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ABSTRACT

The control of interpretational properties such as duration, vibrato,
and dynamics is important in music performance. Musicians con-
tinuously manipulate such properties to achieve different expres-
sive intentions. This paper presents a synthesis system that au-
tomatically converts a mechanical, deadpan interpretation to dis-
tinct expressions by controlling these expressive factors. Extend-
ing from a prior work on expressive musical term analysis, we de-
rive a subset of essential features as the control parameters, such
as the relative time position of the energy peak in a note and the
mean temporal length of the notes. An algorithm is proposed to
manipulate the energy contour (i.e. for dynamics) of a note. The
intended expressions of the synthesized sounds are evaluated in
terms of the ability of the machine model developed in the prior
work. Ten musical expressions such as Risoluto and Maestoso are
considered, and the evaluation is done using held-out music pieces.
Our evaluations show that it is easier for the machine to recognize
the expressions of the synthetic version, comparing to those of the
real recordings of an amateur student. While a listening test is un-
der construction as a next step for further performance validation,
this work represents to our best knowledge a first attempt to build
and quantitatively evaluate a system for EMT analysis/synthesis.

1. INTRODUCTION

Expression plays an important role in music performance. For the
same musical score, different performers would interpret the score
with their personal understandings and experiences and instill their
feelings and emotions into it, thereby creating large variations in
their actual performances. These variations can be observed in
interpretational properties like timing, modulation, and amplitude.
Therefore, in automatic music synthesis, an important step is to
characterize and to control such expressive parameters.

Expressive music performance has been studied in the last few
decades [1, 2, 3, 4, 5, 6]. For example, Bresin et al. [7] synthesized
music of six different emotions by using performance rules such
as duration contrast, punctuation, and phrase arch. Maestre et al.
[8] characterized dynamics and articulation parameters related to
the expressivity of saxophone. D’Incà et al. [9] considered four
sensorial adjectives (hard, soft, heavy, and light) and four affec-
tive adjectives (happy, sad, angry, and calm) based on a set of
audio cues. Grachten et al. [10] used both predictive and explana-
tory framework to model three categories of dynamics markings
in piano. Erkut et al. [11] captured information of guitar perfor-
mance such as damping regimes and different pluck styles used in
a plucked-string synthesis model. More recently, Perez et al. [12]
combined the modeling of the characteristics of the performer (i.e.,

pitch, tempo, timbre, and energy), the sound as well as the instru-
ment in order to render natural performances from a musical score.

Surprisingly, among all the elements of expressive synthesis,
the expressive musical terms (EMT) that describe feelings, emo-
tions, or metaphors in a piece of music have been rarely discussed,
even though they have been widely used in Western classical music
for hundreds of years. To fill this gap, in a prior work [13] we pre-
sented a computational analysis of ten EMTs — including Tran-
quillo (calm), Grazioso (graceful), Scherzando (playful), Risoluto
(rigid), Maestoso (majestic), Affettuoso (affectionate), Espressivo
(expressive), Agitato (agitated), Con Brio (bright), and Cantabile
(like singing) — using a new violin solo dataset called SCREAM-
MAC-EMT. 1 The dataset contains ten classical music pieces, with
each piece being interpreted in six versions (five EMTs and one
mechanical, deadpan version denoted as None) by eleven profes-
sional violinists, totaling 660 excerpts [13]. With this dataset, we
built supervised machine learning models to recognize the EMT
of a music excerpt from audio features. We compared the per-
formance of two types of features for the classification task. The
first type of features includes a set of audio features characterizing
the three interpretational factors, dynamics, duration, and vibrato,
whereas the second type of features are standard timbre, rhythm,
tonal, and dynamics features such as Mel-frequency cepstral coef-
ficients (MFCC) extracted from the MIRtoolbox [14]. Our evalua-
tion shows that the first feature set, which has clearer music mean-
ings, achieves better classification accuracy than the standard fea-
tures do, showing the importance of these interpretational features
in characterizing EMTs.

