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ABSTRACT
This paper describes a new efficient and sample based monophonic
pitch tracking approach using multiple phase locked loops (PLLs).
Hereby, distinct subband signals traverse pairs of individually pa-
rameterized PLLs. Based on the relation of the instantaneous pitch
sample of respective PLLs to one another, relevant features per
pitch candidate are derived. These features are combined into
pitch candidate scores. Pitch candidates which exhibit the max-
imum score per sampling instance and exceed a voicing threshold,
contribute to the overall pitch track. Evaluations with up to date
datasets show that the tracking performance, compared to imple-
mentations which use only one PLL has significantly improved
and nearly approaches the scores of a state of the art monophonic
pitch tracker.

1. INTRODUCTION

Pitch is a perceptual feature which is still subject to discussion
and lacks an explicit mathematical definition. In the presented ap-
proach pitch is therefore considered to be the momentarily present
fundamental frequency. In 3.2 the definition of pitch is discussed
further with regard to the comparison with an alternative pitch
tracking technique. If pitch information is extracted from an audio
signal, it can be used to control further audio signal processing in
many possible ways. Until today various monophonic pitch track-
ing techniques have been developed. Some of these approaches
deliver robust and satisfying results. However, most of these sys-
tems employ block-based analysis and their implementation can be
computational expensive. A block-based approach, named PYIN,
applying the difference function paired with probabilistic evalua-
tion and post-processing [1] yields the best results to date. This pa-
per introduces a new sample-based approach for monophonic pitch
extraction using multiple PLLs which is computationally efficient
and suitable for implementations on low-power processors with
limited resources. PLLs have been used for music information
retrieval purposes as beat tracking [2] and monophonic pitch de-
tection before. A pitch tracker combining numerous phase locked
loops, involving a lot of redundancy leading to high computational
cost, is presented in [3]. In another approach a single, modified
PLL is used for pitch extraction [4]. This leads to satisfying results
for input signals where the respective overtone energy is lower
than the energy of the fundamental frequency. Otherwise octave
errors might occur and the single PLL locks to overtone frequen-
cies. From here on this algorithm is referenced throughout this
paper as Single PLL while the algorithm which is presented in the
following text will be referred to as Multi PLL. If instead of a sin-
gle PLL multiple PLLs with equal parametrization are applied in
differing, slightly overlapping subbands, one can observe merging

pitch tracks of neighboring PLLs [5]. This observation leads to the
idea to combine distinct subbands and variably configured PLLs
in a new way in order to exploit the occurring concurrence of pitch
tracks on periodic monophonic audio input. The following paper
is structured as follows. Section 2 gives a system overview by pre-
senting how multiple bandpass filters and phase locked loops are
configured and combined. It shows how particular PLL pitch sam-
ples are interpreted in order to extract significant features regarding
the instantaneous fundamental frequency of the monophonic audio
signal. Based on these features the derivation of PLL-dependent
pitch candidate scores and the successive selection of a candidate
is described. Section 3 compares the pitch tracking performance
of the approach presented in this paper with the original Single
PLL pitch detector and the PYIN algorithm by means of a guitar-
based dataset. Section 4 summarizes the findings of this study and
discusses possible future enhancements.

2. SYSTEM OVERVIEW
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Figure 1: Block diagram of the Multi PLL algorithm

First, the input audio signal is filtered using a decimation filter
in order to conduct a successive downsampling to a sample fre-
quency of 11 kHz. A filter bank then divides the input audio signal
into 4 octave bands. For each subband signal an envelope is cal-
culated in order to generate a constant envelope signal of unity
amplitude (AGC block in Fig. 1). This dynamic pre-processing al-
lows the PLLs to achieve an optimal tracking performance. After
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the subband signals have passed the gain control stage they are
fed to the respective PLL pairs. Output samples of all 8 PLLs
are interpreted in order to extract 5 features per PLL. Each feature
is based on a different relation as pitch pair deviation, the num-
ber of pitch candidates assigned to relative subtones/overtones,
number of close pitch candidates and pitch slope. A pitch can-
didate score for each PLL output sample is derived by combining
these features. The pitch candidate scores reflect signal proper-
ties as periodicity, harmonicity and pitch slope. Hereby the PLL
itself covers the feature extraction which is related to periodicity,
while the combination of particular pitch tracks into features pur-
sues amongst others the quantification of harmonicity. The pitch
candidate with the highest score is selected and contributes to the
overall pitch track F0, provided that a certain voicing threshold is
exceeded.

