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ABSTRACT 

This paper discusses the estimation of non-stationary sinusoidal 

parameters. We formulate a piecewise version of the distributive 

derivative algorithm, which is used to analyse non-stationary si-

nusoidal signals and estimate their frequencies and log amplitude 

derivatives over a long duration as spline functions, and apply 

this algorithm for the estimation of instantaneous frequencies, 

amplitudes and phase angles. Test results show that the piecewise 

derivative algorithm provides better estimation than the previous 

non-piecewise version at lower computation cost. 

1. INTRODUCTION 

The sinusoidal modelling technique [1][2] uses slow-varying si-

nusoids to model the “deterministic” parts of audio and speech, 

including harmonic partials of human/animal vocals, string, wind 

and brass instruments, and harmonic or inharmonic partials of 

percussion and electric instruments.  

Complex exponential functions, or complex sinusoids, are of 

the form er(t), where r(t)=p(t)+jφ(t), p(t), φ(t)C1(R) 1, is the ex-

ponent. ep(t) and φ(t) are known as the amplitude and phase angle, 

and ω(t)=dφ(t)/dt the angular frequency. We say er(t) is slow-

varying if p(t) and ω(t) vary slowly with time t. Slow-varying 

sinusoids have narrow short-time bandwidths [3], allowing con-

current sinusoids be accessed independently via adequate band-

pass mechanism, as long as their frequencies stand apart. In par-

ticular, the real sinusoid ep(t)cosφ(t) can be accessed via er(t). 

Many sinusoid estimators derived in the past estimate sinus-

oidal parameters at a point from waveform data in its close vicin-

ity. Several early estimators assuming short-term stationarity of 

amplitude and frequency were summarized in [4]. As real-world 

sinusoids are rarely stationary, more complex short-term para-

metric models, e.g. [5]-[9], were proposed, leading to the highly 

flexible estimation of arbitrary complex polynomial exponential 

functions [8][9], and more recently to an even higher degree of 

freedom by allowing an arbitrary complex polynomial multiplier 

on top of it [10]. 

A second family of algorithms addresses long-term amplitude 

and frequency modulations, e.g. with the spline model [11][12]. 

While most short-term algorithms engage closed-form computa-

tion, the long-term methods depend on iterative optimization, 

and are likely to suffer high computation cost and convergence to 

local optima. However, upon successful convergence the long-

term constraints help to fight overfitting and improve robustness. 

In this paper we show that the distributive derivative ap-

proach of [9] can be formulated to address long-term amplitude 

                                                           
1 Cm(R): space of real functions with continuous mth-order deriv-

atives. 

and frequency modulations using a spline exponential model. 

This leads to a non-iterative algorithm for the long-term estima-

tion of sinusoids, which combines the simplicity of the derivative 

method with the robustness of long-term parametric modelling. 

The rest of this paper is arranged as follows. Section 2 briefly 

reviews the distributive derivative algorithm; section 3 derives 

the piecewise formulation of the derivative algorithm, which es-

timates frequency and log amplitude derivative as splines; section 

4 presents an amplitude and phase handling scheme that helps 

make long-term and local estimates consistent; section 5 presents 

test results on a synthesized test set, and section 6 presents a real 

world example.  

2. THE DISTRIBUTIVE DERIVATIVE METHOD 

The distributive derivative algorithm, or derivative algorithm for 

short, estimates a time-varying exponent r(t) of s(t)=er(t) by tak-

ing the derivative of s(t). Early examples of the method include 

[13] and [14] used for estimating stationary sinusoids and linear 

chirps. Later the method was generalized by current author and 

Sandler [8] and Betser [9] to estimate r(t) as the linear combina-

tion of differentiable functions. This section gives a brief review 

of this algorithm, following the formulation of [9]. 

2.1. General framework (after [9]) 

Let h1(t), …, hM(t)C1(R) be M linearly independent complex 

functions and v1(t), …, vI(t)C1(R) be I linearly independent 

complex functions, and let all these functions have a common 

compact support D=[d1,d2], d1, d2R. We consider a complex 

sinusoid  

s(t)=er(t)    (1) 

on the interval D, so that the derivative of r(t) is a linear combi-

nation of h1(t),…hM(t): 

λh
T)()()(

1

tthtr
M

m

mm  


 , tD  (2) 

where h(t)=(h1(t), …, hM(t))
T
, λM=(λ1, ..., λM)

T
CM and the su-

perscript 
T
 denotes matrix and vector transpose. Now we consider 

this problem: given s(t) and h(t), how do we find λ? 

We take the derivatives of both sides of (1) and substitute (2): 

λh
T)()()( ttsts     (3) 

Taking the inner products of both sides of (3) with functions v1, 

…, vI we get 

λh
cc

,, ii vsvs T , i=1, …, I   (4) 

or 

λvhv
cc

,, Tss  ,   (5) 
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where v(t)=(v1(t), …, vI(t))
T
 and the continuous inner product 

operator ●,●c is defined for functions and function vectors as  

 dttxtyyx )()(, *

c
 and  dttt )()(, *

c

TT
xyyx ,  (6) 

respectively, where the superscript * denotes complex conjugate. 

