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ABSTRACT

A method to measure the response of a linear time-variant (LTV)
audio system is presented. The proposed method uses a series of
short chirps generated as the impulse response of several cascaded
allpass filters. This test signal can measure the characteristics of an
LTV system as a function of time. Results obtained from testing
of this method on a guitar phaser pedal are presented. A proof of
concept gray-box model of the measured system is produced based
on partial knowledge about the internal structure of the pedal and
on the spectral analysis of the measured responses. The temporal
behavior of the digital model is shown to be very similar to that of
the measured device. This demonstrates that it is possible to mea-
sure LTV analog audio systems and produce approximate virtual
analog models based on these results.

1. INTRODUCTION

Historically, guitar effect pedals have been designed and imple-
mented using analog circuitry. Nowadays, digital effects have be-
come more common and widely accepted, as they are more ver-
satile and their costs can be reduced. Yet many of the old, analog
devices have cult-like following, due to their alleged distinctive
sound or their association with famous musicians [1]. Vintage ana-
log pedals are rare and can reach high prices in secondary markets
[2]. Therefore, to cater to consumers who are after particular ef-
fects, virtual analog modeling of these classic devices is needed.
Some research on modeling different distortion, fuzz, reverb, and
delay units can be found in literature [1, 3]. One particular effect,
the phaser, is an interesting topic of study due to its time-varying
nature. In this paper, an overview on the internal workings of a
phaser is given. Then, a method to measure time-varying linear
effects is introduced, along with results obtained from measuring
a phaser pedal. These results are then used to develop a digital
model of the phaser effect.

Two opposite system modeling approaches are ‘black-box’ and
‘white-box’ models [1]. Black-box models are such that the mod-
eling is entirely based on input-output measurements of the system
and there is no knowledge of the inner workings of the system.
An example of black-box modeling of effect units can be found
in [4]. On the other hand, white-box models are based on circuit
analysis or other form of knowledge of how the system works.
A white-box model of a phaser pedal was presented by Eichas et
al. [2]. The technique followed in this study falls under the cat-
egory of ‘gray-box’ modeling, which is defined as an approach
where some knowledge of the internal characteristics of the sys-
tem is used when modeling it based on measurements [1].
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This paper is organized as follows. Section 2 discusses phas-
ing using allpass filters. In Section 3, the steps necessary to mea-
sure the time-varying response of a phaser are presented. Section
4 presents the measured responses of an analog phaser pedal. Sec-
tion 5 shows how the measured response is modeled in the digital
domain. Finally, concluding remarks are given in Section 6.

2. BASICS OF PHASING

The phasing effect introduces time-varying notches in the spec-
trum of the input signal, creating a characteristic swooshing sound.
Historically-famous phaser pedals, such as the MXR series and the
Uni-Vibe, work by feeding a copy of the input signal into a chain
of identical first-order allpass filters and mixing the output of this
chain with the original signal [2, 3]. In this design, the location of
the notches is determined by the break frequencies of the filters,
which are modulated by a low frequency oscillator (LFO).

The block diagram for a basic digital phaser is shown in Fig. 1.
By adjusting the wetness of the phaser, i.e. the ratio between origi-
nal and filtered signals, using gain parameters G and W , the depth
of the notches and the overall intensity of the effect can be con-
trolled. To keep the output signal bounded, G and W are usually
coupled so that G = 1−W . The deepest possible notches are ob-
tained when W = G. In this architecture, the number of notches
introduced is determined by the number of the first-order allpass
filters used, so that forN allpass filters (assumingN is even),N/2
notches are produced on positive frequencies. Usually the number
of allpass filters in phasers in phasers is even.

The transfer function of a first-order digital allpass filter is

A(z) =
a1 + z−1

1 + a1z−1
, (1)

where coefficient a1, which also determines the pole, is defined in

Figure 1: Block diagram of a digital phaser with a feedback loop
via a unit delay. In most common phasers, there is no feedback
loop, meaning that their Fb = 0.
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Figure 2: Phase response of a first-order allpass filter with break
frequencies 250 Hz (a1 = −0.967), 1000 Hz (a1 = −0.869), and
5000 Hz (a1 = −0.346).

terms of ωb, the break frequency of the filter in rad/s, as

a1 = −1− tan(ωbT/2)

1 + tan(ωbT/2)
≈ −1− ωbT/2

1 + ωbT/2
≈ −1 + ωbT, (2)

where T is the sampling period of the system. For stability, the
condition |a1| < 1 is required [5]. The phase response of the
allpass filter (1) as a function of angular frequency ω is given by