2.1. Filterbank
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Figure 2: Absolute frequency responses of utilized 8th order ellip-
tic filters

The filter bank is composed of I = 4 bandpass filters as de-
picted in Fig. 2. Each sub band channel i ∈ [0, . . . , I − 1] spans
over a region of one octave. 8th order elliptic bandpass filters with
a stop band attenuation of 80 dB and a passband ripple of 1 dB are
used to facilitate a sufficient edge steepness. This parametrization
results in a 63 dB/Octave roll-off, which supports the isolation of
fundamentals as illustrated in Fig. 4. The subbands are enclosed
by the ripple frequencies

fr
i,j = 80.06 Hz · 2i+j , (1)

where j = 0 denotes the lower ripple frequency and j = 1
denotes the upper ripple frequency. The magnitude frequency re-
sponses |Hi(e

jω)| of the filters are shown in Fig. 2. By filtering
the input signal in both the forward and the reverse direction, a
phase distortion of the output signal can be prohibited.

The approach described in this study mainly aims at providing
the best possible tracking performance of the overall system under
ideal performance of the subsystems. Ideal performance with re-
gard to the filterbank subsystem means, the attainment of a certain
edge steepness of respective subband filters without the emergence
of phase distortions. This ensures the isolation of the fundamental
frequency without the presence of the first overtone in the target
octave band. At the same time a frequency dependent delay of
pitch tracks is prohibited. The above mentioned characteristics can
be achieved in the simplest way if the processing of the filterbank
is conducted offline. The implementation of the filterbank is the

only reason why the overall system is bound to offline processing.
All succeeding modules can be adapted for real-time processing
without much effort and worth mentioning side effects. In order
to implement the whole system in a real-time-capable fashion an
alternative design for the filterbank has to be considered.

Within each channel a temporal envelope ei(n) is generated
whose inverse value is used to generate the constant envelope sig-
nal

x̄i(n) =
xi(n)

ei(n) + emin
. (2)

ei(n) is computed using the smoothed decoupled peak detection
algorithm [6] with attack τa = 50 ms and release τr = 100 ms. In
the denominator emin is added as a constant offset in order to pre-
vent divisions by zero. The chosen parametrization depicts a trade
off between minimum-time envelope tracking and the containment
of arising nonlinearities within the subband. The further usage of
ei(n) for feature extraction is described in 2.3.

2.2. Phase locked loop
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Figure 3: Block diagram of the modified PLL

In order to track partials which are present in a respective sub-
band, two third order PLLs operating in a nonlinear mode are in-
stalled. The phase detector is implemented as a simple multiplier
which uses the constant envelope signal x̄in(n) and the oscillator
output yosc(n) as input signals (Fig. 3). The resulting signal con-
tains the difference-frequency and the sum-frequency of the real
valued input signals. This signal is in succession amplified by the
constant gain factor Kd which controls the frequency range of de-
tection and the sensitivity of the PLL towards changes of the phase
difference between the two signals. xd(n) then traverses a 2nd or-
der lowpass filter (LPF in Fig. 3) with a cutoff frequency of 23 Hz,
which is also part of the loop filter, in order to eliminate the sum
frequency component of the multiplier output. The forward path
is continued by adding the constant PLL specific center frequency
fpll to the lowpass filter output. The resulting output signal de-
notes the F0 track of the PLL. This F0 track is then filtered ir-
respective of the loop filter in the forward and reverse direction
using a first order recursive moving average filter with non recur-
sive coefficient 0.05 and recursive coefficients [1, -0.95] in order
to further attenuate undesired high frequency oscillations.

In known implementations the lowpass filter (LPF in Fig. 3)
alone represents the loop filter in the feedback path. Because
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this implementation requires an immediate tracking of varying fre-
quencies over a big range without the presence of a constant carrier
frequency [7], modifications to the loop filter have to be applied
in order to obtain satisfying tracking results. This modification
is realized using a low frequency shelving filter in the feedback
path formed by the weighted sum of xd(n) and the lowpass-filtered
phase detector output [4]. For α a value of 0.35 is chosen. In the
feedback path

fosc(n) = fpll + xlf (n) (3)

controls the instantaneous frequency of the oscillator according
to which the phase is incremented. The oscillator emits the real-
valued signal

yosc(n) = cos
(
φ(n)

