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ABSTRACT

Outlier detection is the task of automatic identification of unknown
data not covered by training data (e.g. a new genre in genre recog-
nition). We explore outlier detection in the presence of hubs and
anti-hubs, i.e. data objects which appear to be either very close
or very far from most other data due to a problem of measur-
ing distances in high dimensions. We compare a classic distance
based method to two new approaches, which have been designed
to counter the negative effects of hubness, on two standard music
genre data sets. We demonstrate that anti-hubs are responsible for
many detection errors and that this can be improved by using a
hubness-aware approach.

1. INTRODUCTION

Outlier detection1 is the identification of new or unknown data that
a machine learning system is not aware of during training (see [18]
for a recent review and [29] for a survey on high-dimensional out-
lier detection). It is a fundamental requirement for every machine
learning system to automatically identify data from regions not
covered by the training data since in this case no reasonable de-
cision can be made. In the case of music information retrieval
(MIR), an application scenario is the rejection of songs from a
previously unseen genre in genre recognition. The same holds for
other classifications tasks (e.g. tag or mood), but also for retrieval
of similar songs in case a query song is too different from all other
songs in a data base. Another example is the automatic rejection
of songs from play-lists because they do not fit the overall flavor
of the majority of the list. Only little research on outlier detection
in MIR so far exists [6, 12, 26, 8].

Hubness is a general problem of learning in high-dimensional
spaces and has been recognized as a new aspect of the curse of di-
mensionality in machine learning literature [20, 23]. Hub objects
appear very close to many other data objects and anti-hubs very far
from most other data objects. It has been argued and demonstrated
that anti-hubs might act as ‘artificial’ outliers since they are far
away from many other data points [20]. A recent review on out-
lier detection in high dimensional data concluded that the “relation
of hubness and outlier degree appears to be remaining an open is-
sue” [29]. It has been demonstrated [10], that many MIR models
are inherently high-dimensional and highly prone to hubness. In
a first MIR study on outlier detection in high dimensions [8], we
were able to show that it is possible to improve outlier detection
by using a hubness reduction method as a preprocessing step.

∗ This work was supported by the Austrian Science Fund (FWF, grant
P27082).

1Please note that the terms outlier and novelty detection are closely re-
lated although not fully synonymous. We will use the term outlier through-
out the paper without further distinction for reasons of convenience.

In this paper we explore whether such improvements in high-
dimensional outlier detection are on account of the changed role of
hubs and anti-hubs due to the hubness reduction method. This is
done by analyzing the performance of hubs and anti-hubs in a clas-
sic distance based method and in two hubness-aware approaches,
all applied in a music genre recognition setting.

2. RELATED WORK

Outlier detection, also known as novelty detection, is the task of
automatically recognizing data that differ in some respect from the
data seen during training by a machine learning system. In case
new data differs substantially from training data, no sensible de-
cision can be made by a machine learning system. This should of
course be an integral part of any data analysis system and therefore
a vast literature concerning the topic exists. For this paper, we fol-
low the systematic of a very recent and comprehensive review [18],
which also contains a representative list of references concerning
the topic. According to this review, outlier detection can be distin-
guished into probabilistic, distance-based, reconstruction-based,
domain-based and information theoretic approaches. The methods
we will present in Section 4 are all distance-based, more specifi-
cally based on nearest neighbor information. They are also all un-
supervised, i.e. class labels are not needed for detection of outliers.
Of greater importance is a recent review that deals specifically with
outlier detection in high-dimensional data [29]. Although the au-
thors show how some classic outlier detection methods are affected
by the concentration of distances (see also next paragraph), hub-
ness is only reviewed as a remaining open issue.

The concept and term of hubness has been discovered and
first described in MIR [1], but then gained attention in a machine
learning context where it has been discussed as a new aspect of
the curse of dimensionality and a general problem of learning in
high-dimensional spaces [20, 23]. Hubness is related to the phe-
nomenon of concentration of distances, which is the fact that all
points are at almost the same distance to each other for dimension-
ality approaching infinity [11]. Radovanović et al. [20] presented
the argument that for any finite dimensionality, some points are ex-
pected to be closer to the center of all data than other points and are
at the same time closer, on average, to all other points. Such points
closer to the center have a high probability of being hubs, i.e. of
appearing in nearest neighbor lists of many other points. Points
which are further away from the center have a high probability of
being anti-hubs, i.e. points that never appear in any nearest neigh-
bor list. Hubness has been shown to have a negative impact on
many tasks including classification [20], nearest neighbor based
recommendation [10] and retrieval [24], clustering [27, 22] and
visualization [4]. Many of these reports are from the MIR com-
munity (e.g. [14, 2, 10, 4, 5]). It also affects data from diverse
domains including multimedia (text, music, images, speech), biol-
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ogy and general machine learning (see [20, 23, 3] for large scale
empirical studies).

