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ABSTRACT

Acoustic feedback is a recurrent problem in live sound reinforce-
ment scenarios. Many attempts have been made to produce an
automated feedback cancellation system, but none have seen wide-
spread use due to concerns over the accuracy and transparency of
feedback howl cancellation. This paper investigates the use of the
Magnitude Slope Deviation (MSD) algorithm to intelligently iden-
tify feedback howl in live sound scenarios. A new variation on this
algorithm is developed, tested, and shown to be much more com-
putationally efficient without compromising detection accuracy.
The effect of varying the length of the frequency spectrum history
buffer available for analysis is evaluated across various live sound
scenarios. The MSD algorithm is shown to be very accurate in
detecting howl frequencies amongst the speech and classical mu-
sic stimuli tested here, but inaccurate in the rock music scenario
even when a long history buffer is used. Finally, a new algorithm
for setting the depth of howl-cancelling notch filters is proposed
and investigated. The algorithm shows promise in keeping fre-
quency attenuation to a minimum required level, but the approach
has some problems in terms of time taken to cancel howl.

1. INTRODUCTION

In any system where sound captured by a microphone is amplified
and reproduced by a nearby loudspeaker, a portion of the ampli-
fied sound emanating from the loudspeaker will be received by
the microphone. This sound is subsequently re-amplified and fed
back to the loudspeaker [1]. In this way, the sound system forms a
closed loop (see figure 1). The most apparent effect of this acous-
tic feedback loop is the screeching sound that can develop (termed
‘feedback howl’), which can cause severe limitations to the sys-
tem’s performance.

Formulated in a form relating specifically to acoustic feedback
by van Waterschoot and Moonen [2], Nyquist’s criterion states that
if for a radial frequency ω:{

|G(ω, t)F (ω, t)| > 1

∠G(ω, t)F (ω, t) = n2 nπ, ∈ Z
(1)

where G(ω, t) and F (ω, t) represent the short-term frequency re-
sponses of the forward and return parts of the loop respectively,
then the system is unstable and has potential to feed back at that
frequency.

Howl inevitably occurs in sound reinforcement systems as am-
plification levels are increased beyond a certain level - the system’s
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Figure 1: Schematic for a PA system producing acoustic feedback.
G represents the electroacoustic forward signal path, and F repre-
sents the acoustic return path.

Maximum Stable Gain (MSG) [2]. Given the system loop magni-
tude response, it is possible to predict the MSG as follows:

MSG [dB] = −10 log10
max(|G(ω)F (ω)|2)
|G(ω)F (ω)|2

, ω ∈ P (2)

where the denominator of the fraction is the Mean Loop Gain
(MLG) and P represents the set of frequencies in the range of in-
terest that fulfil the phase condition of equation (1). The MSG de-
fines the upper limit for usable amplification levels from any given
PA system. It is the aim of feedback control systems to increase
the MSG of a system, giving more usable gain before feedback
howl occurs.

Despite the availability of numerous automatic feedback man-
agement systems on the market, the majority of professional sound
engineers prefer to manage feedback manually, typically reduc-
ing the magnitude of problematic frequency bands using a graphic
equaliser [3, 4]. This is largely due to the common perception that
automatic feedback control systems are unreliable - there is always
the risk of an automatic system falsely identifying a desired sound
component as feedback howl and attempting to suppress it, or an
actual instance of howl going undetected. Both scenarios could
ruin a carefully-constructed live mix.

Setting aside these flaws, a reliable automatic feedback man-
agement system would make a desirable addition to live sound
technology. The acoustic return path response F (ω) can change
dramatically over time depending on room temperature [5], the
addition of an audience into a performance space and particularly
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microphone movement [6, 7]. This can affect the frequencies at
which feedback howl is likely to occur.