)
(4)

with the wrapped phase

φ(n) =

(
φ(n− 1) + 2π

fosc
fs

)
mod 2π. (5)

By feeding yosc(n) and xin(n) to the multiplier, the loop is closed.
The basic concept behind the pairwise positioning of the PLLs is
the idea that a fundamental frequency within one subband must
be tracked by both, the upper and the lower PLL as illustrated in
Fig. 4. The parametrization of the 8 PLLs differs in the used values
for the gain of the phase detector output Kd, and the PLL center
frequency fpll. The gain of the phase detector

Kd
i = 600 · (i+ 1) (6)

is adapted per band in a linear fashion and has been determined
experimentally. Each subband i is enclosed by a respective PLL
pair with lower

fpll
i,l = 80.06 Hz · 2i− 1

12 (7)

and upper

fpll
i,u = 80.06 Hz · 2i+ 13

12 (8)

center frequency. For the following steps the octave indexes

i→ p = 2i+ j (9)

are mapped to PLL indexes p where j = 0 refers to the lower and
j = 1 to the upper PLL.

PLL pairs assigned to subbands that contain merely overtone
energy tend to track distinct overtones, while PLL pairs that track
the fundamental coincide. If there is no sufficient periodic signal
portion apparent in the respective octave band, the F0 track falls
back to the PLLs center frequency. This behavior, which supports
the differentiation between the fundamental and higher order par-
tials, is shown in Fig. 5. The same principle applied to a guitar lick
recording is depicted in Fig. 6. The spectrogram is overlayed with
candidate pitch tracks.

2.3. Feature Extraction

For every sampling instance a single pitch sample for each of the
8 individually parameterized PLLs (F0p(n)) is emitted. Based
on these samples, the following 5 features are extracted and de-
scribed in detail. Each feature is determined by the mapping of a
calculated difference ∆ or a count of pitch candidatesN that fulfill
certain constraints.
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Figure 4: The PLL pair that corresponds to the channel in which
the fundamental is contained concurs (dashed lines). The continu-
ous lines depict the ripple frequencies of the elliptic bandpass filter
and the grey line represents the ground truth.
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Figure 5: Optimal tracking of the fundamental and corresponding
overtones. Only the PLL pair that tracks the fundamental coin-
cides (red), while all other PLLs remain on their center frequency
(black) or track distinct overtones (blue, yellow). The grey lines
denote the partial frequencies.

2.3.1. Pitch pair deviation

We assume that PLL pairs which process the same subband sig-
nal coincide if the fundamental is contained within this channel
(Fig. 4). In this context

∆fp(n) =

∣∣∣∣∣∣1200 · log2

(
F0b p

2
c·2(n)

F0b p
2
c·2+1(n)

)∣∣∣∣∣∣ (10)

quantifies the distance between F0b p
2
c·2(n) and F0b p

2
c·2+1(n),

the particular pitch pair residing in subband i = b p
2
c, on a loga-

rithmic scale. This leads to the feature

F∆f
p (n) =

100−∆fp(n)

100
(11)

with −∞ < F∆f
p (n) ≤ 1. The negative range of F∆f

p (n) ex-
presses the importance of coinciding pitch pairs when seeking the
fundamental frequency.

DAFX-249



Proceedings of the 19th International Conference on Digital Audio Effects (DAFx-16), Brno, Czech Republic, September 5–9, 2016

2.3.2. Pitch candidates assigned to relative subtones

For a PLL pitch sample F0p(n) which is assigned to a funda-
mental, no other pitch candidate F0q(n) may refer to a relative
subtone. There are two criteria a potential subtone F0q(n) of
F0p(n) has to fulfill in order to be classified accordingly. The ab-
solute difference in Cent between F0p(n) and an integer multiple
of F0q(n) must fall below ∆C, and the relative subband energy

Ei(n) =
ei(n)2∑3
j=0 ej(n)2

, (12)

must exceed 3%. ∆C is set to 40 Cent in order to consider inher-
ent oscillations of the F0 tracks as well as inaccuracies and incon-
sistencies of the particular F0 tracks which can occur during the
attack of a tone. The subband energy is considered before the sig-
nal passes the automatic gain control stage (AGC block in Fig. 1)
in order to prohibit false subtone detections caused by the amplifi-
cation of noise components. A false subtone detection would lead
to an incorrect exclusion of pitch candidate F0p(n) in the follow-
ing scoring. The number of PLL pitch samples F0q(n) that refer
to a relative subtone of a particular PLL pitch sample F0p(n) is
defined as

Nst
p (n) =

p−1∑
q=0

8∑
o=21

∣∣∣∣1200 · log2

(
F0p(n)

F0q(n)·o

)∣∣∣∣ < ∆C ∧ Eb q
2
c(n) > 3%

0 else.