In order to reduce hubness and its negative effects, we have
proposed two unsupervised methods to re-scale high-dimensional
distance spaces [23]: Local Scaling (LS) and Mutual Proximity
(MP). Both methods aim at repairing asymmetric nearest neighbor
relations. The asymmetric relations are a direct consequence of
the presence of hubs. A hub y is the nearest neighbor of x, but the
nearest neighbor of the hub y is another point a (a 6= x). This is
because hubs are by definition nearest neighbors to very many data
points but only one data point can be the nearest neighbor to a hub.
The principle of the scaling algorithms is to re-scale distances to
enhance symmetry of nearest neighbors. A small distance between
two objects should be returned only if their nearest neighbors con-
cur. Application of LS and MP resulted in a decrease of hubness
and an accuracy increase in k-nearest neighbor classification on
thirty real world datasets including text, image and music data.

Just recently we re-visited our own results [6] on outlier detec-
tion in MIR and tried to use mutual proximity (MP) for the task [8].
After all, MP rescales distances to probabilities of mutual proxim-
ity which allows for convenient thresholding to detect outlier data
due to its probabilistic interpretation. We were able to show that
outlier detection based on MP improves the ability to reject outlier
data when compared to a classic distance based method, again in a
genre classification context. A necessary next step is to investigate
whether the improvement achieved is on account of the changed
role of hubs and anti-hubs due to the application of mutual prox-
imity. It seems clear that anti-hubs, being far away from most
points, will probably always be rejected as outliers and that hub
objects, being close to many points, should be harder to reject. It
is therefore our hypothesis that in high-dimensional data, hub and
anti-hub points are responsible for many errors being made when
rejecting data.

Such a first analysis of the role of anti-hubs in outlier detection
has recently been presented [19]. More specifically, the authors
have analysed two variants of the ODIN method [13], k-NN out-
lier scoring [21] and three other methods concerning their relation
to anti-hubs. The two variants of the ODIN method use reverse
nearest neighbor counts, i.e. counts of how often every data object
appears among the k nearest neighbors of every other data object.
Per definition anti-hubs have very small or even zero reverse near-
est neighbor counts. The authors show that outlier scores based on
these counts are correlated to scores from other detection methods
but do provide some extra information. Outlier detection results
of the ODIN-based methods are however rather mixed when com-
pared to other methods applied to twelve real world data sets. It
also has to be said that these data sets are not really very high di-
mensional (from only 5 to at most 100) and therefore most of them
are probably not affected by hubness at all.

Concerning the dimensionality of data sets, it is important to
note that the degree of concentration and hubness is linked to the
intrinsic rather than extrinsic dimension of the data space. Whereas
the extrinsic dimension is the actual number of dimensions of a
data space, the intrinsic dimension is the, often much smaller,
number of degrees of freedom of the submanifold in which the
data space can be represented [11]. Our previous research [23] has
shown that real world data with extrinsic dimensionality as small
as 34 can already exhibit the negative effects of hubness, while
other data with extrinisc dimensionality of more than 10000 is still
not affected. It is also true that simple dimensionality reduction
does not reduce hubness. On the contrary it has been shown that

only projections to very few dimensions, well below the intrinsic
dimensionality of a data set, are able to reduce hubness, but at the
cost of a loss of distance information [20].

3. DATA

For our analysis, we chose to use a genre classification framework,
following the hypothesis that songs within a certain genre are more
similar to each other than songs from different genres. During
evaluation in Section 5, we will always reserve all songs belonging
to one of the genres as outlier songs to be detected against the rest
of the songs from all other genres. Songs from an unknown genre
therefore act as outliers.