Comparing (3) and (5) we see that sʹ,vc is the linear combina-

tion of vectors shm,vc, m=1, …, M, with the same coefficients as 

rʹ(t) is that of hm(t). This converts the decomposition of r'(t) in a 

function space { λh
T)(t |λCM} to that of s',vc in a vector space 

without the need for extracting r’(t) explicitly. We call the entries 

of h basis functions as they form a basis of the vector space 

above, and the entries of v test functions after [9]. 

2.2. Discrete computation 

If we define discrete inner products for functions and function 

vectors as  







1

0

* )()(,
T

n

nxnyyx , 





1

0

* )()(,
T

n

nn TT
xyyx ,  (7) 

then the following discrete version of (5) holds: 

λvhv ,, Tss     (8) 

One issue of using (8) to compute λ is that sʹ(t) is not availa-

ble as input. Both [8] and [9] suggested that if v(t) is differentia-

ble and vanishes at both ends of D, then sʹ,vc can be computed 

as -s,vʹc. For discrete computation however, -s,vʹ approxi-

mates sʹ,v with an error given in [9] as 

 


n

nttsss |)()(,, *
vvv   (9) 

In [8] we pointed out that this error equals the total (Shan-

non) sampling alias of (sv*)(t). To keep the error term in (9) low, 

(sv*)(t) must have negligible spectral energy density above the 

Nyquist frequency. Practically this is satisfied by choosing 

viC2(R), i, so that s(t)vi(t)
* is a base-band signal: for example, 

a Hann-windowed sinusoid tuned to the central frequency of s(t). 

In practice the coefficients of (8) may be contaminated by 

noise in s(t) (observation noise) and rʹ(t) (modelling noise). As a 

remedy it is often solved in a least-square sense using 

  vhvvhhvλ ,,,,
1

ssss 


TTT
,  (10) 

provided that v
T
,shsh

T
,v is invertible. 

The discrete inner products can also be written as matrix 

multiplications. Define t=(0,…,T-1)
T
, s=s(t)=(s(0),…,s(T-1))

T
, 

sʹ=sʹ(t), H=h(t
T
)=(h(0),…,h(T-1)), V=v(t

T
), then (8) has the ma-

trix formulation  

λHsVs'V
T)(** diag .   (11) 

2.3. Amplitude and phase angle 

The derivative algorithm only estimates rʹ(t). To complete the 

estimation of s(t)=er(t) we still need to estimate r(0), which repre-

sents global amplification and phase shift. The least-square esti-

mate of r(0) is computed by correlation with a unit-amplitude 

zero-phase sinusoid with exponent derivative rʹ(t): 

ss

ss
r ~,~

~,
log)0(  , 

t

dts
0

)(exp)(~  λh
T  (12) 

The instantaneous angular frequency, amplitude and phase angle 

at 0 are Im{rʹ(0)}, eRe{r(0)} and Im{r(0)}, respectively. 

3. PIECEWISE DERIVATIVE METHOD 

The derivative algorithm above assumes that rʹ(t) follows the 

same parametric model over the whole duration. [9] took h(t) as 

a polynomial basis, i.e. h(t)=(tM-1,tM-2,…,1)
T
, and asserted the 

validity of the signal model (2) by the Taylor expansion of rʹ(t). 

Since Taylor expansions are usually accurate only in the neigh-

bourhood of the origin, this model is not suitable for long dura-

tion. On the other hand, piecewise polynomials, or splines, can 

model arbitrary functions of arbitrary lengths using translations 

of the same local model. In this section we adapt the derivative 

algorithm to estimate rʹ(t) as a spline function. To distinguish 

between the original and adapted versions, we call them local 

and piecewise derivative algorithms, respectively. 

3.1. General framework 

We limit our discussion to splines with uniformly placed knot 

points, and let them be 0, T, …, LT. We assume that we know the 

waveform of a slow-varying sinusoid on [0,LT] and roughly 

know its instantaneous frequencies at 0, T, … LT, both of which 

can be obtained using a sinusoid tracker, e.g. [1].  