(13)

Nst
p (n) is mapped to the mandatory feature

F st
p (n) =

{
1 Nst

p (n) = 0

0 else.
(14)

If a relative subtone of a pitch candidate F0p(n) has been identi-
fied, its overall score is set to zero as noted in Eq. (21).

2.3.3. Pitch candidates assigned to relative overtones

Pitch candidates F0q(n) which reside near integer multiples of
the currently examined PLLs pitch sample F0p(n) reinforce the
assumption that F0p(n) is a fundamental frequency. The number
of pitch candidates F0q(n) which are classified as overtones of
F0p(n) is defined as

Not
p (n) =

7∑
q=p+1

8∑
o=2

1

∣∣∣∣1200 · log2

(
F0p(n)·o
F0q(n)

)∣∣∣∣ < ∆C

0 else,
(15)

from which the feature

F ot
p (n) =

Not
p (n)

7
(16)

is derived. This feature favors PLLs with lower-order indexes in
order to prevent overtone errors.

2.3.4. Close pitch candidates

A high number of PLL pitch samples F0q(n) that reside near pitch
sample F0p(n)

Ncp
p (n) = −1 +

7∑
q=0

1

∣∣∣∣1200 · log2

(
F0p(n)

F0q(n)

)∣∣∣∣ < ∆C

0 else
(17)

exhibits that F0p(n) comparatively carries a lot of energy. This is
represented by the feature

F cp
p (n) =

Ncp
p (n)

Ncp
max

, (18)

with Ncp
max = 4 based on analyzed Ncp

p (n) outputs.

2.3.5. Pitch slope

After the attack phase of a tone has passed, its pitch is assumed to
be stable with little variation in time. Therefore, a low order

∆tp(n) =

∣∣∣∣∣1200 · log2

(
F0p(n)

F0(n− 1)

)∣∣∣∣∣ , (19)

denoting a flat pitch slope, increases the feature

F∆t
p (n) =

{
3−∆tp(n)

3
F0(n− 1) 6= 0 ∧ 3−∆tp(n)

3
> 0

0 else.
(20)

2.4. Pitch candidate selection

The extracted features are combined into a final pitch candidate
score

Sp(n) =
F∆f
p (n) + F ot

p (n) + F cp
p (n) + F∆t

p (n)

4
· F st

p (n).

(21)
It is assumed that the correct instantaneous fundamental frequency
equals at least one of the PLL output samples, provided that the
signal carries enough periodic and harmonic portions. Hence, the
output sample with the highest pitch candidate score is determined

k = arg max
p∈[0,...,7]

Sp(n) (22)

and added to the overall pitch track F0 if the score exceeds a certain
voicing threshold

F0(n) =

F0k(n) Sk(n) > T v
b k
2
c

0 else.
(23)

If none of the pitch samples exceeds the threshold, the audio signal
is assumed to be unvoiced. In this case a zero is appended to the
overall pitch track. Outliers caused by overtones, which appear
when overtone energy is present before the energy of the funda-
mental, are smoothed using a nonlinear median filter of order 200.
A F0 track, extracted by the Multi PLL, is depicted by the blue line
in Fig. 7.

In future implementations the median filter could be replaced
by a statistical model for post-processing purposes like a hidden
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Figure 6: Spectrogram overlayed with PLL candidate pitch tracks. Pitch tracks with identical color originate from a PLL pair and depend
on the same subband signal.
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Figure 7: Plot of the the annotated ground truth (grey), Multi PLL pitch track (blue), Single PLL pitch track (dotted red) and PYIN pitch
track (dotted black).

markov model. The first 4 extracted features could therefore be
used to derive observation probabilities, while the pitch slope could
be considered by given transition probabilities. In addition to that
the algorithm could be optimized by an explicit weighting of the
extracted features.