For our experiments we used two standard music databases:
the “GTZAN” collection consisting of N = 1000 audio tracks
(each 30 s length) evenly spread over G = 10 music genres [28];
the “ISMIR2004” 2 collection containing N = 1458 tracks of
G = 6 genres, with full-length audio being available and exhibit-
ing a highly imbalanced genre distribution with classical music
comprising almost half of the tracks.

We decided to compute timbre information from the audio,
since this is an integral part of many MIR systems and at the same
time has already been shown to be susceptible to hubness [10]. Ev-
ery track is divided into overlapping frames for which 20 MFCCs
are being computed which are modeled via a single Gaussian with
full covariance matrix. To compute a distance value between two
Gaussians the symmetrized Kullback-Leibler (SKL) divergence is
used (see [17] for details on both MFCCs and SKL). This results
in N ×N distance matrices DG and DI for the GTZAN and IS-
MIR data sets. Therefore the data sets are represented as distance
spaces only, not vector spaces, and it is not possible to report their
extrinsic dimensionality. Their intrinsic dimensionality measured
via a maximum likelihood estimator [16] is 10.94 for GTZAN and
9.00 for ISMIR.

4. METHODS

We now describe all three methods we will use for outlier detec-
tion. All of them compute an outlier score (SkNN , SAH and
SMP ), which is bounded between 0 and 1 and is compared to a
threshold p to decide whether a data object is an outlier or not. A
data object is rejected if:

S > p. (1)

4.1. kNN-reject

The first method is a standard distance-based approach known as
k-NN outlier scoring [21]. The outlier score is the average distance
to the k nearest neighbors:

SkNN (x) =
1

k

k∑
i=1

Dx,NNi(x), (2)

with NNi(x) being the ith nearest neighbor of x. The distance
matricesDG andDI (see Section 3) are normalized to the interval
0 to 1 by subtracting the minimum distance and dividing through
the maximum distance. This also bounds the outlier score SkNN

between 0 and 1.
2http://ismir2004.ismir.net/genre_contest/

index.html
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4.2. AH-reject

The next method is based on previous work of using reverse near-
est neighbor counts for outlier detection [19]. In hubness research,
the reverse nearest neighbor count of a point x is usually called
n-occurrenceOn(x) [20]. It is the number of times x occurs in the
first n nearest neighbors of all other objects in the collection. The
proposed method simply uses On(x) as the outlier score. It has
been termed “Antihub” because anti-hubs have very small or even
zero n-occurrence and are therefore very likely to be rejected as
outliers. The same authors proposed a variant called “Antihub2”
which also includes information from the k nearest neighbors of
x:

SAH(x) = (1− α) 1

On(x) + 1
+ α

k∑
i=1

1

On(NNi(x)) + 1
. (3)

We set α = k/(k + 1), which basically gives the average across a
function of the n-occurrences of x itself and its k nearest neighbors
NNi(x). The outlier score SAH is also bounded between 0 and 1,
with SAH = 1 in case all involved n-occurrences On are equal
zero, and SAH = 1/N in case all involved On = N − 1. An
n-occurrence is equal N − 1 in case a data point appears in all
neighborhood lists of all other data points.

4.3. MP-reject

Mutual Proximity (MP) [23] rescales the original distance space so
that two objects sharing similar nearest neighbors are more closely
tied to each other, while two objects with dissimilar neighborhoods
are repelled from each other. MP has been devised to counter the
negative effects of hubness in high dimensional data spaces. For
MP-reject we exploit the fact that MP rescales distances to proba-
bilities which enables comparability and simple thresholding. MP
reinterprets the distance of two objects as a mutual proximity in
terms of their distribution of distances. To compute MP, we as-
sume that the distancesDx,i=1..N from an object x to all other ob-
jects in our data set follow a certain probability distribution P (X),
thus any distance Dx,y can be reinterpreted as the probability of y
being the nearest neighbor of x, given their distance Dx,y and the
probability distribution P (X):

P (X > Dx,y) = 1− P (X ≤ Dx,y) = 1−Fx(Dx,y), (4)

with F denoting the cumulative distribution function (cdf). MP is
then defined as the probability that y is the nearest neighbor of x
given P (X) and x is the nearest neighbor of y given P (Y ):

MP (Dx,y) = P (X > Dx,y ∩ Y > Dy,x). (5)
To compute MP in our experiments we assume that the distances
Dx,i=1..N follow a Gaussian distribution. We define the outlier
score as the average of the MP-distances to the k nearest neighbors
of x:

SMP (x) =
1

k

k∑
i=1

(1−MP (x,NNi(x))), (6)

with NNi(x) being the ith nearest neighbor of x. Please note that
we use the term (1 −MP ) because mutual proximity computes
similarities and we need distances for the rejection rule. Outlier
score SMP is bounded between 0 and 1 since it is based on MP
which computes a probability.