Θ(ω) = −ω + 2 arctan

(
a1 sinω

1 + a1 cosω

)
. (3)

During phasing, the allpass filter chain itself does not change
the magnitude spectrum of the signal; it causes phase shifting [6].
From (3), we observe that each first-order allpass filter causes a
frequency shift of −π radians at half the sampling frequency (i.e.
at ω = π). At the break frequency the filter will introduce a phase
shift of exactly −π/2 rad/s [7, 8]. Fig. 2 shows example phase
responses of the first-order allpass filter with three different break
frequencies. The sample rate fs = 1/T in these and all other
examples in this paper is 44.1 kHz.

When several allpass filters are cascaded, their combined phase
response is the sum of the individual phase responses. So, when
N first-order allpass filters are cascaded, their combined phase re-
sponse will introduce a maximum phase shift of −Nπ radians. In
this case, we assume N to be a positive even integer. Adding the
filtered and original signals will cause notches at the frequencies at
which the phase shift is an exact odd integer multiple of −π rad/s,
or −kπ with k = 1, 3, 5, ..., N − 1 [3, 6, 7, 9]. Fig. 3 shows the
phase response of two, four, and six cascaded allpass filters, high-
lighting the frequencies where notches will appear in a phasing
scenario.

The position of the spectral notches in a phaser is changed
over time by modulating the break frequencies of the filters using
an LFO. The LFO usually has a frequency in the range from 0.1
to 10 Hz, and its waveform is typically triangular or sinusoidal. In
analog phasers, the LFO changes the physical values of compo-
nents in the allpass filters. In digital implementations, the LFO
controls the coefficients of the allpass filters [3, 6, 8].

A limitation of using first-order allpass filters to implement
phasers is that the width of the notches cannot be modified inde-
pendently. Both the notch width and depth are controlled using
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Figure 3: Phase response of two, four, and six cascaded first-order
allpass filters with break frequency at 250 Hz (a1 = −0.967). The
squares indicate the resulting notch frequencies in each case, when
used in a phaser.

the wetness parameter W , which changes both of them simultane-
ously. Additionally, controlling the location of the notches is not
trivial. Both of these issues can be addressed by using second-
order allpass filters instead, as they allow a more independent con-
trol of the notch characteristics [9].

Instead of using allpass filters, phasers can also be implemented
by using cascaded notch filters [3, 10]. Notch filters allow better
control of notch locations and depth than allpass filters. However,
phasers implemented in this manner are more complex and ex-
pensive than their allpass counterparts [3, 10]. In analog phasers,
more complexity means more physical components, higher costs,
and bigger pedals. On the other hand, in a digital implementation
the complexity may not represent such a big problem, but should
still be considered [3].

Some phasers incorporate a feedback loop in their structure,
feeding the output of the allpass chain back into its input. This ar-
chitecture is illustrated in Fig. 1. A unit delay was inserted to this
feedback path to avoid having a delay-free loop [8]. The summing
of the output of the allpass chain with the input signal causes a
similar effect as the summing of the output with the original sig-
nal, as again the two added signals have the phase difference of
−π, −3π, −5π, etc. at certain frequencies. In practice, the feed-
back loop causes drastic changes in the magnitude response of the
phaser, since resonances are introduced and the frequencies be-
tween the notches are boosted. This changes the overall shape of
the magnitude response, as shown in Fig. 4 [7, 8].

3. MEASURING A TIME-VARIANT SYSTEM

Linear time-invariant (LTI) systems are typically analyzed by mea-
suring their impulse response using a sine sweep, white noise, or
another test signal of long duration. The time-varying nature of
phasers means that these methods are unreliable, as the response
of the system changes over time. To counter this, the measure-
ment signal used must be short and should be played repeatedly
through the system in order to observe the response of the system
at different moments in time.

In this work, we assume the system under study to be linear
and time-variant (LTV), i.e. it varies over time but does not intro-
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Figure 4: Magnitude response of a phaser having ten first-order
allpass filters and a feedback loop (Fb = 0.4, G = 0.5, W =
0.5). Four of the allpass filters use the coefficient value −0.9490
and six use −0.8991.

duce harmonic distortion. This condition is mostly true for filter-
based non-saturating effects, such as the phaser, when the input
signal level is not very high. The following subsections describe
the measurement process used to evaluate the frequency response
of an LTV system.