We formulate rʹ(t) as a spline function by expressing it as a 

(M-1)th-order polynomial on each [lT,lT+T), l=0, …, L-1:  

lttlTr λh
T)()(  ,  0t<T,  l=0, …, L-1,  (13) 

where h(t)=(tM-1,tM-2,…,1)
T
, λlCM. Vectors λ0, ..., λL-1 contain 

the polynomial coefficients on the L segments, which are con-

strained by boundary conditions specific to the spline type. For 

example, the continuity of rʹ(t) at lT requires  

llT λhλh
TT )0()( 1 

,  l=1, …, L-1.  (14) 

In this paper we consider the linear interpolative formulation2 

of splines, which expresses λl as a linear function of the spline 

samples at the knot points, i.e. r'=rʹ(t) =(r’(0),..., r’(LT))
T
: 

λl=Al r’,  l=0, …, L-1.   (15) 

A0, …, AL-1 are real matrices depending on L, T and the spline 

type. Substituting (15) into (13) we get 

r'Ah lttlTr T)()(  ,  0t<T,  l=0, 1, …, L-1.  (16) 

We call (13)~(16) the spline exponential model. A specific 

spline interpolator has a linear interpolative formulation (15) as 

long as all its boundary conditions are linear in terms of rʹ(t) and 

its derivatives. The matrices A0, …, AL-1 for linear, quadratic and 

cubic spline interpolators are derived in the Appendix.  

We further define a function vector ρ(t)=(ρ0(t),…, ρL(t))
T
 by 

lttlT Ahρ
TT )()(  ,  0t<T,  l=0, 1, …, L-1.  (17) 

If both h(t) and Al are known then so is ρ(t). The independent 

coefficients rʹ contribute to r’(t) through the entries of ρ(t): 

r'ρ
T)()( ttr  ,  0t<LT.   (18) 

Eq. (18) expresses the linear piecewise exponential model as a 

special case of the linear exponential model (2), with ρ(t) replac-

ing h(t) as the basis. We can therefore construct a linear system 

similar to (8) 

r'vρv ,, Tss  .   (19) 

where v(t)=(v1(t), …, vdim(v)(t))
T
 is the vector of test functions. If 

v
T
,sρsρ

T
,v is invertible, then (19) has a least square solution 

                                                           
2
 B-spline formulation is also a possibility. The interpolative ex-

pression is chosen because it preserves the task’s degree of free-

dom and allows us draw links with previous methods, like (18). 
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  vρvvρρvr' ,,,,
1

ssss 


TTT
.  (20) 

Equations (19) and (20) give the piecewise derivative algorithm 

for estimating sinusoids with model (16). Notice that although 

we focus on spline exponentials in this paper, the algorithm itself 

does not require h(t) to be a polynomial basis, and therefore can 

be applied to a larger class of piecewise models of rʹ(t), as long 

as they can be formulated as (16).  

3.2. Computing coefficient matrix sρ
T
,v 

While one can always compute ρ(t) explicitly with (17), the actu-

al estimation of r' only requires computing the matrix sρ
T
,v, 

which has a piecewise implementation: 
































1

0

][][

1

0

1

0
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*
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1

0

1

0

*
1

0

*

,)()()(

)()()()()()(,

L

l

lll

L

l

T

t

lll

L

l

T

t

LT

t

sttst

tlTtlTstlTttsts

AvhAhv

ρvρvvρ

TT

TTT

  (21) 

where v[l](t)=v(lT+t) and s[l](t)=s(lT+t) represent the parts of v(t) 

and s(t) sampled over interval [lT,lT+T).   

3.3. Separate models for amplitude and frequency 

We let h(t) be real and replace (15) with 

ωCp'Bλ lll j ,  l=0, …, L-1,   (22) 

where p'=Re{r'} and ω=Im{r'} contain the amplitude growth 

rates and angular frequencies at 0, T, ..., LT, respectively, and Bl 

and Cl, l=0, ..., L-1, are real matrices that implement linear inter-

polations of p' and ω via (13). This formulation allows the am-

plitude and frequency be modelled with independent spline types, 

and leads to the real implementation of the piecewise derivative 

method: 








































 

v

v

ω

p'

vρvρ

vρvρ

CB

CB

,Im

,Re

,Re,Im

,Im,Re

s

s

ss

ss

TT

TT

,  (23) 

where  

ρB(lT+t)
T
=h(t)

T
Bl, ρC(lT+t)

T
=h(t)

T
Cl, 0t<T, l=0, …, L-1.   (24) 

A least square solution to (23) is computed in the same way as to 

(8) using real arithmetic only.  vρ
B
,Ts  and  vρ

C
,Ts  are comput-

ed using (21) from the same set of intermediate results 

s[l]h
T
,v[l], l=0, …, L-1. 

3.4. Framing of test functions v(t) 

In this section we present a specific construction of the test func-

tions v(t) using overlapping frames. We wish the interval [0,LT] 

be uniformly covered by v(t), so that no part of s(t) is ignored or 

overemphasized. It is intuitive to divide this interval into uni-

formly spaced frames and apply the same subset of test functions 

to every frame. And as test functions must vanish at both ends, it 

is necessary to have overlapping frames. In this paper we place 

frame centres at the spline knots, i.e. T, 2T, …, (L-1)T, with 50% 

overlap between adjacent frames. This gives L-1 frames of length 

2T over the whole duration (Fig.1a). Given this framing scheme 

we can write v(t)
T
=[v1(t)

T
 v2(t)

T …vL-1(t)
T
], in which all entries of 

vl(t), l=1, …, L-1, are supported on [lT-T,lT+T], and are time-

shifted versions of the same local test functions: 

vl(lT+t)= v1(T+t),  l=1, ..., L-1,  -TtT.  (25) 

Eq.(25) reduces the design of v(t) to that of v1(t), for which the 

test functions in the local derivative method (section 2), e.g. win-

dowed Fourier atoms, can be used unchanged. 

