a = 256,M =
L
b

= 1024.

– Constant-Q transform [cqt.m] of s → S and z →
Z with frequency region [100Hz; 22050Hz], 64 bin
per octave and 1000 time channels per second.

• Obtain the mask m as in Theorem 3.1 corresponding to the
respective norm used for regularization.

• Inverse transform [idgt.m] or [icqt.m], respectively, of
m ∗ S to obtain a z̃, the target signal.

• Output: m and z̃.

4.3. Sound morphing

4.3.1. Using musical instruments

For the first experiment we use the sound of a flute and a violin
from the VSL [20]. Since sufficient similarity is required, we con-
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sider the same fundamental fequency of the instruments for each
morphing procedure. Morphed sounds can be obtained by varying
λ in Formula (5). A high value of λ puts heavy weight on the reg-
ularization term r(m), hence forces the mask to be close to one,
i.e. "no transformation" and the signal reconstructed from m̃ ∗ S
is similar to the source/input signal. A small λ does not take the
regularization term that much into account. This leads to a mask
which yield a reconstructed signal close to the target signal.
The choice of these two instruments is due to their different tim-
bres and harmonics. The violins sound is rich in overtones, whereas
the flute has less overtones.
The following experiment is done with constant-Q transform. Sim-
ilar results can be achieved using the Gabor transform, cp. [5].
In Figure 1 we show stepwise morphing, i.e. using different λ
(= 10−2, 10−6) starting from the original flute sound as source
going to the violin as target. This case is very interesting, because
it is more difficult for the mask to ’generate’ overtones, since the
violin has more overtones than the flute, than suppressing them,
as it would be the other way round. As common fundamental fre-
quency we use B5; the original sounds and sounds resulting from
morphing steps can be found online [5].
In Figure 1 one can see how the noise, coming from the violin in-
creases from step to step. For λ = 10−2 the sound is a mixture
of flute and violin, but for λ = 10−6 we can verify the sound as a
violin.

4.3.2. Using spoken vowels

The second experiment considers German vowels, sung by a pro-
fessional singer. We use a female [22] as well as a male [21] voice.
Both have the fundamental frequency E4. This morphing task is
interesting because vowels build different formants, i.e. acous-
tic resonance of the human vocal tract, where certain harmonics
are stronger than others. Within this experiment it is visible that
similar vowels, like the german spoken "e" and "i" which sound
very similar, also morph with comparably bigger λ into each other.
Several tables summarizing which λ has to be used to get recon-
struction of the target signal can be found in [5]. In Figure 2, we
perform again a morphing procedure using constant-Q transform.
The morphing is performed stepwise starting from the vowel "a",
with steps in between with λ = 10−4 and λ = 10−8, reaching
target vowel "i". The noise level goes down in the range between
[600Hz, 2000Hz]. Hence the harmonics are better visible and fo-
cus on 300Hz which is the characteristic formant for the vowel "i"
[23].
Another thing that can be observed, concerning the mask of the
morphing steps are spurious oscillations which are mentioned in
Remark 3.2 a). Since the observation is almost only visible us-
ing the Gabor transform, we use this transformation to generate
Figure 3. Nevertheless there was no audible difference within the
morphing experiments. The morphing is, as mentioned above, per-
formed going from vowel "a" to "i" and to show the oscillations,
we take the mask corresponding to λ = 10−2. In Figure 3 the up-
per image shows the mask obtained with the regularization term
r(m) = ‖m− 1‖22. Here oscillations are visible between 3000Hz
and 4000Hz. The lower image neglects the phase by using the
modulus of the mask, i.e. r(m) = ‖ |m| − 1‖22, hence no oscilla-
tions are visible.

Figure 1: Stepwise morphing from flute to violin, with steps in
between at λ = 10−2 and λ = 10−6.

DAFX-26



Proceedings of the 19th International Conference on Digital Audio Effects (DAFx-16), Brno, Czech Republic, September 5–9, 2016

Figure 2: Stepwise morphing from vowel "a" to "i", with steps in
between at λ = 10−4 and λ = 10−8.

Figure 3: Spurious oscillations for λ = 10−2, obtained by morph-
ing vowel "a" into "i".
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5. CONCLUSION AND PERSPECTIVES

In this paper a morphing procedure was proposed, using frame
multipliers in order to morph one audio sound into another. A di-
agonal approximation was performed in order to get a closed form
solution of a regularized inverse problem.
Comparing the solution of the diagonal approximation with the so-
lution computed by iterative shrinkage threshold algorithms (ISTA)
yield only a marginal difference. For the monotone fast ISTA the
solution was better audible. Here it would be interesting to figure
out, why this is the case. Nevertheless the computational effort
increases strongly. The obtained solutions were used in the ex-
perimental chapter, to show that this approximation also leads to
satisfactory perceptive quality. The general concept of frames al-
lowed to state different examples. We focused on the usage of
Gabor frames and non-stationary Gabor frame based constant-Q
transform.
Extensions of the presented work will include the usage of other
frames, for example wavelet frames in the context of image morph-
ing and other non-stationary time-frequency frames. Furthermore,
the class of coefficient priors will be extended to mixed-norm and
neighborhood-based priors, [24, 25], which will lead to a structure-
based signal modification.
Another strand of research will investigate, why spurious oscilla-
tions, mentioned in Remark 3.2 and rather prominent if the mor-
phing is based on Gabor frames, are barely visible for constant-Q
transform, while the perceptual difference seems marginal. To this
end, we will set up an evaluation framework based on perceptual
criteria, cp. [26], since comprehensive listening experiments are
costly. In parallel, we will isolate the oscillations and use sub-
sequent synthesis to understand their behaviour and consequence
on perceptual outcome. Finally, the variety of sounds obtained by
con- trolled morphing can be used for data augmentation, [27],
within machine learning tasks for audio signals.
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7. APPENDIX

Proof of Theorem 3.1. To find a minimum of (7), we have to find
zeros of its first derivative. We first rewrite ‖Z −m · S‖22 as the
sum of its entries squared

Φ(m) =
∑
`∈Λ

Φ`(m`)

=
∑
`∈Λ

(
|Z` −m`S`|2 + λr(m`)

)
=
∑
`∈Λ

(
(Z` −m`S`)(Z` −m`S`) + λr(m`)

)
.