3.1. Measurement signal

To measure the response of an LTV system at an arbitrary moment
in time, we must first design a short test signal. This signal should
be short enough to guarantee the system being measured will re-
main fairly static during the measurement process. Arnardottir et
al. used an impulse train to measure the behavior of a time-varying
tape delay effect [11]. Alternatively, a very short chirp can be
used for this purpose, since it yields an improved signal-to-noise
ratio (SNR). Such a signal is described in [5] and [12]. Repeatedly
evaluating the instantaneous response of the system over a period
of time will allow us to observe its time-varying response.

Following the work of [5] and [12], we can synthesize a chirp
using the impulse response of a cascade of first-order allpass fil-
ters. The idea is that even though allpass filters do not alter the
frequency content of a signal, when dozens of them are cascaded,
the result is a system that introduces significantly different delays
for different frequencies. These differences cause frequencies to
be played at different times, similar to a sine sweep. The advan-
tage of synthesizing a chirp in this manner is that extremely short
signals, e.g. 10 or 50 ms long, can be produced with relative ease
[5, 12]. In sine sweep measurements, the minimum length of the
signal is limited by the low frequencies [12]. The lower the fre-
quencies that need to be measured, the longer the sine sweep must
be.

As indicated by (3), the pole a1 of the first-order allpass filter
determines the overall phase response of the filter. Since the phase-
shift and group delay are closely related, this pole also changes the
group delay of the filter. The group delay of a single first-order
allpass filter can be calculated with the following formula:

τg(ω) =
1− a21

1 + 2a1 cos(ω) + a21
, (4)

Figure 5: Group delay of a first-order digital allpass filter with
different coefficient values.

where ω is angular frequency. Fig. 5 illustrates the group delay of a
first-order allpass filter for different poles values. As can be noted,
the group delays are very small even for large pole values, less than
20 samples. However, when several allpass filters are cascaded,
their group delays are added, so with ten filters in cascade the total
group delay at low frequencies is almost 200 samples [5].

The group delay curves show that the resulting chirp-like im-
pulse response first plays the high frequencies and then sweeps
downwards to the lowest frequency. A chirp constructed using 64
allpass filters by setting a1 = −0.9 is shown in Fig. 6. We can see
that the chirp is only about 1500 samples long (approx. 30 ms), yet
it still covers all the frequencies of interest [5].

In addition to meeting the requirement of being short, this
chirp can be easily repeated periodically, which makes it a suitable
test signal for LTV devices. Additionally, the way in which this
signal is generated has one significant advantage; since the chirp
is generated by feeding an impulse into an allpass filter chain, this
impulse can be reconstructed by processing the chirp backwards
through the same filter chain. In fact, this operation implements the
deconvolution, which is needed to retrieve the impulse response of
a system. This makes measuring LTV systems with a signal con-
taining multiple chirps simple, as the measured signal can then be
processed backwards through the allpass filter chain. The result-
ing multiple responses can be analyzed, generating a picture of
how the magnitude response of the system changes over time [12].

The fact that the unprocessed chirp can be reverted back into
an impulse means that several chirps can be superimposed (added)
within a short time period. In fact, they may overlap in time. The
only restriction for the spacing of the chirps is that when the signal
is reverted back through the allpass chain, the resulting impulse
responses should not overlap. If they do, the analysis cannot be
performed so easily. A measurement signal with a duration of ap-
prox. 1 s, synthesized using chirps generated by 64 allpass filters
with coefficient a1 = −0.9 (see Fig. 6), spaced at 30 ms intervals
is shown in Fig. 7. This figure illustrates the test signal in the time
domain, containing a total of 33 chirps in 1 s.

3.2. Measurement analysis

The aim of this work is to measure a real phaser pedal and observe
all the interesting aspects about its behavior. For a basic phaser
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Figure 6: Time-domain waveform of a single chirp synthesized us-
ing 64 first-order allpass filters with pole parameter a1 = −0.9.

Figure 7: Time-domain waveform of an example measurement sig-
nal synthesized using 33 overlapping chirps (see Fig. 6).

pedal with only a speed knob, this can be achieved by measur-
ing the pedal at different speed settings. From the obtained mea-
surements we wish to observe the behavior and shape of the LFO,
along with the number and position of the notches over time.

The notches caused by a phaser can be identified by finding
the minima of the magnitude responses. To do so, the following
procedure was followed. First, the global minimum of the mag-
nitude spectrum was found. Once the location of the global mini-
mum was known, the adjacent local maxima were found, and the
area between these two local maxima was zeroed out. After the
original global minimum of the spectrum was removed, the next
one was found by repeating these steps. This process was repeated
until all the minima were found.