Extending from this prior work, we investigate in this paper
the use of a small set of such interpretational features for synthe-
sizing music of different EMTs. Specifically, we aim to manipulate
features of vibrato, dynamics, and duration to synthesize expres-
sive sounds from a mechanical interpretation. The way of ma-
nipulation is learned from a training set SCREAM-MAC-EMT. To
quantitatively evaluate the performance of the proposed expressive
synthesis method, we make use of the classification model devel-
oped in our prior work [13] again to see if the intended EMT of the
synthesizer can be correctly recognized. Specifically, we recruit a
professional violinist and an amateur student to record new data
in accordance with the collection method of the SCREAM-MAC-
EMT dataset. That is, both of them perform the sixty classical
excerpts (i.e. six different versions of the ten pieces) individually.
Then, we compare the performance of the real and synthetic ver-
sions by means of the same EMT analysis and classification pro-
cedure. In other words, the objective evaluation of the ten EMTs

1https://sites.google.com/site/pclipatty/
scream-mac-emt-dataset
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Figure 1: Flowchart of the EMT synthesis system.

recognition is applied to these outside data through the classifica-
tion models constructed from the preliminary work [13]. There-
fore, we can observe not only the differences between the two
people who have distinct musical trainings and skills from their
violin performances, but also the result of synthesis based on the
two unique sources. The synthesized sound samples can be found
online. 2 This paper is organized as follows. Section 2 describes
the expressive synthesis method, together with the EMT features,
and the setting of classification. In Section 3, the experimental
results are presented. Finally, we conclude in Section 4.

2. METHOD

Figure 1 shows the EMT synthesis diagram, whose goal is to con-
vert a mechanical interpretation of a music piece into an expressive
one. We refer to the mechanical interpretation as the “None” sig-
nal. As the manipulation process is usually done for each note,
at the first stage note segmentation is applied to the None audio
file. Then the manipulations of duration, vibrato, and dynamics of
each segmented notes are performed according to the pre-learned
parameters of the target EMT (see Sections 2.1–2.3 for details).
Lastly, when concatenating all the manipulated notes back into a
complete music piece, we adopt fade-in and fade-out operations to
eliminate the crackled sounds.

To synthesize expressive sounds, the parameter values of the
ten EMTs are calculated by averaging over the corresponding mu-
sic pieces because each EMT is interpreted in five different ex-
cerpts. Moreover, as we have the performance from eleven musi-
cians for each music piece and each EMT, the parameters will be
averaged again across the violinists. The EMT feature set listed in
the Table 1 is used in the proposed synthesis system. It includes
seven relevant features, namely vibRatio, ND-CM, 4MD-CM,
FPD-CM, D-M-CM, D-Max-CM, and D-maxPos-M, as well as
two fundamental features of vibrato, VR-M-M and VE-M-M. The
first seven features are found to be more important than other pos-
sible interpretational features for classifying EMTs [13]. The last
two features are found less useful in classifying EMTs, but they
are still needed to manipulate added vibrato to a note.

The manipulations of duration and vibrato are implemented by
means of the phase vocoder, which is a mature technique of time
stretching and pitch shifting [15, 16, 17]. Given an audio input, the
short-time Fourier transform (STFT) converts the signal from time
domain into a time-frequency representation. The time stretching
(expansion/compression) is achieved by modifying the hop size
and then by performing the inverse STFT with the overlap-add
method. The pitch shifting is accomplished by resampling the time

2http://screamlab-ncku-2008.blogspot.tw/2016/
03/music-files-of-expressive-musical-term-experiment.
html

Table 1: The EMT feature set used in the synthesis system. The
terms ‘M’ and ‘CM ’ denote mean and contrast of mean, respec-
tively. Please refer to [13] for details.

Features Abbreviation Description

Vibrato
vibRatio

percentage of vibrato notes in a
music piece

VR-M-M mean vibrato rate
VE-M-M mean vibrato extent

Dynamics

D-M-CM mean energy
D-Max-CM maximal energy

D-maxPos-M
relative time position of the en-
ergy peak in a note

Duration

ND-CM
mean length of every single
note

4MD-CM
mean length of a four-measure
segment

FPD-CM
mean length of a full music
piece

Figure 2: Illustration of adding vibrato to a non-expressive note.
The note is divided into a sequence of fragments whose pitches will
be individually shifted by means of the phase vocoder. The timbre
preservation is applied to each fragment. The vibrato contour is
sampled at sixteen times per cycle to avoid artifacts.

stretched signal back to the original length. More details of the
synthesis method, together with the meaning of the features listed
in the EMT feature set, and the setting of EMT classification, are
introduced in the following sections.