This paper investigates the Magnitude Slope Deviation (MSD)
method for automatic detection of feedback howl, and is organ-
ised as follows: Section 2 outlines previously-proposed feedback
howl detection methods, details the MSD method and proposes
new algorithms based upon this method. Section 3 introduces the
software toolkit created for this research and outlines the tests that
were undertaken. Results from these tests are presented in Section
4 and discussed in Section 5. Section 6 concludes the paper.

2. HOWL DETECTION

Most modern automatic feedback control systems focus on break-
ing the gain condition of equation (1) by applying filters to the
audio signal in the forward path in order to attenuate problematic
frequencies. The Notch filter-based Howling Suppression (NHS)
technique is by quite some way the method that has seen the widest
use [8, 6, 9]. NHS systems use a bank of narrowband notch fil-
ters, reducing the gain at very localised frequency bands to remove
howl frequencies.

A key factor in the effectiveness of these systems is the means
by which howl is identified from a background of ‘desired’ musical
or speech sound. In order to minimise false positive identifications
that could result in incorrect suppression of music or speech, it
is important to accurately differentiate howl from desired signal
components

The first step in howl identification is spectral analysis of the
incoming signal, followed by the application of a standard peak
picking algorithm to find local maxima in the spectrum and iden-
tify a number of candidate howl frequencies (generally around 10)
[2, 10, 9]. Each candidate frequency peak is subsequently anal-
ysed to determine whether the peak is caused by a feedback howl
or a desired source signal component. Various methods of doing
this have been proposed, based upon observed spectral and tempo-
ral characteristics of feedback howl that are distinct from music or
speech, including:

• higher magnitude than desired components (when allowed
to develop) [10]

• sinusoidal in nature - highly localised in frequency [11]

• lack of harmonic components until signal clips [11]

• consistently present across time, very little frequency devi-
ation [2]

• exponential increase in magnitude until signal clips [12]

These features are illustrated in Figure 2, which shows a spectro-
gram of a simulated microphone signal featuring speech compo-
nents and a howl component that is clearly visible at just over 700
Hz.

The methods of howl identification broadly fall into two cat-
egories based on which howl characteristics they utilise in their
analysis: spectral or temporal. Spectral methods compare the mag-
nitude of a candidate howl peak to a reference magnitude that can
be set manually, or obtained by a number of means. If the ra-
tio between the candidate howl peak and the reference magnitude
exceeds a certain threshold, the candidate peak is flagged by the
system as howl. Reference magnitudes can be pre-set absolute val-
ues [3, 2, 13, 8, 10], or calculated from the average power across
the spectrum [8, 14, 15, 9], neighbouring frequency magnitudes
[16, 12] or harmonic frequency magnitudes [4, 8].

Figure 2: Spectrogram of feedback simulation using a speech sig-
nal and a ‘church’ acoustic environment. No howl prevention mea-
sures have been applied.

As opposed to the spectral methods, temporal methods of howl
identification require several frames of frequency data in order to
conduct their analysis. The Peak Magnitude Persistence technique
[13, 15, 17] looks for candidate frequencies that are present across
large amounts of time relative to the typical duration of speech or
music components.

The most recently-proposed temporal method of howl identi-
fication is measurement of the so-called Magnitude Slope Devia-
tion (MSD) of candidate frequency bins [10]. This technique, pro-
posed by Osmanovic et al. [12], utilises the fact that howl compo-
nent power increases linearly over time when plotted on a decibel
scale. The system described (intended for use in aviation commu-
nication systems) looks at the changes in frequency magnitude of
a candidate frequency band over time by storing an 8-frame ‘his-
tory buffer’ of magnitude values. Once peak picking has identified
potential howl frequencies, the historic data for those frequencies
is analysed and a ‘global reference’ line gradient between the first
and last magnitude values in the memory buffer is calculated. Gra-
dient values for adjacent magnitude values are subsequently cal-
culated and compared against this reference gradient to find devia-
tions in gradient value. If the average deviation between gradients
is < 0.05 dB per frame then the frequency band in question is
flagged as a probable howl candidate. The MSD technique was
verified to work well in aircraft communication scenarios, but has
not previously been tested in live music or speech sound reinforce-
ment scenarios.