 
Figure 1 . Framing without and with boundary frames 

(a) without boundary frames; (b)with boundary frames 

As Figure1(a) shows, the vanishing requirement of test func-

tions inevitably leads to poor frame coverage near 0 and LT. To 

make better use of data in these parts we add two boundary 

frames supported on [0,T] and [LT-T,LT], respectively, and con-

struct test functions on these frames as 

v0(t)= vL(LT-T+t)=v1(2t),   (26) 

as illustrated in Figure1(b).  

3.5. Computational complexity 

We examine the number of complex multiplications in the gen-

eral formulation of the piecewise derivative algorithm, finishing 

with solving (20) using boundary frames as shown in Figure1(b). 

Let I be the number of test functions per frame. The computation 

considered includes computing the coefficients of (19), and solv-

ing (19) using (20).  

Using boundary frames, 2I test functions are non-zero on 

each of the L sections of size T. Accordingly, 2TI(M+1) multipli-

cations are needed to compute s[l]h
T
,v[l] for each l. L(L+1)IM 

more multiplications are needed to compute sρ
T
,v using (21). 

Computing sʹ,v requires 2LTI multiplications, i.e. the total 

length of all test functions. The total number of multiplications 

for computing (19) sums up to 2LT(M+2)I+L(L+1)MI. Compu-

ting v
T
,sρsʹ,v and v

T
,sρsρ

T
,v require LNI and L(L+1)2I/2 

multiplications respectively; solving (20) by Gaussian elimina-

tion requires L(L+1)(2L+7)/6.  

In comparison, if we apply the local derivative algorithm 

over [0,LT] with boundary frames, i.e. applying the algorithm to 

each of the L-1 frames of size 2T plus 2 frames of size T, then the 

coefficients of (8) are computed L+1 times for a total signal dura-

tion of 2LT, and the linear system (8) is solved L+1 times.  

Table 1. Complexity of piecewise and local derivative algorithms  

 piecewise derivative alg. local derivative alg. 

computing co-

efficients 
2LTI(M+2)+L(L+1)MI 2LTI(M+2) 

solving linear 

system(s) 
L3(I/2+1/3) LM2(I+M/3) 

Table 1 compares the complexity of the two derivative meth-

ods, in which we have ignored less significant terms. In typical 

applications M and I are small numbers (usually below 10), T is a 

few orders of magnitude larger, while L has a flexible range. As 

long as L is not too large, the complexity of both algorithms are 

dominated by 2LTI(M+2). In this case the piecewise derivative 

algorithm saves computation by allowing I be as small as 1, 

while I≥M must be satisfied in the local derivative algorithm. 

This benefit will be lost when L grows near TM 2 , as the extra 

computation spent on solving (20) eventually outgrows the sav-

ing. 

… 

 0 T 2T 3T (L-3)T (L-2)T (L-1)T LT 

(a) 

… 

 0 T 2T 3T (L-3)T (L-2)T (L-1)T LT 

(b) 



Proceedings of the 19th International Conference on Digital Audio Effects (DAFx-16), Brno, Czech Republic, September 5–9, 2016 

 

 

 

 DAFX-258 

4. AMPLITUDE AND PHASE  

Like its local counterpart, the piecewise derivative algorithm on-

ly estimates r’(t). An alternative algorithm, such as the correla-

tion method (12) in 2.3, must be employed to determine the 

global amplification and phase shift. 

While in theory estimating r(t) at any point, e.g. r(0), is 

enough for reconstructing r(t) by integrating r’(t), doing so ac-

cumulates potential errors over time. As piecewise models are 

designed for long signals, the accumulated error can get dramatic. 

For this reason we propose to estimate r(t) locally from short in-

tervals at various measurement points, then adjust the r’(t) esti-

mates to fit the local r(t) estimates. We present the details using 

the separated formulation (22). 

4.1. Local estimation 

We estimate r(t) at knots lT, l=0, …, L,  by applying the correla-

tion method (12) to a short interval near lT: 

sws

sws
lTrr

l

l

l ~,~

~,
log)(~  ,  l=0, …, L,  (27) 

where rl is the local estimate of r(lT), wl is a window function on 

[lT-T,lT+T] for l=1, .., L-1, on [0,T] for l=0, and on [LT-T,LT] 

for l=L, and 

 
t

ll djttr
0

)()()(~ ωCp'Bh
T ,  )(~exp)(~ trts  .   (28) 

While these estimates can be used as they are, in applications like 

additive synthesis it is desirable that the local estimates of r(t) be 

coherent with the piecewise estimate of r’(t), i.e. klZ, l=0, …, 

L-1, so that 

lll

T

ll

TlT

lT

kjrrdtjtdttr 2)()()( 1

0






 ωCp'Bh
T .   (29) 

This is achievable using an adjustment step described below, 

which applies a fine tuning to (p',ω) to satisfy (29). 