In what follows, we assume that all the audio excerpts are sam-
pled at 44.1 kHz.

2.1. Vibrato Features

Vibrato is an essential factor in violin performance and its anal-
ysis/synthesis has been studied for decades [18, 19]. Vibrato is
defined as a frequency modulation of F0 (fundamental frequency)
and is typically characterized by the rate and extent [20]. The vi-
brato rate means the number of periodic oscillations per second
while the vibrato extent specifies the amount of frequency devia-
tion. In the EMT feature set, VR-M-M, VE-M-M and vibRatio
are related to vibrato. The first two are defined as the mean value
of the vibrato rate and extent, and the last one means the ratio of
the number of vibrato notes over total notes in a music piece. The
detailed criteria of determining whether a note is vibrato could be
found in [13]. Vibrato is a common interpretation in violin perfor-
mance, but the VR-M-M and VE-M-M are found to have weak dis-
crimination power in classifying EMTs [13], possibly due to their
subtle difference. The mean values of the two features among the
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Figure 3: The energy contours are modeled by means of the EMT parameter (UEC; left) and the categorized method (CEC; right).

Figure 4: The number of notes in the three categories of the ten EMTs

ten expressive musical terms are between 6.3–6.8 Hz (STD=0.15)
and 0.27–0.38 semitones (STD=0.03) separately. In contrast, the
vibRatio has strong discrimination power and its mean values
are between 52–74% (STD=6.82) among the ten expressions. As-
suming that there are no vibrato at all in the None signal, to imple-
ment vibRatio we need to determine how many vibrato notes
there should be, and which notes should be manipulated to have
vibrato. Firstly, the amount of vibrato notes is easy to calculate
and is expressed by:

# Vibrato notes = # notes in a violin piece× vibRatio ,
(1)

where the value of vibRatio is set differently for different EMTs
and it’s set according to its average value in the training set (i.e.
SCREAM-MAC-EMT) per EMT. Secondly, according to our ob-
servation, a note with longer duration will more likely have vi-
brato. Hence, we sort all the notes in descending order of duration
and add vibrato to the top longest ones (the exact number of notes
is determined by equation (1)).

Moreover, we remark that the continuity of the pitch contour
is important to obtain a naturally synthesized vibrato. Therefore,
we use a sequence of short fragments to model the modulation
of the original frequency of a non-expressive note. Specifically,
we shift the pitch of each fragment through the phase vocoder to
fit a vibrato contour. For the purpose of avoiding weird artifacts,
we sample at sixteen times per cycle of a vibrato contour so that
the sampling period is approximately 2.4 milliseconds (410 sam-
ples). Accordingly, the first step of the vibrato manipulation pro-
cess shown in Figure 2 is that partitioning a non-expressive note
into a sequence of fragments of 2,048 samples with an 80% over-

lap (1,638 samples). Next, given a fragment and its corresponding
pitch on the particular vibrato contour generated by the VR-M-M
and VE-M-M, the pitch shifting is carried out with a Hanning win-
dow of 256 samples as well as a hop size of 64 samples. Then,
the timbre preserving method proposed by Röbel and Rodet [21]
is adopted. According to this method, both the spectral envelope,
measured by a true envelope estimator, and the pre-warping fac-
tor of the original fragment are calculated before the pitch shifting
takes place. The timbre preservation is therefore realized by means
of the multiplication of the pre-warping factor and the pitch-shifted
fragment. Finally, we overlap and add the fragments to achieve the
synthesized vibrato note.