2.1. The ‘Summing’ MSD Method

The originally-proposed method to calculate MSD involves nu-
merous gradient calculations for each new frame of frequency spec-
trum data. For a magnitude history buffer of length N and with
K frequency bins, KN gradients must be calculated. For more
detailed frequency analyses, the number of calculations required
increases significantly, and this computational inefficiency is not
ideal for time-critical feedback cancellation scenarios. To mitigate
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Figure 3: MSD data calculated with the summing method using
a 16-frame FFT history buffer for the howl simulation shown in
Figure 2.

this problem, a new method for assessing the MSD of frequency
spectrum data was implemented and tested as part of this research.

In the new ‘summing’ method, a finite-difference approxima-
tion to the second-order derivative (with respect to time) of the
decibel-scale magnitude history buffer data is calculated. Any fre-
quency bin that is linearly growing in magnitude over time should
have values for gradient change that are consistently close to zero.
To calculate the Magnitude Slope Deviation, the absolute values of
historical gradient change data for each frequency bin are squared
(in order to accentuate the difference between minima and the rest
of the data), then summed. The approach can be expressed as:

MSD(k,m) =

m∑
n=(m−N)+1

|G′′(k, n)|2 (3)

where m is the present analysis frame and G′′(k, n) is the finite-
difference approximation of the second derivative of the dB-scale
magnitude history data by frequency bin k and analysis frame n,
with respect to n. This produces pronounced minima where mag-
nitude gradients are more consistent over time, and minima that are
below a certain threshold are flagged as howl frequencies. Figure
3 shows data calculated using this technique for the howl simula-
tion shown in Figure 2, using a history buffer of 16 frames (N =
16) of FFT analysis data, each calculated using 256 samples (k =
128). The pronounced valley at 725 Hz is a strong indication that
howl is present at that frequency.

One problem with this summing approach is that MSD(k,m)
values would approach zero if there were periods of time with no
energy in the kth bin. This would give false positive howl iden-
tifications. A future version of this algorithm should address this
issue with the inclusion of a condition to exclude the identification
of frequency bins with zero or very low energy.

2.2. The MSD-Inspired Notch Depth Setting Algorithm

One of the problems faced by Notch filter-based Howling Sup-
pression systems is how best to set the depths of notch filters in-

troduced to cancel howl. It is preferable that the notch filter depths
be as shallow as possible so as not to affect the ‘desired’ sound
too much, whilst still being deep enough to ensure that the gain
condition of equation (1) is broken. This paper proposes a new
method to set notch filter depths known as MSD-Inspired Notch
Depth Setting (MINDS) algorithm.

The idea behind MINDS, given that feedback howls are char-
acterised by their growth over time, is that one way to find the
minimum filter depth required to cancel the howl is to monitor the
candidate frequency’s magnitude over time and gradually increase
the depth of a notch filter until the magnitude of the howl ceases
to increase. At this point, if the howl magnitude remains relatively
constant, the filter must be holding the howl in equilibrium (loop
gain ≈ 0 dB) and only a small additional depth increase should be
needed to cancel the howl.

MINDS is implemented by utilising historical frequency mag-
nitude data to compare the latest two magnitude gradients. If both
these gradients are above zero (or close, allowing very slowly de-
caying howls where loop gain is just below unity) then the notch
depth is increased by 1 dB, up to a maximum depth of -25 dB.
It is reasoned that if both these gradient values are negative, this
indicates that any howl present must be in decline, whereas if one
gradient is positive and the other negative, this is indicative of a
rapidly-changing signal that would not be consistent with the pres-
ence of howl. Filter depth is not increased in either case. This
behaviour is outlined in Algorithm 1, where kc is a candidate fre-
quency bin. In this way, even newly-received howl candidate fre-
quencies may not trigger the increase of filter depth. The process
repeats every time new frequency magnitude data (and with this,
new howl candidate data) becomes available.