4.2. Adjustment of ω and p' 

Let ω be the original frequency estimate and ω+ψ be the adjust-

ed estimate. Define  


T

ll dtt

0

)(hCu
T  ,  l=0, ..., L-1.   (30) 

Taking the imaginary part of both sides of (29) we get 

llll krr 2}Im{)( 1  ψωu
T ,  l=0, …, L-1.  (31) 

We start with a phase unwrapping process similar to that of 

[1] to implicitly determine kl in (31), which we rewrite as  

lllll krr 2}Im{ 1   ωuψu
TT ,  l=0, ..., L-1.  (32) 

ψu
T
l

 is the integral of an interpolation of ψ over [lT,lT+T]. As ψ 

represents a fine adjustment we choose the klZ that minimizes 

the right side of (32), which becomes 

)2,}(Im{ 1 ωuψu
TT

llll rrres  
,  l=0, ..., L-1,  (33) 

where res(x,2π) is the minimal-absolute residue of x modular 2π. 

Notice that this choice of kl coincides with that of [1] motivated 

by maximizing phase smoothness.   

Define )2,}(Im{ 1 ωu
T

llll rrresb  
, b=(b0, ...,bL-1)

T
, and 

U=(u0,...,uL-1), then (33) is simplified to 

U
T
ψ =b.   (34) 

This is a linear system of ψ with L equations and L+1 unknown 

variables. Since ψ is expected to be small, a simple choice is the 

minimal-norm solution, given by 

ψ = U(U
T
U)-1b.   (35) 

Finally the adjustment of ω is completed by 

ψωω  .   (36) 

It is trivial to verify the adjusted ω satisfies (31). 

Adjustment of p' follows the same procedure as above, ex-

cept that the phase unwrapping step is not needed. 

5. EXPERIMENTS 

We test the proposed algorithm on synthesized test signals and 

compare it to the local derivative algorithm [9], the QUASAR 

estimator [11], and original quadratic-interpolated fast Fourier 

transform magnitude (QIFFT) method [15]. The piecewise deriv-

ative algorithm is tested with cubic and linear splines (labelled 

PD3 and PD1), the local derivative algorithm is tested with cubic 

and linear polynomials (LD3 and LD1), while the QUASAR esti-

mator (Q) is piecewise linear by design (as "quadratic phase" 

means linear frequency).  

We use each estimator to estimate parameters of a slow-

varying sinusoid, then reconstruct the sinusoid from the estimates 

with a paired synthesizer. Errors are computed for estimated pa-

rameters and for sinusoids synthesized from them. The local es-

timators LD3, LD1 and QIFFT (QIF) do not come with “native” 

synthesizers for more than one frame. We pair LD3 and LD1 with 

natural cubic and linear spline interpolators respectively, and 

QIFFT with the original McAulay-Quatieri phase-aligned synthe-

sizer [1]. For the reconstruct errors we also test a few reference 

systems that synthesize from the true parameters. Reference sys-

tem using cubic and linear spline synthesizers are labelled R3 and 

R1 respectively. [11] provides its own least-square interpolator, 

which we also use as a reference ("RQ"). 

Both derivative algorithms use boundary frames. From 3.4, 

the standard frame size is 2T; standard frame hop and boundary 

frame size are T. Two test functions per frame are used in the 

piecewise derivative algorithms (PD3, PD1); four per frame are 

used in the local derivative algorithms (LD3, LD1).  

For each test signal we use its waveform and reference fre-

quencies at measurement points 0, T, …, LT as inputs. Test sig-

nals over [0,LT] are supplied to the derivative algorithms; test 

signals over [-T,LT+T] are supplied to the Q and QIF estimators 

which do not fully handle boundary frames. Reference frequen-

cies are rough frequency estimates to tell the estimators where in 

the T-F plane to expect the sinusoids. We provide these by 

rounding ground truth frequencies to nearest whole DFT bins, 

1bin=1/2T. The QUASAR estimator (Q) uses a single reference 

frequency, which we supply with the average ground value. 

For test functions of both derivative algorithms we follow [9] 

and use Hann-windowed complex sinusoids whose frequencies 

are tuned to the whole DFT bins closest to the reference frequen-

cies.  