5. RESULTS

Before evaluating the outlier detection methods, we present an
analysis of the hubness of the data sets GTZAN and ISMIR in
Table 1. The table gives the number of data objects N , number of
genres G, the number of hubs #hub, anti-hubs #anti and nor-
mal #normal data objects. Anti-hubs are defined as data ob-
jects with an n-occurrence On (see Sec. 4.2) equal 0, hubs with
On > 5n, all based on numbers of nearest neighbors of n = 5.
Normal data objects are all non-hub and non-anti-hub objects, i.e.
0 < On ≤ 5n. Please note that the mean n-occurrence across all
objects in a data base is equal to n. Any n-occurrence significantly
bigger than n therefore indicates existence of a hub. As in previ-
ous work [23], we chose objects appearing more than five times the
expected value (5n = 25) as hub objects. As can be seen, consis-
tent with theory, in both data sets there are small numbers of hubs
(GTZAN 21, ISMIR 24) and large numbers of anti-hubs (GTZAN
186, ISMIR 276). The last column of Table 1 gives the hubness
Hn. It is the skewness of the distribution of n-occurrences, i.e.
the third moment of the distribution. A data set having high hub-
ness produces few hub objects with very high n-occurrence and
many anti-hubs with n-occurrence of zero. This makes the distri-
bution of n-occurrences skewed with positive skewness indicating
high hubness. The hubness values Hn of 3.29 for GTZAN and
3.94 for ISMIR show that there is a clear hubness effect in these
data sets. Previous work [23] has shown that values above 1.4 are
already problematic.

Table 1: Hubness analysis of data sets GTZAN and ISMIR, see
Sec. 5.

data set N G #hub #anti #normal Hn

GTZAN 1000 10 21 186 793 3.29
ISMIR 1458 6 24 276 1158 3.94

To evaluate the three outlier detection methods described in
Sec. 4 we use the following approach shown as MATLAB style
pseudo-code in Table 2. First we set aside all songs belonging to a
genre g as new songs ([new,data]=separate(alldata,
g)) which yields data sets new and data (all songs not belong-
ing to genre g). Then we do a C = 10-fold crossvalidation using
data and new: we randomly split data into train and test
fold ([train,test] = split(data,c)) with train al-
ways consisting of 90% and test of 10% of data. We com-
pute the percentage of new songs which are rejected as being out-
liers (outlier_reject(g,c) = outlier(new)) and do
the same for the test songs (test_reject(g,c) =
outlier(test)). Last we compute the classification accu-
racy on test data that has not been rejected as being outliers
(accuracy(g,c) = classify(test(not
test_reject))). As a classifier we use simple one-nearest
neighbor classification. The evaluation procedure gives G × C
(GTZAN 10×10, ISMIR 6×10) matrices of outlier_reject,
test_reject and accuracy for each parameterization of the
outlier detection approaches, i.e. for different values of k (see Sec.
4). In what follows we always report average numbers across these
G×C sized matrices of results, i.e. averages across crossvalidation
folds and genres.

The results for outlier detection are given in Figs. 5 and 6
as Receiver Operating Characteristic (ROC) curves. To obtain an
ROC curve, the fraction of false positives (object is not an outlier
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Table 2: Outline of evaluation procedure, see Sec. 5.

for g = 1 : G
[new,data] = separate(alldata,g)
for c = 1 : C

[train,test] = split(data,c)
outlier_reject(g,c) = outlier(new)
test_reject(g,c) = outlier(test)
accuracy(g,c) =
classify(test(not test_reject))

end
end

but it is rejected, in our case test_reject) is plotted versus the
fraction of true positives (object is an outlier and correctly rejected,
in our case outlier_reject) for varying threshold values p.
We vary the threshold values from p = 0 to p = 1 in steps of
.02. An ROC curve shows the trade off between how sensitive and
how specific a method is. Any increase in sensitivity will be ac-
companied by a decrease in specificity. If a method becomes more
sensitive towards outlier objects it will reject more of them but at
the same it will also become less specific and also falsely reject
more non-outlier objects. Consequently, the closer a curve follows
the left-hand border and then the top border of the ROC space, the
better the performance of the method is.