At present, this algorithm provides no provision for the re-
moval of notch filters or any reduction in their depth after howling
has been suppressed. This was not a problem for the short simula-
tions described here.

if G′(kc,m) > −0.5 and G′(kc,m− 1) > −0.5 then
if notch depth > −25 then

notch depth = notch depth - 1;
end

end
Algorithm 1: MSD-Inspired Notch Depth Setting

3. TEST METHODOLOGY

3.1. The Feedback Analysis and Cancellation Toolkit

In order to test the effectiveness of the MSD and MINDS algo-
rithms in different scenarios in a repeatable fashion, it was nec-
essary to create a system capable of simulating feedback scenar-
ios using any given ‘desired’ stimulus sound and acoustic envi-
ronment. To this end, a system known as the Feedback Analysis
and Cancellation Toolkit (FACT) was developed. FACT is split
into three subsections, dealing with creating the virtual feedback
loop (simulation), detecting any howls that arise (detection) and
cancelling them out (notch filtering).

The most important part of the FACT system is the simulation
of the acoustic feedback itself. This is initialised using a stimulus
sound that represents the ‘desired’ microphone input (this can be
any monaural audio file) and a monaural Room Impulse Response
(RIR) representing the loop response of the sound system. All of
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the simulations conducted for this study use stimulus sounds 20-30
seconds in length, and RIRs gathered using one loudspeaker and
one microphone using the swept-sine technique. All simulations
were run using a sampling frequency of 44.1 kHz.

Since the development of feedback howl is dependent on the
Maximum Stable Gain of the sound system, the MSG of each RIR
used was calculated using equation (2). In order to achieve a de-
sired target Mean Loop Gain for the simulation, a factor by which
to multiply the RIR values was specified as:

2(Target Gain [dB]−MLG [dB])/6 (4)

In order to facilitate the introduction of filters mid-simulation
when modelling the acoustic feedback loop, the stimulus sound is
split into frames. Each frame is convolved with the RIR one at a
time and the output from the convolution is recorded and simulta-
neously added back into the input, starting at the beginning point
of the next frame. The convolution output is not confined to the
next frame, allowing convolution outputs to accumulate over time.
This effectively simulates the coupling of the loudspeaker output
to the microphone input in addition to the desired sound. FACT
makes use of Hann windowing, and each frame is overlapped by
50% with adjacent frames in order to smooth changes in notch fil-
ter processing that may occur between frames. Figure 4 shows a
diagrammatic representation of this process. Hann windows were
used as overlapping these by 50% gives unity gain in the over-
lapped region. A signal that is split into frames that overlap by
50%, windowed using the Hann function and then recombined can
be reconstructed exactly.

To gain frequency spectrum data to use in howl analysis, an
FFT process using analysis frames of 256 samples was run concur-
rently with the howl simulations. Before FFT analysis, the simu-
lation output signal was downsampled by one order of magnitude
to 4410 Hz using MATLAB’s resample function, which automati-
cally applies an anti-aliasing filter. This was in order to cut down
on the amount of frequency data to be analysed by the system (full-
spectrum analysis would produce ten times more frequency data).
Analysis of RIRs using the criteria in equation (1) showed no feed-
back howls developing below the upper frequency analysis cutoff
of 2205 Hz. This was corroborated in preliminary howl simula-
tions without any notch filtering, so the reduced frequency range
was deemed sufficient for these simulations.

3.2. Testing ‘Summing’ MSD

To test the effectiveness of the new ‘summing’ MSD algorithm
against the original, simulations were run using a short sample of
conversational speech as stimulus sound. This stimulus was cho-
sen as the original MSD algorithm has previously been established
as working well with speech signals [12]. Simulations were run
using four different RIRs in order to assess the effectiveness of the
algorithm across several different acoustic environments. These
were an RIR of a living room recorded by the author - referred to as
‘Small Room’ - and three RIRs of larger spaces sourced from ope-
nairlib.net [18], which will be referred to as ‘Church 1’, ‘Church
2’ and ‘Hall’.