Writing the complex vectorm asm = mr+imi,wheremr,mi ∈
RL we obtain

=
∑
`∈Λ

(
(Z` − S`(mr + imi))(Z` − S`(mr + imi)) + λr(m`)

)
.

The derivative of Φ can now be understood as a derivative in two
variables. Using the formula

∂Φ(m)

∂m
=

1

2

(
∂Φ(mr,mi)

∂mr
− i∂Φ(mr,mi)

∂mi

)
(8)

we obtain the derivative for holomorphic functions [28]. Next we
fix one ` since, if we take the derivative component-wise, the other
components will vanish. The derivative with respect to the first
variable mr

` is

∂Φ`(mr
` ,m

i
`)

∂mr
`

=− S`(Z` − S`(mr + imi))

+ (Z` − S`(mr + imi))(−S`) + λ
∂r(m`)

∂mr
`

.

Using z+z
2

= Re(z) we get

= −2Re
(
S`Z`

)
+ 2 |S`|2 mr

` + λ
∂r(m`)

∂mr
`

.

Similarly we compute the derivative with respect to mi
`

∂Φ`(mr
` ,m

i
`)

∂mi
`

= 2 · Im
(
S`Z`

)
+ 2 |S`|2 mi

` + λ
∂r(m`)

∂mi
`

.

Using Equation (8) we obtain

∂Φ`(m`)

∂m`
=

1

2

(
− 2Re

(
S`Z`

)
+ 2 |S`|2 mr

` + λ
∂r(m`)

∂mr
`

− 2iIm
(
S`Z`

)
− 2i |S`|2 mi

` − iλ
∂r(m`)

∂mi
`

)
.

To obtain a minimum, we have to set the following equation to
zero:

∂Φ`(m`)

∂m`
= −S`Z`+|S`|2 m`+

λ

2

(∂r(m`)

∂mr
`

− i∂r(m`)

∂mi
`

)
︸ ︷︷ ︸

ρ(m`)

= 0.

(9)
Now we have to distinguish according to the different regulariza-
tion terms.
a) Considering r(m) = ‖m−1‖22 as the first regularization term,

we have

ρ(m`) =
λ

2
(2mr

` − 2− 2imi
`) = λm` − λ.

Thus, solving Equation (9) with respect to m` and taking the
conjugate, we obtain for every `

m̃` =
S`Z` + λ

|S`|2 + λ
.

b) For the regularization term r(m) = ‖ |m| − 1‖22 we have

ρ(m`) =
λ

2

(
2λmr

`−2
λmr

`

|m`|
−2λmi

`+2
λmi

`

|m`|

)
= λm`−

λm`

|m`|

If we plug this term into Formula (9), we obtain

m`

(
|S`|2 + λ− λ

|m`|
)

= S`Z`. (10)

Since there is a term containing |m`| in the brackets of this
solution, we multiply m` with its conjugate and obtain

m`m` = |m`|2 =
|Z`S`|2(

|S`|2 + λ− λ
|m`|

)2 .
Solving this equation with respect to the modulus of m` and
using the formula z = |z| ei arg(z), the phase is only given by
S`Z` in Equation (10), because the term in the brackets is real.
The solution of our functional for every ` is

m̃` =
|Z`S`|+ λ

|S`|2 + λ
· ei arg(S`Z`).
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c) For the regularization term r(m) = ‖m − 1‖1 we apply a
substitution m− 1 = µ, hence

ρ(µ`) =
λ

2

(
µr`
|µ`|
− i µ

i
`

|µ`|

)
=
λ

2

µ`
|µ`|

.

Again we have to multiply with the conjugate in a similar man-
ner as in case b) and we again use the formula µ = |µ| ei arg(µ).
Undoing the substitution and applying a threshold argument
obtained due to |µ`| > 0, we get

m̃` =

∣∣S`∣∣ |Z` − S`| − λ
2

|S`|2
· ei arg(S`(Z`−S`)) + 1 (11)

as long as

|S`| |T` − S`| >
λ

2
.

d) For r(m) = ‖ |m| − 1‖1 we have to make a distinction in two
cases |m`| > 1 and |m`| < 1, from which

ρ(m`) =
λ

2

(
± mr

`

|m`|
∓ mi

`

|m`|

)
= ±λ

2

m`

|m`|

is obtained.
Using |m`|2 = m` ·m` and z = |z| ei arg(z) we obtain

m̃` =


|Z`S`|−λ2
|S`|2

ei arg(S`Z`) if |Z`S`|
|S`|2

> 1 + λ
2|S`|2

|Z`S`|+λ
2

|S`|2
ei arg(S`Z`) if |Z`S`|

|S`|2
< 1− λ

2|S`|2

1 else.
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