To summarize the information contained in ROC curves, we
also compute the Area Under the Curve (AUC), which gives the
percentage of the whole ROC space that lies underneath an ROC
curve. An AUC of 1 indicates perfect performance, while an AUC
of .5 indicates performance at chance level.

As a first analysis step, we tried to find optimal parameters k
(neighborhood size for algorithms kNN, AH, MP) by comparing
AUC results based on values of k = 1, 2, 3, 5, 10, 20, 30, 40, 50.
Results for GTZAN can be found in Figure 1, for ISMIR in Fig-
ure 2. Looking at the GTZAN results, the AUC values (y-axis)
for all three methods monotonically decrease with neighborhood
size increasing beyond k = 1. The only exception is a very small
gain in AUC for MP going from k = 1 to k = 2. Looking at the
results for ISMIR in Figure 2, the AUC values again monotoni-
cally decrease beyond k = 1 for methods kNN and MP. Only for
method AH, there is a small and slow rebound starting at about
k = 20. We therefore conclude that there is no gain in increasing
the neighborhood size k beyond 1 for any of the methods. All fol-
lowing results are therefore based on the choice of k = 1. We can
also see from Figures 1 and 2, that MP improves AUC results over
kNN across the whole range of k and for both data sets. It is also
already evident that AH is never able to improve performance of
kNN.

We now make a detailed AUC analysis separate for all data
as well as for hubs, anti-hubs and normal data as defined at the
beginning of this section (neighborhood size k = 1 for all outlier
detection methods). Looking at the results for GTZAN in Figure 3,
we can see that for all data together (left most group of bars in fig-
ure), MP increases performance to .81 compared to kNN which
achieves .70. Method AH actually decreases performance to .67.
Looking at hubs and anti-hubs separately for method kNN, it is
clear that anti-hub objects perform worst with an AUC of .59 ver-
sus .71 for hubs and .73 for the remaining normal data. We see
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Figure 1: AUC (y-axis) analysis for data set GTZAN and parame-
ter k ranging from 1,2,3,5,10,20,30,40 to 50 (x-axis), solid line for
kNN, dotted for AH, dashed for MP.
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Figure 2: AUC (y-axis) analysis for data set ISMIR and parameter
k ranging from 1,2,3,5,10,20,30,40 to 50 (x-axis), solid line for
kNN, dotted for AH, dashed for MP.

the same pattern of lowest AUC for anti-hubs for method AH also,
albeit at an even lower level. Method MP is able to increase AUC
compared to kNN for both anti-hubs (from .59 to .71) and nor-
mal data (from .73 to .86). There is a small decrease in AUC for
hubs (from .71 to .67). Looking at results for ISMIR in Figure 4,
we basically see the same pattern. Method kNN performs worst
for anti-hubs, normal and hub objects perform at about the same
level. Method AH repeats this pattern at a lower level. Method MP
is able to improve the performance for anti-hubs and normal ob-
jects but not for hubs. Gains in performance compared to kNN are
smaller than for GTZAN (e.g. from .78 to .83 for all data objects).

We now present the ROC plots that the above AUC results
are based on, again for all data as well as for hubs, anti-hubs and
normal data separately (neighborhood size k = 1 for all outlier
detection methods). Looking at the results for GTZAN in Fig-
ure 5, we can see that the ROC curve for method MP (dashed line)
is above those for kNN (solid line) and AH (dotted line) for al-
most the whole ROC space for all data together as well as for anti-
hubs and normal objects (sub-plots titled ‘ALL’, ‘ANTI-HUB’ and
‘NORMAL’). The ROC curves for hub objects are quite compara-
ble for all three methods. It is also interesting to see, that the ROC
curve for method AH and anti-hub objects (sub-plot titled ‘ANTI-
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Figure 3: AUC plot for data set GTZAN, black bars for kNN, grey
for AH, white for MP (neighborhood size k = 1).
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Figure 4: AUC plot for data set ISMIR, black bars for kNN, grey
for AH, white for MP (neighborhood size k = 1).