In this study, when converting the magnitude values to dB-
scale, a reference value of 1.7325 was used. This is the maximum
value of the spectrum of the first chirp used on the first measure-
ment. This value was chosen so that for all measurements, spectra,
and other values can easily be compared with each other.

An interesting aspect about the proposed measurement method
is how it reacts to changes in the length of the chirps forming the
measurement signal. If the chirps are too long, the minima will
appear to be ‘out of sync’. Due to the nature of the chirp, high

Figure 8: Distorted minima locations measured with a chirp gen-
erated with 2,048 allpass filters, which is too long.

frequencies are played before low frequencies. When high fre-
quencies are processed, the minima will be at a given location;
later, when the low frequencies pass through the system, the min-
ima locations will have already moved. This was tested by play-
ing signals with different chirp lengths through a phaser pedal and
observing how the resulting data changed. The chirp length was
adjusted by increasing the amount of cascaded allpass filters used
to generate it. The chirp was generated with 2,048 allpass filters
in cascade, with coefficient a1 = −0.9, which resulted in a chirp
that is roughly 40,000 samples long. The total test signal lasted
for 240,000 samples, with the chirps overlapping. The measured
results are shown in Fig. 8, where it can be clearly observed that
the minima do not occur at the same time. This can be corrected
by using shorter chirps. With these tests it was also noticed that
increasing the chirp length increases the SNR of the measured sig-
nal.

As expected, when the chirp length is very short, the SNR of
the measurement becomes low and the measured magnitude spec-
trum has clear artefacts. Therefore, it is desirable to find an op-
timal chirp length with which the spectral minima appear to be
synchronized at the same time with a good SNR. In this work, the
measurements were conducted with a chirp generated using a cas-
cade of 64 first-order allpass filters with a1 = −0.9, which was
repeated every 0.03 s.

4. MEASUREMENT RESULTS

The phaser pedal chosen for this study is the Fame Sweet Tone
Phaser PH-10. The similarities between the general appearance of
this pedal and the MXR Phase 100 suggest that the measured pedal
is a clone of the Phase 100.

The measured pedal has a single ‘speed’ potentiometer and
two switches. These switches are grouped and labeled simply as
‘Intensity’. Based on the observed behavior, we named the switch
on the right-hand side the ‘LFO switch’ and the one on the left the
‘feedback switch’. Both switches have two modes (‘on’ and ‘off’)
so overall there are four working modes.

The pedal was measured at different LFO speed settings for
all switch combinations. Seven steps were used: 0%, 17%, 34%,
50%, 67%, 84%, and 100% of the speed range. These steps were
chosen because the knob of the speed potentiometer was seven-
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Figure 9: Magnitude response of the measured pedal at different
times.

Figure 10: Estimated notches of the phaser pedal over time (LFO
speed at approx. 50%, LFO and feedback switches both ‘off’).

sided and the pedal did not have any marks printed on it. Then
the angles of the knob made it easy to see when the speed had
increased by 1/7th of its range. All measurements were conducted
at a 48-kHz sampling rate.

4.1. Measurements with both switches OFF

The Fame pedal was measured with both switches in the ‘off’ po-
sition using a 25-s test signal synthesized using non-overlapping
chirps placed at 30 ms intervals. Fig. 9 shows the measured mag-
nitude response at three different times. In this figure, we can
observe that the pedal introduces five notches, with the fifth one
lying well above 20 kHz. This means the phaser most likely op-
erates around a 10-stage filter network, another indication that the
studied pedal is a clone of the MXR Phase 100.

Fig. 10 shows the estimated notch trajectories during a 15-
second period. These data were generated using the method de-
scribed in the previous section. This figure reveals the existence
of five notches, with the fifth one lying mostly outside the audi-
ble range. It can also be noticed that the first notch has a range
of about a quarter of an octave, the second one has roughly one
octave, and the third one has about three octaves. Additionally, the
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Figure 11: Measured LFO frequency with seven different speed
settings and an exponential fit.

Figure 12: Estimated notches of the measured phaser over time
with the LFO switch ‘on’ and speed at approx. 50%.

notch trajectories seem to resemble a full-wave rectified sinewave.
This suggests that the LFO has this waveform in the ‘off’ mode,
rather than the typical triangular or sinusoidal shapes.