5.1. Test set 

Frequency and amplitude-modulated sinusoids are used as test 

signals. The frequencies are modulated by a sinusoidal modulator 

of amplitude AM and period TM; the amplitudes are modulated by 

passing the modulated frequency through one of three real trans-

fer functions: a linear function H1(f) that assigns the central fre-

quency a medium amplitude, and two quadratic functions H2(f) 

and H3(f) that assign the central frequency either the minimal or 
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maximal amplitude. We summarize the test set by (37a)~(37f), 

where f, f0, AM are given in bins, and TM in frames, where 1 

bin=1/(2T), 1 frame=T. Constant coefficients in (37d)~(37f) are 

chosen so that the amplitude modulation depth is 2/3. For all 

tests we use L=10 and T=1024, so that the length of each test 

sample is 10240. For this choice of L and T the complexity of 

both derivative algorithms is dominated by computing sρ
T
,v, so 

that by using I=2 instead of 4 the piecewise algorithm saves near-

ly half the computation. 

Table 2. Synthesized test set 

)/2cos()( MMM0 TTtAftf   , (37 a) 
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For the tests we sample TM uniformly at 6 positions between 

5 and 15 frames, AM logarithmically at 6 positions between 1 and 

32 bins, φM uniformly at 6 positions between 0 and 5π/6, f0 uni-

formly at 10 positions between 155 and 155.9 bins. This makes a 

total of 6480 test signals. Apart from clean sinusoids, we also run 

tests on sinusoids contaminated by concurrent sinusoids or white 

noise. Reference systems are not tested with contaminated signals.  

5.2. Results 

We present the test results as accuracy measurements against se-

lected parameters (TM, AM, estimator) averaged over all relevant 

test results. The measurements are amplitude accuracy (Ea), fre-

quency accuracy (Ef) and signal-to-error ratio (SER). Ea is com-

puted from the ground truth log amplitude derivatives p0, …, pL 

and their estimates 
0

~p , …, 
Lp~  as  
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Ef is computed from the ground truth angular frequencies ω0, …,  

ωL and their estimates 
0
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SER is computed from the test signal s(t) and resynthesized si-

nusoid )(~ ts  as 
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Higher values of Ea, Ef and SER indicate better amplitude, 

frequency and reconstruction accuracy, respectively. 

5.2.1. Clean sinusoids 

Figure 2 compares results of tested estimators on clean signals. 

Each curve presents the result from one estimator, as SER, Ef or 

Ea against FM period TM in (a)(c)(e), and against FM extent AM 

in (b)(d)(f), averaged over all φM, f0 and transfer functions 

H1(f)~H3(f) used in (37c). SER results of reference systems are 

included in (a) and (b). 

 
Figure  2 . Comparing estimators on FM signals (cycle 1) 

As may be expected, derivative estimators using cubic poly-

nomials outperform those using linear polynomials. Among esti-

mators using the same polynomial orders, the local derivative 

algorithm does best in estimating log amplitude and frequency. 

This can be attributed to that fact that it uses more parameters to 

model the sinusoid (LD1 uses 5 per frame, LD3 uses 9, QIFFT 

use 3, all others use less than 2.1). However, this advantage is 

not observed in the SER results, which treat the whole duration 

equally instead of focusing on the measurement points. Since the 

test signals are off-model, better parameter estimation alone does 

not guarantee better modelling accuracy. This is even more dis-

tinctively observed in Fig. 2(b), which shows that the reference 

systems, in spite of holding the ground truth at measurement 

points, do not always have the highest SER. On the whole the 

two derivative algorithms provide similar SERs, and both PD3 

and LD3 come close to R3. Good results are observed from 

QUASAR estimator (Q) only if both AM and 1/TM are low. This 

can be traced back to the heterodyne filtering technique it uses to 

obtain its preliminary estimates, which cannot handle large fre-

quency modulations. 

5.2.2. Test in the presence of other sinusoids 

In the presence of concurrent sinusoids, the main influence on 

the estimation comes from those with closest frequencies. In our 

experiments the test signal s(t) is mixed with two concurrent si-

nusoids, with the same amplitude and initial phase as s(t) and 

frequencies at ±B bins from s(t). The frequency gap B is sampled 

logarithmically at 6 positions between 4 and 128 bins.  
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Figure  3 .Comparing estimators on FM signals with additional sinusoids 

Figure 3 compares the results of all tested estimators, each curve 

presenting the result from one estimator, as SER, Ef or Ea against 

frequency gap B, averaged over all TM, AM, φM, f0 and transfer 

functions H1(f)~H3(f). While Ef and Ea results are averaged as 

they are, negative SERs are treated as 0 when computing the av-

erage. Results of direct synthesis R3 and R1 are included for ref-

erence. We see that concurrent sinusoids have significant impact 

on all tested estimators except QIF. For small values of B (i.e. 

strong interference) the piecewise derivative algorithm shows 

clear advantage in the presence of concurrent sinusoids: estima-

tor PD1 using a linear spline is already comparable to LD3 using 

trinomials when B≤16. This can be attributed to the fact that the 

piecewise derivative algorithm uses less free parameters, and 

therefore is less likely to overfit. This explanation is also con-

firmed by LD1 outperforming LD3 under strong interference. The 

apparent resistance of QIF to disturbance is related to the con-

struction of the test signals, as the choice of two symmetrical si-

nusoids on either side of ω(t)  by whole DFT bins helps to mini-

mize their total impact on the quadratic interpolation.  