HUB’, dotted line) is very close to the main diagonal indicating
performance at chance level. This explains the very low AUC of
.59 for this curve, with .5 indicating chance level. This is due to
the fact, that method AH is based on n-occurrence counts (see Sec-
tion 4.2), basically detecting everything with a low n-occurrence
as outliers. It therefore rejects all anti-hubs as outliers, no mat-
ter whether they are true outliers or test data that should not be
rejected. Figure 6 gives the ROC plots for ISMIR, repeating the
same patterns of behavior we just described, albeit less clearly.
ROC curves for method MP more or less dominate those for kNN
and AH for all data together as well as anti-hubs and normal data.
Method AH performs even below chance level for anti-hubs with
an AUC of only .46.

Finally, we present results concerning one-nearest neighbor
classification accuracy gains due to the outlier rejection. While
steadily lowering threshold value p and rejecting more and more
test and outlier data, less and less data is being classified but usu-
ally with increased accuracy. The following results are averages
across test data not used for training of the classifier and not re-
jected by the respective outlier detection methods. In Tables 3 and
4 we present for data sets GTZAN and ISMIR the classification ac-
curacy without any outlier rejection (acc), the maximum achieved
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Figure 5: ROC plots for data set GTZAN, solid line for kNN, dotted
for AH, dashed for MP (neighborhood size k = 1).

Table 3: Accuracy analysis of data set GTZAN, see Sec. 5.

method acc acc_rej o_rej t_rej
kNN 77.54 98.90 99.82 85.94
AH 77.54 82.03 76.94 56.77
MP 82.06 94.69 91.02 39.69

Table 4: Accuracy analysis of data set ISMIR, see Sec. 5.

method acc acc_rej o_rej t_rej
kNN 87.11 100.00 100.00 62.76
AH 87.11 93.08 73.72 46.60
MP 91.11 98.04 87.77 28.10

accuracy after rejection (acc_rej), the percentage of rejected out-
lier data (o_rej) and the percentage of rejected test data (t_rej) at
the respective threshold level. The baseline accuracy acc of using
method kNN and not rejecting at all is 77.54% for GTZAN. Please
note that this baseline accuracy is already at 82.06% when using
distances rescaled via MP, again while not rejecting at all. With
outlier rejection this can be improved up to 98.90% with kNN and
94.69% with MP, but only 82.03% with AH. But to reach this
maximum accuracy, kNN does not only correctly reject 99.82%
of outliers, but also falsely rejects 85.94% of test data. Method
MP on the other hand reaches its maximum accuracy while cor-
rectly rejecting 91.02% of outliers but only 39.69% of test data.
Data set ISMIR shows the same pattern with accuracies improving
up to 100.00% and 98.04% for kNN and MP, with AH lagging
behind at 93.08%. Again kNN has to reject much more test data
than MP to reach these results (62.76% vs. only 28.10%).

6. DISCUSSION

In discussing our results obtained in Section 5, we like to recapit-
ulate our main findings.
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Figure 6: ROC plots for data set ISMIR, solid line for kNN, dotted
for AH, dashed for MP (neighborhood size k = 1).

Our first result is that classic distance-based outlier rejection
methods are negatively affected by hubness. As can be seen by
looking at the results for distance-based method kNN separately
for hubs, anti-hubs and normal data, especially anti-hubs present
problems for outlier detection as evident from their lower AUC
values. Since anti-hubs per definition are far away from most other
data points in a data base, it seems logical that they are being de-
tected as outliers even when they not really are. As for hub objects,
we would have expected that they are also responsible for more
detection errors than normal data, which is not really the case. In
our analysis we only looked at hub objects as being candidates
for outlier detection and there are maybe too few hub objects (21
in GTZAN and 24 in ISMIR) in the data sets to gain meaningful
statistics. But hub objects are per definition in nearest neighbor
lists of many other data objects and through these lists very likely
enter computation of outlier scores of many data objects in a data
set. It would definitely be very interesting to do another analysis
of outlier detection considering this fact.

Our second result is that reverse nearest neighbor information
cannot improve distance-based outlier detection that is affected
by hubness. On the contrary, our results for method AH show
that AUC values compared to kNN even deteriorate. Especially
AUC results for anti-hubs are sometimes even below chance level.
Given the fact that AH basically detects everything with a low re-
verse nearest neighbor count as an outlier, this is not surprising.
After all this means that anti-hubs, which already are a problem for
distance-based methods, are detected as outliers no matter whether
they really are or not.