The simulations were run using an MLG of 2 dB above the
MSG level calculated for each IR. Firstly, each simulation was run
with howl detection disabled. This was to allow howl to develop
in each case in order to confirm the presence of howl frequen-
cies predicted by analysing the RIRs using equation (1). Figure

2 shows the output of one such simulation. Next, the simula-
tions were re-run twice, once using the ‘original’ MSD detection
method and once using the ‘summing’ MSD detection method,
both using magnitude history buffer lengths of 16 frames. The
gradient tolerance for the ‘original method’ simulations were set to
0.5 dB change per frame and the ‘summing method’ simulations
used a minima threshold of 1 (dB frame−2)2 (see equation (3)).
This makes the testing more stringent on the summing method, as
calculating the MSD based on the values used here for the original
method would equate to using a summing minima threshold of 4
(dB frame−2)2. It should be noted that this also has the potential
to make results from the original algorithm less accurate, though
this was not observed in the tests presented here.

The effectiveness of each algorithm was assessed by analysing
FACT output data. Detection speeds were found by examining
timestamp data corresponding to the earliest introduction of filters
at correct frequencies. The accuracy of each algorithm was deter-
mined by finding the number of unique filter frequency values and
calculating the percentage of unique values that correspond to ac-
tual howl frequencies. Howl identifications in adjacent frequency
bins were treated as identification of a single howl (allowing for
spectral leakage). For these tests, in order to evaluate compu-
tational efficiency, MATLAB’s ‘Run and Time’ feature was also
used to generate a report indicating the processing time of each
simulation. The simulations were run on an Apple MacBook Pro,
powered by a 2.4 GHz Intel Core 2 Duo CPU.

3.3. The Impact of Varying the History Buffer Length

In the original proposal for the MSD method, the buffer length of
magnitude history data used for analysis is 8 frames [12]. Since
this system was initially proposed to cancel howl only in speech
signals, it is possible that 8 frames might not be adequate data for
musical scenarios. A series of tests were therefore run to assess
how varying the length of magnitude history data used to calculate
gradient deviations by the MSD algorithm affects its accuracy in
detecting howl from different stimulus sounds.

Tests were run using the ‘Small Room’ RIR at a gain 3 dB
above the MSG. Loop response analysis of the IR at this gain level
showed two frequencies liable to howl. Simulations were then run
iteratively, with magnitude history buffer lengths varied between
three frames - the minimum required to detect a persisting gra-
dient - and twenty-four frames. The simulations were run using
three stimuli in order to assess how using different buffer lengths
could yield different levels of detection accuracy in multiple sce-
narios. The stimuli were the conversational speech sample used
previously, an excerpt from ‘Jupiter’ from Holst’s The Planets [19]
(‘Classical Music’) and an excerpt from ‘The Raven That Refused
To Sing’ by Steven Wilson [20] (‘Rock Music’). Howl detection
times and accuracies were calculated as described in section 3.2.

3.4. Testing the MINDS Algorithm

The effectiveness of the MINDS algorithm was assessed using data
gathered for the magnitude history buffer length tests described in
section 3.3. In these simulations, the same instance of feedback
howl was detected at slightly different times and therefore had
been allowed to grow to different magnitudes before a filter was
introduced. In this way, the final depths reached by the filters in-
troduced to counter the howls could be compared against the mag-
nitude of the howl when they were introduced. Notch filter depth
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Figure 4: Convolution process used to create the virtual acoustic feedback loop.

Table 1: MSD Algorithm Howl Detection Times [seconds]

Howl 2Howl 1

IR SummingOriginalSummingOriginal

3.8465.0501.0451.074Small Room
5.0505.0502.0172.148Hall
8.6068.6647.6197.619Church 1

1.4511.509Church 2

data was only used when the introduced filter remained assigned
to the howl frequency by the end of the simulation, not reassigned
due to any false positive howl IDs.