3. EVALUATION

The presented pitch tracker, its predecessor [4] and the PYIN [1]
algorithm (with Beta distribution mean of 0.15) are evaluated us-
ing the IDMT-SMT-GUITAR dataset 1. All monophonic guitar
lick recordings (one channel RIFF WAVE format, at 44.1 kHz, 24
Bit) and corresponding annotations of dataset 2, which are tagged
with playing style fingered, picked and muted as well as expression
style normal, are used for the comparison. The annotations deliver

1 http://www.idmt.fraunhofer.de/en/business_
units/smt/guitar.html

pitch information wrapped in the form of note events. A note event
contains data such as pitch quantized to midi notes, note onset and
note offset times. According to this data, a reference pitch track
(ground truth) is generated by

fm = 2
(m−69)

12 · 440 Hz, (24)

in order to convert midi notes to frequency values. The tracks of all
pitch detectors and the annotation are downsampled to a sampling
frequency of 100 Hz. In Fig. 7 pitch tracks of the annotation and
the 3 estimators are overlayed. The PYIN pitch tracker shows the
fastest reaction to onset events and is capable of determining the
fundamental frequency even during the attack phase of a tone. The
Multi PLL algorithm avoids the overtone errors of its predecessor
but exhibits delayed onset detections compared to the PYIN.
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3.1. Detection rates

Measures of binary classification as Precision and Recall cannot
be applied offhand in this case. Therefore they have to be de-
fined appropriately. In dependence on [1] we define Recall as the
proportion of actually voiced samples (according to ground truth),
which the extractor recognizes as voiced and tracks with a maxi-
mum deviation of±50 Cent. Precision is defined as the proportion
of pitch samples marked by the extractor as voiced which have a
maximum deviation of±50 Cent from reference pitch. F-Measure
can be derived as the geometrical mean of Precision and Recall.

Table 1: Detection scores for the examined pitch trackers based on
the IDMT-SMT-GUITAR dataset.

Pitch tracker F-Measure Precision Recall

Multi PLL 82.63% 92.24% 75.87%

Single PLL 56.37% 55.83% 57.22%

PYIN 88.23% 90.36% 86.41%

Table 1 shows that the F-Measure of the Multi PLL has in-
creased by approximately 26% compared to its predecessor. Espe-
cially Precision has risen by 36.41% due to less octave errors and
increased pitch stability. Recall has improved by 18.65% . How-
ever, the Multi PLL algorithm misses the F-Measure of the PYIN
by 5.60%. This is mainly due to a Recall which lies 10.54% below
the PYINs counterpart. Solely the Precision score of the PYIN has
been exceeded by 1.88%. Overall, the detection rates of the Multi
PLL show that most of the errors are missing detections which are
reflected in the low Recall score. These errors are mainly caused
by delayed onset recognitions and undetected tones of muted licks.

The PYINs F-Measure of 88.23% for the IDMT-SMT-GUITAR
dataset is lower than expected compared to other findings [1]. Re-
call mainly suffers from unvoiced detections for note on/off stages
and muted tones. Precision is decreased by false voiced detections.
Nevertheless, the PYIN algorithm depicts the best pitch tracker to
date and persuades with good detection rates and exactness which
is the reason why it is used as a comparative basis in the following
subsection.

3.2. Exactness of pitch estimates

The examined pitch trackers should not only be able to quantize
pitch to a semitone grid. If a pitch tracker is applied to audio sig-
nals emitted by vocal chords or instruments that enable intonation
in between the semitone grid (e.g. fretted and fret less stringed
instruments, winds etc.), it can be necessary to estimate the funda-
mental frequency as precise as possible. The annotations provided
by the database don’t qualify for the evaluation of exactness of
pitch estimates due to its coarse frequency quantization. Because
of this and the fact that the PYIN algorithm has already been ap-
plied to define the pitch ground truth for the Medley DB [8], its
pitch track is in the following regarded as comparative basis.

In order to determine the exactness of the PLL-based pitch
trackers, solely pitch samples which have been tagged as voiced
and correct (in ±50 Cent range) for all three pitch trackers are
used. For each of the pitch samples of the Single PLL and the
Multi PLL, the deviation in Cent to the corresponding samples of
the PYIN pitch tracks is determined. Based on these deviations,

the mean, the standard deviation (STD) and the median are cal-
culated and a histogram is generated which is depicted in Fig. 8.

Table 2: Statistical measures concerning the deviation between the
PLL-based pitch trackers and PYIN.