5.2.3. Test in the presence of noise 

In this part we mix the test signals with Gaussian white noise at 6 

levels, specified by 6 signal-to-noise ratios (SNRs) from -15dB 

to 45dB. Typical Cramer-Rao bounds for parameter estimation 

from noisy data are not included because our test signals are not 

synthesized to fit the parametric models. 

Figure 4 compares the results of all tested estimators , each 

curve presenting the result from one estimator, as SER, Ef or Ea 

against input SNR, averaged over all TM, AM, φM, f0 and transfer 

functions H1(f)~H3(f). Negative SERs are treated as 0 when com-

puting the average. Again, for small values of SNR (i.e. strong 

noise) the piecewise derivative algorithms shows consistent ad-

vantage over their local counterparts, and LD1 once more outper-

forms LD3. In the lower end of SNR the QIFFT method returns 

the best frequency estimate. This is the result of the estimate be-

ing explicitly bounded near the reference frequency no more than 

0.5 bin from the ground truth, without much chance of large de-

viation even in extraordinary noise. 

 

 Figure  4 . Comparing estimators on FM signals with white noise 

5.3. Summary 

We have tested sinusoidal parameter estimation accuracy based 

on the piecewise derivative and local derivative algorithms, as 

well as the QUASAR estimator, using signals synthesized inde-

pendent of the parametric models. For clean sinusoids the local 

derivative algorithm has the best parameter estimation accuracy, 

but the piecewise algorithm has the best reconstruction SER. The 

QUASAR estimator has similar performance to PD1 only for very 

low modulation, and degrades quickly for high modulation. For 

sinusoids contaminated with noise or concurrent sinusoids, the 

piecewise derivative algorithm shows consistent improvement in 

estimation accuracy, which we attribute to long-term modelling 

and the reduction of the number of parameters. Notably, these 

improvements are achieved with half the computation cost of the 

local derivative method, making the piecewise version even more 

favourable.  

Although we have treated the non-iterative and iterative es-

timators as mutually exclusive in the experiments, in reality they 

are not. A good non-iterative method, such as the piecewise de-

rivative algorithm, can help provide an iterative algorithm an ini-

tial estimate close to global optimum, therefore relieves the latter 

of such potential disadvantages as heavy computation and con-

vergence at local optimum. 

6. REAL-WORLD EXAMPLE 

In this section we provide a real-world audio example using the 

two derivative algorithms to estimate frequencies and frequency 

slopes of sinusoidal partials.  

We run the local and piecewise derivative algorithms on a 

pure vocal recording of a soprano singing /a:/. The spectrogram 

of the three lowest partials is given in Figure 5(a). We use linear 

frequency for the local derivative algorithm and linear spline fre-

quency for the piecewise derivative algorithm.  

For the three lowest partials we draw the frequency results in 

Figures 5(b) and 5(c). The local derivative algorithm estimates 

the frequency over individual frames as short line segments, each 

covering the duration of 2T. The piecewise derivative algorithm 

estimates it over the whole duration as a linear spline. While no 
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frequency ground truth is available for real-world recordings, the 

disagreement of local estimates from adjacent frames provides an 

indication of the accuracy of the local derivative algorithm, while 

the smoothness of the frequency trajectories provides an indica-

tion of that of the piecewise algorithm. For the clean vocal signal 

both algorithms provide good frequency estimates. 

Figures 5(d) and 5(e) shows the results when 0dB white 

noise is added to the signal. In the presence of this noise only the 

strongest fundamental partial retains good estimates. For the 

weaker partials both algorithms suffer performance loss. Alt-

hough the drawings of Figs. 5(d) and 5(e) are not directly compa-

rable, 5(e) does show more stable frequency slope than 5(d), in 

which the frequency slope errors are large enough to turn local 

frequency trajectories into near-vertical spikes. Since the piece-

wise algorithm relies on a global signal model, it is reasonable to 

expect higher noise tolerance, because the global constraints help 

to reduce the number of free parameters and prevent overfitting 

to local noise sources. 

 

Figure  5 . Local and piecewise frequency estimation of vocal /a:/ 

7. CONCLUSION 

In this paper we have discussed the theory and implementation of 

a piecewise derivative algorithm, which approximates a slowly 

varying complex sinusoid as a spline exponential function. This 

algorithm is based on the recently developed distributive deriva-

tive algorithm, currently the state-of-the-art for non-stationary 

sinusoid estimation on short intervals. By adapting the derivative 

approach to piecewise models, we are able to estimate time-

varying sinusoids of flexible length. The algorithm is simple, 

non-iterative, and more robust against noise than the (local) dis-

tributive derivative algorithm.  