4. RESULTS

4.1. MSD Algorithm Types

Both original and summing forms of the algorithm were 100% ac-
curate in howl identification. Table 1 shows the detection times
for the first and second howl frequencies in each simulation as de-
tected by both the original and summing algorithms. As can be
seen, the summing algorithm detects howl occurrences as quickly
or faster than the original algorithm in every case.

Table 2 shows the processing time taken in each simulation
to run the MSD algorithm. It can be clearly seen that the sum-
ming algorithm is an order of magnitude more efficient to run than
the original algorithm. The quoted times represent 1754 calls to
the MSD evaluation function, meaning that, on average, the origi-
nal algorithm takes 26ms to run, whereas the summing algorithm
takes 188µs. The summing algorithm is therefore almost 140 times
more efficient than the original algorithm on average. It is just as
accurate as the original algorithm at detecting howls and always
detects howls just as fast or faster than the original algorithm.

Although these tests represent only a small number of scenar-
ios, the results demonstrate the advantages of the summing algo-
rithm very clearly. For this reason, the other simulations in this
study used the summing algorithm.

Table 2: MSD Algorithm Processing Times

Time [s] SummingOriginal

0.26248.394Small Room
0.33946.610Hall
0.33043.841Church 1
0.38544.260Church 2

4.2. History Buffer Length

Figure 5 shows how detection accuracy varied with magnitude his-
tory buffer length using each of the three stimuli. Accuracy of
detecting howl from speech increases rapidly as buffer length is
increased, reaching 100% using a buffer of just seven frames. This
perhaps illuminates why a buffer of eight frames was originally
proposed by Osmanovic et al. [12], as the original system was
designed for use with speech.

At that same seven-frame mark, accuracy has reached 66%
(meaning only one incorrect howl ID) in the ‘Classical Music’
simulations. The accuracy hits 100% using an eleven-frame buffer,
briefly dipping back down to 66% before staying at 100% from a
thirteen-frame buffer onwards.

Howl detection using the ‘Rock Music’ stimulus is signifi-
cantly less accurate. Accuracy does steadily increase as the buffer
length is increased, eventually climbing to 22% as the buffer length
reaches twenty-four frames. This provides some indication that
a much longer buffer length could remedy the inaccuracy of the
MSD algorithm in the rock music scenario. Unfortunately, twenty-
four analysis frames represents over a third of a second of audio
- already a long time to allow howl to develop. Going by the up-
ward trend, over 100 frames of data would be required in order to
approach 100% accuracy (although this has not been tested). This
would correspond to almost 1.5 seconds of audio - clearly an unac-
ceptable amount of time to allow potential howls to develop before
detection.
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Figure 5: Detection accuracies of howl from different stimuli when
varying the length of magnitude history buffer available for MSD
analysis.

4.3. MINDS Algorithm Evaluation

Figure 6 shows final notch depths plotted against initial howl mag-
nitudes for both first and second howl frequencies. As can be seen,
there is a slight trend downwards in filter depths as howl magni-
tude increases in both cases, but this is not as pronounced as might
be expected. In the case of the first howl, for instance, the magni-
tude of the howls before the filter was added varies from −9.2 dB
to over 8 dB - a range of over 17 dB, whilst the final filter depths
only vary 3 dB across that entire range. With the second howl,
the magnitude varies over a range of over 20 dB whilst the filter
depths only vary by 4 dB. These results give some evidence of the
effectiveness of the MINDS algorithm at arriving at the minimum
notch depth required to cancel a howl peak, regardless of the mag-
nitude of the howl upon detection. As these results are limited to
one set of simulations, however, more tests would be required to
give conclusive evidence on this point.