2.2. Dynamic Features

One of the most prominent characteristics to distinguish expres-
sion is dynamics. According to Gabrielsson and Juslin [22], the
dynamics and the temporal envelopes of individual notes are dif-
ferent for distinct expressions. The EMT feature set has three dy-
namic features, D-M-CM, D-Max-CM and D-maxPos-M, which
indicate the mean energy, the maximal energy, and the relative
time position of the maximal energy peak in a note (denoted as
maxPos), separately. To utilize these features for synthesis, we
need to know the dynamic envelops of the ten EMTs ahead. How-
ever, the specific envelopes are still unknown within these features
so we need to model the energy contour, which characterizes the
instantaneous energy as a function of time. To make the energy
contour as close to the real acoustic envelope as possible, we con-
sider the data of the three consultants, who helped us in the cre-
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ation of SCREAM-MAC-EMT [13], and the dynamic level func-
tion, which is calculated by summing the spectrum over the fre-
quency bins and expressing in dB scale with frames of 1,024 sam-
ples at increments of 256 samples [13]. According to the ways of
deciding the values of maxPos for each EMT, we implement two
types of energy contour model: one is directly using the parameter,
D-maxPos-M, in the EMT feature set (denoted as UEC), while
the other is based on a categorized method (denoted as CEC).

The UEC modeling of dynamics is implemented as follows:
STEP 1 Calculating the dynamic levels of all the notes among the

five excerpts corresponding to a particular EMT across
the three consultants (15 excerpts in total).

STEP 2 Resampling all the dynamic levels so that the values of
maxPos are equal to the D-maxPos-M parameter.

STEP 3 Averaging the whole dynamic levels.
The UEC model of the ten EMTs is shown in the left side of the
Figure 3. We see that Scherzando, Con Brio, and Risoluto have rel-
atively large variation of the energy contours, while the remaining
ones have relatively flat ones. Besides, we observe that the values
of maxPos for all EMTs lie in the interval of 40–70%. However,
this phenomenon is unfortunately not consistent with our observa-
tion, as the maximal energy would not always lie in the middle of a
note. Some notes have strong attacks and others have maximal en-
ergy in the back even within a music piece with a particular EMT.
The D-maxPos-M falling into the middle portion is probably due
to the fact that we have taken average on all the notes in the dataset.
This motivates us to take the following alternative model.

The CEC modeling of dynamics classifies the notes into three
categories among the 15 excerpts of each EMT:

note ∈

 Front, if maxPos < 0.33
Middle, if 0.33 ≤ maxPos < 0.66
Back, otherwise.

(2)

After doing this, we count the number of notes for each category.
Certainly, as seen in Figure 4, the dominant one of each EMT is
different. We simply select the relative category of each EMT, i.e.,
discarding the remaining ones, to construct a new energy contour
model. For example, as most of notes are classified into the back
category in the Tranquillo case, we take such notes to modeling its
own energy contour.

Accordingly, the CEC model is realized as follows:
STEP 1 Computing the amount of notes in the front/middle/back

category of the ten EMTs using the equation (2).
STEP 2 Selecting the relative majority category of each EMT and

taking the notes belonging to this particular group for the
dynamic level calculation.

STEP 3 Repeating the three steps of the UEC model.
The right-hand side of the Figure 3 shows the estimation of en-
ergy contours for each EMT based on the CEC model. We no-
tice that Risoluto has a strong attack, and Scherzando as well as
Con Brio still has a maximal energy in the middle. Besides, the
others have slowly increasing curves which reach the highest en-
ergy in the end of a note. The performance of these two models
will be evaluated in the classification experiment. Ultimately, we
carried out the dynamic manipulation by means of applying a par-
ticular energy contour to each note, together with the multiplica-
tion of the mean/maximal energy of every note and the parameter,
D-M-CM/D-Max-CM.

Figure 5: Illustration of time shortening: (a) The original dura-
tion of two consecutive notes, (b) The shortened Noten followed
by an overlapping Noten+1, (c) A silent gap between the short-
ened Noten and Noten+1 if ND–CM < FPD–CM .