Apart from as the analyser of a sinusoidal modelling system, 

the proposed estimator may find applications wherever observa-

tion of sinusoidal parameters at a sequence of frames is required. 

For example, musicologists are interested in accurate tracing of 

vocal and instrumental vibratos and tremolos. In the frequency 

sweep test popular with audio, the proposed algorithm will allow 

faster sweep rate (since it does not assume stationarity) and will 

automatically return the result as a spline function. 

The piecewise derivative algorithm has no source separation 

capacity, therefore does not solve the more difficult problem of 

estimating sinusoids overlapping other sinusoids or noise in both 

time and frequency. However, our tests show that the piecewise 

algorithm is less susceptible to concurrent sinusoids and noise 

than the local derivative algorithm. 

Although we have focused our discussions on the spline ex-

ponential model, the piecewise derivative algorithm is also appli-

cable to other linear piecewise parameterizations of the complex 

exponent, as long as they are compliant to (16).  
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10. APPENDIX: PIECEWISE MATRIX FORMULATIONS 

OF LINEAR, QUADRATIC AND CUBIC SPLINES 

We denote a spline by x(t) and its samples at the knot points by 

x=(x0, …, xL)
 T

, xl=x(lT), l. The linear interpolative formulation 

expresses x(t) as linear functions of x0, …, xL. Accordingly, the 

polynomial coefficients over [lT,lT+T), i.e. λl, can be given as a 

linear transformation of x: 

λl=Alx, l.   (A1) 

10.1. Linear spline 

A linear spline is specified by 
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It has the closed-form expression 
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For this spline type we can immediately write  
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10.2. Quadratic spline 

A quadratic spline is specified by 
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The standard approach for quadratic spline interpolation com-

putes the polynomial coefficients from an intermediate vector 

z=(z0, …, zL-1)
T
, zl= ly , by 
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  (A6) 

or 

λl=(03×l  AZ  03×(L−l−1))z + (03×l  AC  03×(L−l−1))x ,  (A7) 

where AZ and AC replace the two matrices in (A6) for briefness. z 

is related to x by the linear system 
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Eq.(A8) is underdetermined by one equation. We introduce an 

additional constraint by minimizing the square norm of the 

spline’s derivative, i.e.  
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We call the specific quadratic spline that minimizes (A9) the 

minimal-variation quadratic spline. Let dI/dz=0, we get a new 

linear equation 
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Eq.(A10) pads up the matrix on the left of (A8) to L×L and the 

on the right to L×(L+1), after which (A8) takes the form 

MLz=MRx, ML being square and invertible. Substituting 

z=ML
−1MRx into (A7) we get 

λl=((03×l  AZ  03×(L−l−1))ML
−1MR + (03×l  AC  03×(L−l−1)))x .  (A11) 

This gives the formulation of Al in (A1) as 

Al=(03×l  AZ  03×(L−l−1))ML
−1MR + (03×l  AC  03×(L−l−1)).  (A12) 

10.3. Cubic spline 

A cubic spline is specified by 
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The standard approach for cubic spline interpolation computes 

the polynomial coefficients from an intermediate vector z=(z0,…, 

zL)
T
, zl= ly  , by 



























































































 11

0,

1,

2,

3,

01

/1/1

00

00

00

6/3/

02/1

6/16/1

l

l

l

l

l

l

l

l

x

x

TTz

z

TT

TT









  (A14) 

or 
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where AZ and AC replace the two matrices in (A14) for briefness. 

z is related to x by the linear system 
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This is an underdetermined system. Two more constraints are 

needed to uniquely specify z from x. The constraints typically 

concern the behaviour of z near 0 and L, referred to as the 

boundary mode, e.g. 

a) natural mode: z0=zL=0; 

b) quadratic run-out mode: z0=z1, zL=zL-1; 

c) cubic run-out mode: z0=2z1-z2, zL=2zL-1-zL-2. 

Whichever mode we choose, the constraints pad up the matrices 

on both sides of (A16) to (L+1)×(L+1), after which (A16) takes 

the form MLz=MRx, ML being invertible. Substituting 

z=ML
−1MRx into (A15) we get 

λl=((04×l  AZ  04×(L−l−1))ML
−1MR + (04×l  AC  04×(L−l−1)))x.  (A17) 

This gives the formulation of Al in (A1) as 

Al=(04×l  AZ  04×(L−l−1))ML
−1MR + (04×l  AC  04×(L−l−1)).   (A18) 

 
 

https://ccrma.stanford.edu/~jos/mdft/Sinusoids.html
https://ccrma.stanford.edu/~jos/parshl/Peak_Detection_Steps_3.html#sec:peakdet
https://ccrma.stanford.edu/~jos/mdft/Fast_Fourier_Transform_FFT.html