Despite the promising nature of the aforementioned results,
there is some evidence from other simulations that the algorithm’s
mandate to keep frequency attenuation to a minimum can some-
times have unintended consequences. Figure 7 shows one such
case. The initial howl frequency at 724 Hz is quickly detected and
effectively cancelled. The second howl, at 1171 Hz, is detected
and a filter is introduced at 2.93 seconds. The depth of the filter
reaches its final value of −10 dB by 3.3 seconds. It can be seen
from the spectrogram that the howl persists at a significant mag-
nitude for several seconds after the filter depth ceases to increase,
remaining a component of the signal for the duration of the ten-
second segment depicted in the figure. Since this howl is no longer
growing in magnitude and is not significantly higher in magnitude
than the desired audio, most detection algorithms are not able to
identify it. Since it is not likely to be flagged as a howl candidate
again, the howl is allowed to persist, which could affect listener
perception of sound quality in a live scenario.

5. DISCUSSION

Results from the testing of the two forms of MSD algorithm reflect
favourably on the summing method. The summing method never
took longer to catch howl than the original method in any case,
and the increase in computational efficiency is vast, which should
make it more feasible to implement MSD analysis on embedded
processing chips with limited computing power. It could be espe-
cially useful in keeping the necessary number of calculations low
when applying the MSD algorithm to rock music scenarios, which
tests indicated may require much longer buffer lengths (and hence
more calculations if the original MSD method was used) than other
scenarios to maintain accuracy.

More testing is required to confirm its effectiveness in a wider
variety of scenarios, however it seems the summing MSD algo-
rithm can be recommended over the original algorithm despite the
limited amount of data comparing the two methods in this study.

The results presented show that in addition to the previously-
confirmed effectiveness of the MSD algorithm at identifying howl
from speech, the algorithm can also discern howl from classical
music, albeit requiring a larger magnitude history buffer to achieve
optimal accuracy than for speech in this case. The findings re-
ported here contradict those of van Waterschoot and Moonen [10],
who reported results from a similar test indicating that an MSD
algorithm using a 16-frame history buffer is 55% likely to trig-
ger in error as gradient deviation threshold is adjusted to give a
100% chance of howl detection. Even more interesting is the
fact that their tests used a solo violin piece as stimulus sound.
One would expect this kind of stimulus to be relatively spectrally
sparse, which the results of this study indicate should make howl
detection accurate using the MSD algorithm. One possible reason
for this discrepancy is the fact that van Waterschoot and Moonen
used a full-spectrum FFT analysis in their test.

The clear exception to the generally excellent accuracy of the
MSD algorithm found here is when the rock music stimulus was
used. Accuracy ratings in this case were much lower than for other
stimuli. The fact that so many false howl identifications were made
is probably due to the harmonic richness of the bass guitar sound,
clearly visible on the simulation shown in Figure 8. This figure
shows the close correspondence of many of the filter frequencies
to these harmonics and how a great deal of the low-end of the sig-
nal has been attenuated by the five-second mark. Since the stim-
ulus is a polished rock production, the bass guitar likely has dy-
namic range compression applied. This means that there is a pe-
riod of time after the instrument’s attack phase (when the strings
are plucked) where the amplitude of the instrument will be more
or less constant, rather than exhibiting a natural amplitude decay.
It is this period of constancy that is likely triggering the false howl
identifications. This could also explain why the MSD algorithm
performed relatively well here when classical music was used as
the stimulus, as dynamic range compression is not typically used in
classical recordings. Since dynamic range compression is common
in rock and pop live performances as well as recordings, this rep-
resents a shortcoming of the MSD detection algorithm that needs
to be addressed before it can be incorporated into any commercial
feedback control systems intended for use in those scenarios.