Moving on with the measurements, Fig. 11 shows the effect
of the speed potentiometer, which is approximately exponential.
The LFO range can be observed to be from about 0.1 Hz to 3.7 Hz.
These frequencies were estimated from the time differences be-
tween the lowest notch locations. For instance, in Fig. 10 the
time difference between the lowest notch locations is approx. 1.6 s,
which corresponds to the LFO frequency of about 0.6 Hz.

4.2. Effect of the LFO switch

The pedal was measured again with the LFO switch in the ‘on’
position. The overall appearance of the resulting magnitude re-
sponses were observed to be similar to the case of both switches
turned ‘off’. The LFO speed measurements also remained un-
changed. The main observed difference was the behavior of the
notches over time. This can be seen in Fig. 12, where it can be
noticed that the notch trajectories resemble triangular waves now.
Secondly, all five notches are now visible in the spectrum. In the
previous measurements only three notches were within the audi-
ble band during an entire cycle; the fourth notch was only partially
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Figure 13: Magnitude responses of the measured phaser at differ-
ent times with the feedback switch in the ‘on’ position (LFO speed
50%).

visible and the fifth notch was above 20 kHz throughout the mea-
surements. Therefore, it can be deduced that the right switch of
the pedal modifies the waveshape and range of the LFO, causing
the effect to be perceived as more ‘intense’, hence the label on the
pedal’s enclosure.

4.3. Effect of the feedback switch

From the measurements of the pedal with the feedback switch ‘on’
it was observed that the minima and speed behavior remained iden-
tical to the ‘off’ case. However, differences were observed in the
magnitude response of the pedal. These changes are quite drastic,
as the gain between the notches is boosted, the notch depths vary
considerably with time, and the overall shape of the magnitude re-
sponses at any given time is considerably different. This behavior
is shown in Fig. 13. It can be assumed that the left switch activates
a feedback path to the allpass filter chain, as the changes in the
response are similar to those seen in Fig. 4.

As a final note on the measured data, when both switches were
in the ‘on’ position, the resulting responses were a combination of
both effects: The notch behavior was similar to that of Fig. 12, and
the magnitude response behaved as in Fig. 13.

5. MODELING OF THE MEASURED PHASER

A gray-box digital model of the measured phaser was implemented
based on the collected data. Several design choices were made
based on basic knowledge of the internal workings of phaser ped-
als, hence the term gray-box. First, it was decided to use first-order
allpass filters only, as these are the building blocks of standard ana-
log phaser pedals [2, 9]. This design makes it impossible to control
the width of the notches independently, but is faithful to the orig-
inal analog design. Since measurements showed that the phaser
introduces five notches, the designed called for a network of ten
first-order allpass filters paired in groups of two. Then, with the
help of a simplified study of the circuit [13], it was observed that
the first and last pairs of filters were not being modulated. This can
be written as

A1 = A2 = A9 = A10 (5)

A3 = A4 = A5 = A6 = A7 = A8 (6)
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Figure 14: Estimated values of allpass filter coefficients c1 and c2
for a single LFO cycle, when the LFO switch is (a) ‘on’ and (b)
‘off’.

where Am is the transfer function of the mth allpass filter. This
means that only two coefficients are needed to model the phaser.

The location of the notches over a single LFO cycle for both
positions of the LFO switch were readily available from the mea-
surements shown in Figs. 10 and 12. An algorithm was devised
to find the pair of coefficients that best fit the measured data. This
was done by iterating over a large set of coefficient combinations
and evaluating the phase response of the allpass network at the
target frequencies analytically and computing the mean absolute
error. This optimization was performed using a standard sampling
rate of 44.1 kHz.

After some initial tests, it was observed that the pair of coeffi-
cients that gave the smallest error performed rather poorly at low
frequencies. This was attributed to the inaccurate nature of analog
systems. Even when the filters used in the original analog pedal
are supposed to be identical, the high tolerance levels of the com-
ponents make this condition impossible. To minimize this effect,
we decided to neglect the fourth and fifth notches for the case of
the LFO switch ‘off’ and the fifth notch for the case of the LFO
switch ‘on’ during the optimization process.

Several coefficient evaluations demonstrated the initial assump-
tion that the first and last pair of allpass filters are static. Based on
testing, coefficient c1, i.e. the coefficient for filters A1, A2, A9,
and A10 was assigned a fixed value of −0.89. Fig. 14(a) shows
the estimated value for coefficient c2, i.e. the coefficient for filters
A3...A8, for a single cycle when the LFO switch is ‘on’. As in-
ferred from the measurements, this coefficient can be modulated
using a triangular LFO. The range of this LFO must be between
[−0.84,−0.39]. Fig. 14(b) shows the estimated values for c2 when
the LFO switch is in the ‘off’ position. This LFO can be modeled
using a rectified sinewave ranging between [−0.49, 0.77].