Our third result is that our hubness-aware algorithm MP is able
to improve outlier detection and that this improvement is also due
to the changed role of anti-hubs. Looking at our results for using
MP, we can see that we gain overall improvements in AUC which
are especially pronounced for anti-hub and normal data. Mutual
proximity has been shown to decisively reduce the negative impact
of hubs and anti-hubs and produce distance spaces with much more
normal behavior [23]. Rescaling via MP is able to prevent anti-
hubs from being far away from most other data points, therefore

not acting as ‘artificial’ outliers anymore.

Given these three main results, it would now of course be very
interesting to analyse the behavior of other outlier detection meth-
ods when confronted with data affected by hubness. Of special
interest are methods that have already been designed for high-
dimensional outlier detection like e.g. “angle-based outlier detec-
tion” (ABOD) [15].

Our data analysis is based on a model of timbre similarity only,
since this is an important part of most MIR systems modeling mu-
sic similarity. Previous results have shown that many different
parametrizations of audio are susceptible to hubness [10], there-
fore our results are important for MIR models beyond timbre also.
But it also clear that there exist models of music similarity that
are not prone to hubness, e.g. certain combinations of timbre and
rhythm aspects [9]. And it is also clear that there exist other meth-
ods to reduce hubness in MIR models, e.g. the usage of Universal
Background Models [2], which is a method from speech analysis.

Concerning usage of data sets in our study, repetition with
larger data sets and other MIR problems (e.g. tag classification)
would of course be interesting. We are also aware of the criticism
concerning the GTZAN data set and its faults [25] like e.g. mis-
labeling. But these problems mainly concern classification results
and not so much outlier detection which after all is the main focus
of our work here.

Of greater importance is maybe the fact that we do not use
artist filters in our analysis. An artist filter [7] prevents songs from
the same artist to be both in the training and test set. This is im-
portant since songs from the same artist are often very similar and
not using an artist filter can lead to over optimistic results, e.g. in
terms of genre classification. But as we just said above, this is
not our main focus here and very likely this problem affects all
three of our methods (kNN, AH and MP) in the same way. But it
is also a wellknown effect that songs from the same artist domi-
nate the nearest neighbor lists in audio-based music similarity. We
can only speculate whether songs from the same artist are able to
even prevent hub songs from entering nearest neighbor lists. If this
were the case, usage of an artist filter would definitely change our
outlier detection results. Maybe the impact of hubness on outlier
detection is even greater if artist filters are being used. Such an
analysis is beyond the scope of this paper but definitely interesting
future work.

7. CONCLUSIONS

We have presented a first detailed study of the role of hubness in
outlier detection for music genre recognition. We found that clas-
sic distance-based methods for outlier rejection are negatively im-
pacted by hubness, where especially anti-hubs pose a problem. We
also showed that a recently proposed outlier method based on re-
verse nearest neighbor counts is not able to help in this respect. But
a hubness-aware method based on hubness reduction via compu-
tation of mutual proximity is able to improve outlier detection re-
sults. Improvements concerning the problematic role of anti-hubs
are part of the success. Since hubness is due to a general prob-
lem of measuring distances in high-dimensional spaces and since
many models in music information retrieval have been shown to
be affected, our results are of interest beyond the focus on genre
recognition in this paper.
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M.: The Role of Hubness in Clustering High-
dimensional Data, IEEE Transactions on Knowledge
and Data Engineering, Volume 26, Issue 3, 2013.

[28] Tzanetakis G., Cook P.: Musical genre classification of
audio signals, IEEE Transactions on Speech and Audio
Processing, Vol. 10, Issue 5, 293-302, 2002.

[29] Zimek A., Schubert E., Kriegel H.-P.: A survey on
unsupervised outlier detection in high-dimensional nu-
merical data, Statistical Analysis and Data Mining, 5:
363-387, 2012.

DAFX-75


	1  Introduction
	2  Related work
	3  Data
	4  Methods
	4.1  kNN-reject
	4.2  AH-reject
	4.3  MP-reject

	5  Results
	6  Discussion
	7  Conclusions
	8  References