2.3. Duration Features

The deviation of timing is also an important expressive factor used
by performers [8]. In the EMT feature set, we use 4MD-CM,
FPD-CM and ND-CM, defined as the mean length of a four-measure
segment, of a full music piece, and of every single note, respec-
tively. Firstly, we stretch a non-expressive note through the phase
vocoder and the time-scaling factor is according to the parameter,
ND-CM for each EMT. The length of synthesized note is described
as follows:

NDSynthesis = NDNone ×ND–CM . (3)

Next, we take the FPD-CM into account and calculate the reason-
able onset position of stretched note by the following equation:

OnsetSynthesis = OnsetNone × FPD–CM . (4)

In general, there is an overlap between two consecutive notes in the
time shrinking case. However, an abrupt and silent gap may occur
in some expressions such as Tranquillo if ND-CM < FPD-CM.
This is illustrated in Figure 5. In such a case, the synthesized tone
can not keep the temporal continuity of sound. To address this
issue, the FPD-CM will be set equal to the ND-CM in such condi-
tion. Moreover, we stretch every four-measure segment according
to the value of 4MD-CM for each EMT. A Hann sliding window of
1,024 samples and a fine hop size of 100 samples are adopted in
the phase vocoder module.

2.4. Classification

To evaluate the performance of the synthesis result, we take ad-
vantage of the classification models constructed from the prior
work [13] for the machine recognition of the ten EMTs. Specif-
ically, the radial-basis function (RBF) kernel Support Vector Ma-
chine (SVM) implemented by LIBSVM [23] is adopted for clas-
sification. In the training process, we use SCREAM-MAC-EMT
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Figure 6: The first phrase of Mozart’s Variationen with a mechan-
ical interpretation performed by an amateur student.

and take 11-fold cross validation, that is, leave-one-violinist-out in
each fold. Besides, the feature selection process is performed by
using the ReliefF routine of the MATLAB statistics toolbox [24].
In order to obtain optimized SVM models, the parameters c and γ
of the SVM and the top-n′ most relevant features are taken based
on the highest average accuracy across the 11 folds. In the testing
process, each of the outside data, two real recordings collected in
this study and six synthetic versions (see Section 3.1 for details),
need to be normalized prior to classification. Then the data are
fed into the eleven SVM models in conjunction with correspond-
ing relevant features produced in each fold, and the accuracy is
computed by averaging over the eleven results. According to [13],
the values of c, γ for the SVM classifier and the optimal feature
number nopt are set to 1, 2−6, and 36 separately.

3. RESULTS

3.1. Synthesis Results

In this paper, we consider three different sources of the ten non-
expressive music pieces, that is, MIDI, amateur student, and pro-
fessional violinist, in order to observe the differences between the
people who have distinct violin trainings and skills. The last two
data are recorded in accordance with the collection method of the
SCREAM-MAC-EMT. To compare the real recordings with the
synthetic versions, both of them perform not only the mechan-
ical interpretation of the ten classical music pieces but also the
EMT versions according to the settings of the dataset. In other
words, the two people record all the sixty excerpts one by one in
a real-world environment. Similarly, to evaluate the proposed syn-
thesis method, each non-expressive excerpt is synthesized in five
distinct expressive versions. Moreover, based on the two energy
contour models, all the three sources have two types of synthe-
sized sounds. In sum, we have two original and six synthetic data,
and each data has sixty excerpts. The following figures, restricting
spectrograms from 0 to 3 kHz, illustrate the variations in vibrato,
dynamics, and duration. Figure 6 shows an example of mechanical

Table 2: The average accuracy compared between the original and
synthetic versions which utilize the uncategorized and categorized
energy contour models (UEC and CEC, respectively), across three
distinct sources.

Data MIDI Amateur Expert
Original — 0.293 0.605

UEC 0.578 0.656 0.595
CEC 0.482 0.687 0.615

Table 3: F-scores of the ten EMTs compared with the original as
well as the synthetic version based on the categorized energy con-
tour (CEC) model.

EMT MIDI Amateur Expert
CEC Original CEC Original CEC

Scherzando 0.878 0.407 0.857 0.653 0.738
Affettuoso 0.317 0.270 0.503 0.436 0.561
Tranquillo 0.923 0.711 0.835 0.838 0.866
Grazioso 0.252 0.250 0.542 0.468 0.516
Con Brio 0.381 0.047 0.770 0.442 0.606
Agitato 0.524 0.397 0.981 0.764 0.922

Espressivo 0.472 NaN 0.231 0.588 NaN
Maestoso 0.483 0.345 0.519 0.815 0.557
Cantabile 0.132 NaN 0.667 0.610 0.459
Risoluto 0.500 0.286 0.855 0.549 0.660

interpretation performed by the amateur, while the three particu-
lar expressive versions are demonstrated in Figure 7 which con-
tains original and corresponding synthesized versions in the upper
and lower rows respectively. Comparing to the original, we no-
tice that Scherzando has a little faster tempo but both Risoluto and
Maestoso have slower one. Besides, all the three synthetic results
have more powerful dynamics and stronger vibrato.