The problems encountered using MSD with a rock-music stim-
ulus sound recall the early systems using Peak Magnitude Persis-
tence howl detection, which examined the sound signal for cor-
relation at time intervals that had to be “greater than the duration
of... a single note in a musical performance” [13] for any level of
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276Hz Howl - Holst (MSD bufferlengths)

Detection 
Magnitude

Detection Time Filter Depth

-9.2 0.26122 -18

-8.1 0.27574 -19

-7.2 0.29025 -18

-6.2 0.30476 -18

-5.0 0.31927 -18

-3.9 0.33379 -17

-2.9 0.3483 -17

-1.8 0.36281 -17

2.9 0.42086 -20

3.9 0.37732 -19

5.1 0.43537 -20

5.8 0.44989 -20

6.2 0.39184 -19

7.1 0.40635 -19

8.2 0.4644 -20

982Hz Howl

Detection 
Magnitude

Detection Time Filter Depth

-4.1 1.4512 -11

-0.6 1.4367 -7

1.9 1.5093 -8

2.5 1.5238 -7

3.9 1.5528 -9

4.8 1.4948 -10

4.8 1.5383 -10

9.2 2.2204 -12

10.1 2.2059 -11

10.7 2.2494 -12

11.1 2.1914 -11

11.2 2.2349 -12

12.7 2.2639 -11

16.4 1.4803 -10

Depth going down, but not proportional to how fast magnitude goes up.

276Hz Howl - Holst (MSD 
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Figure 6: Final notch filter depths against howl magnitude upon identification. Simulations used ‘Classical Music’ as stimulus and ‘Small
Room’ as loop response.

Figure 7: Spectrogram of simulation output using MINDS to set
notch filter depths. Triangles indicate addition of notch filters.

accuracy to achieved. It seems that the MSD algorithm may face
a similar stipulation, at least in situations where dynamic range
compression is in use. The typical length of a bass note in ‘The
Raven That Refused To Sing’ is about 1 second. This corresponds
closely to the trends shown in Figure 5, which indicate that around
1.5 seconds of audio information would need to be analysed by the
MSD algorithm in order for detection accuracy approaching 100%
to be achieved with this stimulus.

5.1. MINDS Algorithm

The results presented here show some evidence for the effective-
ness of the MINDS algorithm at finding the optimum depth for a
notch filter cut, regardless of the magnitude of the howl upon its
detection. Since only gradient information is considered, the vari-
ance in final filter depths is very small compared with that of the
howl magnitudes upon their introduction. Whilst these results are

Figure 8: Spectrogram of simulation output using MSD algorithm
on rock music stimulus. Triangles indicate addition of notch filters.

very promising, there is a tendency to make the notch filter depths
slightly too shallow. This problem could perhaps be alleviated by
introducing a ‘final cut’ stage to the algorithm. In such a feature,
the depth of each notch filter would be increased by an additional
fixed amount when the gradient of the howl frequency magnitude
turns negative, thus ensuring a fast cancellation of the howl at the
expense of perhaps attenuating the problematic frequency slightly
more than the absolute minimum required. In its present incarna-
tion the MINDS algorithm simply stops increasing the filter depth
at this point, allowing the howl to decay at its own pace, which can
sometimes take several seconds.

6. CONCLUSION

The aim of this paper has been to investigate the viability of the
MSD and MINDS algorithms for use in automatic acoustic feed-
back cancellation systems in live-sound scenarios. The new ‘sum-
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ming’ method for calculating MSD has been shown to be much
more computationally efficient, yet no less accurate or timely, and
can be recommended as an MSD implementation of choice mov-
ing forward. The algorithm has been shown to work well in the
speech and classical music scenarios tested here, but potentially
less so in rock music scenarios where extensive use of dynamic
range compression can interfere with the functionality of the al-
gorithm, causing it to be 8 less accurate when using comparable
history buffer lengths to classical music or speech scenarios.

The MINDS algorithm has been shown to be very promising in
terms of its ability to cancel howl instances whilst keeping notch
filter depths to a minimum. There are some problems with this
approach in terms of the speed at which howl instances can be
cancelled, and it would be desirable to modify this algorithm in
order to reduce the time taken to calculate optimum notch filter
depths.
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