The LFO speed control was modeled with a weighted least
squares fit of an exponential function to the data shown in Fig. 11:

flfo = 0.069e0.040s, (7)

where 0 ≥ s ≥ 100 is the LFO speed parameter and flfo is the
fundamental frequency of the LFO.

To validate the model, a test signal was phasered with the
model using coefficients estimated previously. A second-order IIR
filter was used to simulate the DC blocker observed in the measure-
ments. A DC blocking filter is common in analog audio electronics
and is used to remove hum [14] or to assure that the waveform is
symmetric before it enters a distortion unit. The transfer function
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Figure 15: Magnitude response of the modeled phaser compared
to the measured response with the LFO switch ‘off’. Parameters
G = 0.5 and W = 0.5 were used.

Figure 16: Magnitude response of the modeled phaser compared to
the measured response with the LFO switch ‘on’ (G = W = 0.5).

of the second-order DC blocker is

HDC =
1 + p

2

1− z−2

1− pz−2
, (8)

where p = 0.992 determines the pole location, which is an octave
lower than in the corresponding first-order design [14].

The phasered test signal was then analyzed using the same
method as the pedal measurements, and the magnitude responses
and notch frequencies at each time were found. A comparison of
the model’s magnitude response to that of the measured pedal in
Fig. 15 and Fig. 16 shows a close resemblance, but it can also be
seen that the notch frequencies are matched much better at low
than at high frequencies. Perceptually, the model accuracy in the
highest octave is not highly important, however.

When comparing the behavior of notches in the model, shown
in Fig. 17 and Fig. 18, and in the measured pedal (see Fig. 10 and
Fig. 12), it can be noticed that they are very similar. The measured
and the modeled notches have nearly the same the period, wave-
form, and frequency range. This can easily be seen in Fig. 19 in
which the notches of both the measured and the modeled phaser
are synchronized in time and are plotted for roughly two periods

Figure 17: Estimated notch frequencies of the digital phaser model
emulating the case when the LFO switch is ‘off’ (full-wave recti-
fied sine LFO), the feedback switch is ‘off’, and the speed is set at
54%. Cf. Fig. 10.

Figure 18: Estimated notch frequencies of the digital phaser
model emulating the case when the LFO switch is ‘on’ (triangular
LFO), the feedback switch is ‘off’, and the speed is set at 54%.
Cf. Fig. 12.

with zoomed in frequency axis to better see the differences. One
reason for the minor deviation is the LFO waveshape, which was
modeled as strictly triangular in this case. However, an analog
LFO of a phaser does not produce a perfect triangular waveform,
but there is some degree of curvature in the waveform.

Furthermore, modeling of the phaser with the feedback was
tested, but it was noticed that the model used could not produce a
response identical to the measured one with the feedback switch
‘on’. An example of the model’s response with feedback is shown
in Fig. 4. It can be compared to the response of the measured
system in Fig. 13. In the model, the notch locations are again
correct, but the resonances between the notches cannot be matched
with those of the measured system.

Sound examples and Matlab code related to this work are avail-
able online [15].
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Figure 19: Comparison of three notches of the measured and mod-
eled phaser as a function of time (LFO switch ‘on’; triangular
LFO).

6. CONCLUSIONS

A method to measure time-varying audio effects was proposed. It
uses a sequence of very short chirps to measure the impulse re-
sponse of the system under measurement multiple times, and from
them a characterization of the system can be produced. In the
case of phasers, the spectral notches at different times are extracted
from the measurements. The behavior of the magnitude response
and notch locations in time reveals the operating principle of the
measured phaser.

The method was tested by measuring a phaser pedal, and the
results were analyzed. For example, the LFO frequency for dif-
ferent speed settings was measured and an exponential mapping
was observed. The effect of the two switches of the pedal were
analyzed based on the measurements, with one changing the LFO
signal’s waveshape and range while the other adding a feedback
around the allpass filter loop. A gray-box virtual analog model of
the phaser was calibrated based on the measurements.

In the gray-box model the idea was to emulate the measure-
ments, making it easier through some knowledge of the pedal.
Overall the resulting model behaved similarly as the data after
which it was modeled. However, the modeling of the feedback
feature was not accurate in details. It could be improved in the fu-
ture by using a modeling technique which does not need a fictitious
unit delay in the feedback loop [16, 17].
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