3.2. Classified Results

The objective evaluation of the machine recognition of the ten
EMTs is applied to these outside data via the classification models
built up from the preliminary work. Hence, the average accuracy
predicted by the eleven SVM models among original and synthetic
data across the three sources is listed in the Table 2. Addition-
ally, the performances of the two energy contour models are also
displayed. Firstly, the MIDI achieves higher classified accuracy
when using the UEC model. However, all the other synthetic ver-
sions have better performance than MIDI. Secondly, the amateur
attains an accuracy less than 30% based on the original data but
more than 60% among the synthetic ones. There are highly signif-
icant differences on both the synthetic data from the original one
as validated by a one-tailed t-test (p<0.00001, d.f.=20). In par-
ticular, the CEC version, using the categorized method to model
the dynamic envelopes, achieves the highest accuracy of 0.687,
showing a slight improvement from the UEC version (p<0.05).
Finally, the original data of the expert attain a great performance
and the average accuracy comes to 0.605. Besides, both the syn-
thetic versions have nearly the same classified results as the origi-
nal. In addition, the average F-scores of the ten EMTs comparing
between the original and the CEC synthetic version are listed in the
Table 3. Espressivo and Cantabile have unrepresentable values,
NaN, in the synthetic version of expert and the original version of
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Figure 7: The first phrase of Mozart’s Variationen with three particular EMTs. The upper row shows the original recordings of an amateur
while the lower one displays the corresponding synthetic versions based on the specific non-expressive version (see Figure 6).

amateur respectively because their true positives are zero. Apart
from this exception, we find that all the ten EMTs attain higher
F-scores in the synthetic version compared with the original of the
amateur. Moreover, Scherzando, Tranquillo and Agitato are eas-
ily recognized among the five data probably because the first two
have lighter dynamics than other EMTs and the last one has faster
tempo in most cases.

3.3. Discussion

According to the experimental results, the synthetic data produced
by means of the proposed system attain high performances. Specif-
ically speaking, almost all the synthetic versions achieve more than
50% accuracy in the EMT classification task. Particularly, the CEC
synthetic version of the amateur has significant difference than the
original, implying that the virtual simulated violinist is closer to
the model of eleven violinists than the amateur. However, the av-
erage results are based on the 11 SVM models and corresponding
relevant features, which are derived from the 11-fold cross valida-
tion from the prior work [13]. We adopt this criterion in order to
not only carry on the work but also evaluate the performance of
synthesis system via a objective method. In the real application,
we will use all the training data to generate a unified model.

Although the synthetic versions obtain great accuracy in clas-
sifying the ten EMTs, we could not judge that they have the same
expressiveness as the original, or even better than that in the am-
ateur case, by means of the machine recognition. Especially, we
only use the nine average features in the synthesis system so both
the subtle deviation and the diverse interpretation in violin perfor-
mance could not be modeled. Hence, the human recognition of

expressions is necessary. This work represents an important part
of our EMT analysis/synthesis project. A listening test is under
construction for it is interesting to know how subjects perform in
this regard when original and synthesized sounds are presented. It
is expected that such results can be beneficial to this study.

4. CONCLUSION AND FUTURE WORK

In this study, we have presented an automatic system for expressive
synthesis from a mechanical sound by means of a small set of in-
terpretational factors derived from the preliminary analysis results.
The synthetic data coming from three distinct sources with the
dynamic, vibrato, and duration manipulations achieve more than
50% accuracy in the expressive musical term classification task.
The performance of two energy contour models is also reported.
Specifically, the synthetic versions based on the non-expressive ex-
cerpts of an amateur student are closer to the classified models than
the original, providing insights into the application of computer-
aided music education such as performance calibration in pitch,
tempo, and articulation. For future work, we will consider to adopt
other features for generating more expressive versions and to con-
duct a listening test for subjective evaluation.
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