Pitch tracker Mean (Cent) STD (Cent) Median (Cent)

Multi PLL −2.57 7.21 −1.75

Single PLL −2.02 16.44 −1.31
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Figure 8: Histogram of the pitch deviations in the range of
±50 Cent between PYIN and Single PLL (top) as well as PYIN
and Multi PLL (bottom). The dotted lines depict mean (black),
median (red) and standard deviation (yellow).

Table 2 reveals that the mean of the pitch deviation vector is
negatively biased for both pitch trackers, which indicates a ten-
dency towards understated pitch estimates. This tendency is more
pronounced in the pitch estimates of the Multi PLL algorithm,
which is also supported by the median. The standard deviation
of the Single PLL is more than twice as high as the standard devi-
ation of the Multi PLL which indicates a considerably pronounced
spread around the mean value. The difference concerning the spread
is clearly visible in the histograms. The slope of the Multi PLL his-
togram is much steeper to both sides than the slope of the Single
PLL histogram. This deviating characteristic is caused by heavier
oscillations of the Single PLLs pitch track which are related to the
bigger frequency shift accounted for by the larger Kd value. Con-
sequently phase errors are amplified which lead to a more sensitive
and unstable tracking.

Further the histogram indicates that 77.84 % of Multi PLL
pitch samples lie below the reference pitch track. It is assumed
that the reason for this is a combination of the pitch trackers work-
ings and the inharmonic nature of the instrument whose emitted
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audio signal is analyzed. If an instrument has inharmonic proper-
ties, its overtones are non integer multiples of the fundamental fre-
quency. This is particularly recognizable for stringed instruments
like guitar and depends on the stiffness of actual strings [9]. The
PYIN algorithm is based on the difference function which com-
prises the autocorrelation function [10]. Therefore, the periodicity
of the whole signal, including overtones, is evaluated in order to
determine the corresponding frequency. This frequency is slightly
higher than the frequency of the fundamental depending on the
present level of inharmonicity. The thicker the core of the string,
the bigger the resulting inharmonicity [9]. Therefore, especially
for the bass strings of a guitar the pitch results of the PYIN al-
gorithm tend to be higher than the actual frequency of the funda-
mental. One can state that the definition of pitch varies between
PLL- and autocorrelation-based pitch trackers. While the PLL-
based implementations track the frequency of the fundamental, the
PYIN algorithm tracks the frequency which is characterized by the
periodicity of the overall signal.

The biases of the PLL-based estimators are similar and most
certainly emerge from the differing pitch definition of the PYIN es-
timator. Therefore, the exactness of pitch estimates of PLL-based
algorithms depends mainly on the spread, which is less definitive
for the Multi PLL. As a result the approach described in this pa-
per provides more precise pitch estimates than its predecessor. In
order to evaluate the exactness of PYIN and Multi PLL pitch es-
timates the nature of pitch has to be specified more precisely and
the dataset to be used needs to provide a ground truth with a finer
frequency quantization.

4. CONCLUSION

The goal of this study was to develop an efficient monophonic
pitch tracker, utilizing multiple PLLs, which delivers improved
robustness against overtone errors and enhanced pitch track sta-
bility. The access to multiple, variably parameterized PLLs al-
lows a much more comprehensive view of the presence, inten-
sity and positioning of partials than a single PLL could deliver.
Based on this information conclusions can be made that result in
a substantial improvement of the detection rate. For the IDMT-
SMT-GUITAR dataset the Multi PLL estimator has achieved a
F-Measure of 82.63 %, which corresponds to an improvement of
26.26% compared to the results of its predecessor.

In future implementations especially the Recall could be im-
proved by optimizing the individual PLL parameters and the weight-
ing of features in order to enhance the timing and rate of the voiced
detections. A problem that remains is the detection of pitch for
tones with missing fundamentals. Pitch trackers which exploit
the periodicity of the overall signal like autocorrelation-related
approaches are capable of detecting the perceived pitch of these
tones. The approach presented in this study however, requires ad-
ditional logic which considers the frequency spacing of partials in
order to provide this functionality. In addition to that a statistical
model could be implemented to further improve the correctness
and continuity of the overall pitch track. Finally, to provide real-
time-capability for future implementations, the filterbank needs to
be modified. An extension of the presented approach for appli-
cation to polyphonic audio signals seems not practical since the
configuration of the filterbank and the PLLs exploits the frequency
composition of monophonic audio signals.
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