
Proceedings of the 19th International Conference on Digital Audio Effects (DAFx-16), Brno, Czech Republic, September 5–9, 2016

 DAFX-255

 PIECEWISE DERIVATIVE ESTIMATION OF TIME-VARYING
SINUSOIDS AS SPLINE EXPONENTIAL FUNCTIONS

TEMPLATES FOR DAFX-08, FINLAND, FRANCE

Wen Xue

Samsung Electronics

xue.wen@samsung.com

ABSTRACT

This paper discusses the estimation of non-stationary sinusoidal

parameters. We formulate a piecewise version of the distributive

derivative algorithm, which is used to analyse non-stationary si-

nusoidal signals and estimate their frequencies and log amplitude

derivatives over a long duration as spline functions, and apply

this algorithm for the estimation of instantaneous frequencies,

amplitudes and phase angles. Test results show that the piecewise

derivative algorithm provides better estimation than the previous

non-piecewise version at lower computation cost.

1. INTRODUCTION

The sinusoidal modelling technique [1][2] uses slow-varying si-

nusoids to model the “deterministic” parts of audio and speech,

including harmonic partials of human/animal vocals, string, wind

and brass instruments, and harmonic or inharmonic partials of

percussion and electric instruments.

Complex exponential functions, or complex sinusoids, are of

the form er(t), where r(t)=p(t)+jφ(t), p(t), φ(t)C1(R) 1, is the ex-

ponent. ep(t) and φ(t) are known as the amplitude and phase angle,

and ω(t)=dφ(t)/dt the angular frequency. We say er(t) is slow-

varying if p(t) and ω(t) vary slowly with time t. Slow-varying

sinusoids have narrow short-time bandwidths [3], allowing con-

current sinusoids be accessed independently via adequate band-

pass mechanism, as long as their frequencies stand apart. In par-

ticular, the real sinusoid ep(t)cosφ(t) can be accessed via er(t).

Many sinusoid estimators derived in the past estimate sinus-

oidal parameters at a point from waveform data in its close vicin-

ity. Several early estimators assuming short-term stationarity of

amplitude and frequency were summarized in [4]. As real-world

sinusoids are rarely stationary, more complex short-term para-

metric models, e.g. [5]-[9], were proposed, leading to the highly

flexible estimation of arbitrary complex polynomial exponential

functions [8][9], and more recently to an even higher degree of

freedom by allowing an arbitrary complex polynomial multiplier

on top of it [10].

A second family of algorithms addresses long-term amplitude

and frequency modulations, e.g. with the spline model [11][12].

While most short-term algorithms engage closed-form computa-

tion, the long-term methods depend on iterative optimization,

and are likely to suffer high computation cost and convergence to

local optima. However, upon successful convergence the long-

term constraints help to fight overfitting and improve robustness.

In this paper we show that the distributive derivative ap-

proach of [9] can be formulated to address long-term amplitude

1 Cm(R): space of real functions with continuous mth-order deriv-

atives.

and frequency modulations using a spline exponential model.

This leads to a non-iterative algorithm for the long-term estima-

tion of sinusoids, which combines the simplicity of the derivative

method with the robustness of long-term parametric modelling.

The rest of this paper is arranged as follows. Section 2 briefly

reviews the distributive derivative algorithm; section 3 derives

the piecewise formulation of the derivative algorithm, which es-

timates frequency and log amplitude derivative as splines; section

4 presents an amplitude and phase handling scheme that helps

make long-term and local estimates consistent; section 5 presents

test results on a synthesized test set, and section 6 presents a real

world example.

2. THE DISTRIBUTIVE DERIVATIVE METHOD

The distributive derivative algorithm, or derivative algorithm for

short, estimates a time-varying exponent r(t) of s(t)=er(t) by tak-

ing the derivative of s(t). Early examples of the method include

[13] and [14] used for estimating stationary sinusoids and linear

chirps. Later the method was generalized by current author and

Sandler [8] and Betser [9] to estimate r(t) as the linear combina-

tion of differentiable functions. This section gives a brief review

of this algorithm, following the formulation of [9].

2.1. General framework (after [9])

Let h1(t), …, hM(t)C1(R) be M linearly independent complex

functions and v1(t), …, vI(t)C1(R) be I linearly independent

complex functions, and let all these functions have a common

compact support D=[d1,d2], d1, d2R. We consider a complex

sinusoid

s(t)=er(t) (1)

on the interval D, so that the derivative of r(t) is a linear combi-

nation of h1(t),…hM(t):

λh
T)()()(

1

tthtr
M

m

mm  


 , tD (2)

where h(t)=(h1(t), …, hM(t))
T
, λM=(λ1, ..., λM)

T
CM and the su-

perscript
T
 denotes matrix and vector transpose. Now we consider

this problem: given s(t) and h(t), how do we find λ?

We take the derivatives of both sides of (1) and substitute (2):

λh
T)()()(ttsts  (3)

Taking the inner products of both sides of (3) with functions v1,

…, vI we get

λh
cc

,, ii vsvs T , i=1, …, I (4)

or

λvhv
cc

,, Tss  , (5)

Proceedings of the 19th International Conference on Digital Audio Effects (DAFx-16), Brno, Czech Republic, September 5–9, 2016

 DAFX-256

where v(t)=(v1(t), …, vI(t))
T
 and the continuous inner product

operator ●,●c is defined for functions and function vectors as

 dttxtyyx)()(, *

c
 and  dttt)()(, *

c

TT
xyyx , (6)

respectively, where the superscript * denotes complex conjugate.

Comparing (3) and (5) we see that sʹ,vc is the linear combina-

tion of vectors shm,vc, m=1, …, M, with the same coefficients as

rʹ(t) is that of hm(t). This converts the decomposition of r'(t) in a

function space { λh
T)(t |λCM} to that of s',vc in a vector space

without the need for extracting r’(t) explicitly. We call the entries

of h basis functions as they form a basis of the vector space

above, and the entries of v test functions after [9].

2.2. Discrete computation

If we define discrete inner products for functions and function

vectors as







1

0

*)()(,
T

n

nxnyyx , 





1

0

*)()(,
T

n

nn TT
xyyx , (7)

then the following discrete version of (5) holds:

λvhv ,, Tss  (8)

One issue of using (8) to compute λ is that sʹ(t) is not availa-

ble as input. Both [8] and [9] suggested that if v(t) is differentia-

ble and vanishes at both ends of D, then sʹ,vc can be computed

as -s,vʹc. For discrete computation however, -s,vʹ approxi-

mates sʹ,v with an error given in [9] as

 


n

nttsss |)()(,, *
vvv (9)

In [8] we pointed out that this error equals the total (Shan-

non) sampling alias of (sv*)(t). To keep the error term in (9) low,

(sv*)(t) must have negligible spectral energy density above the

Nyquist frequency. Practically this is satisfied by choosing

viC2(R), i, so that s(t)vi(t)
* is a base-band signal: for example,

a Hann-windowed sinusoid tuned to the central frequency of s(t).

In practice the coefficients of (8) may be contaminated by

noise in s(t) (observation noise) and rʹ(t) (modelling noise). As a

remedy it is often solved in a least-square sense using

  vhvvhhvλ ,,,,
1

ssss 


TTT
, (10)

provided that v
T
,shsh

T
,v is invertible.

The discrete inner products can also be written as matrix

multiplications. Define t=(0,…,T-1)
T
, s=s(t)=(s(0),…,s(T-1))

T
,

sʹ=sʹ(t), H=h(t
T
)=(h(0),…,h(T-1)), V=v(t

T
), then (8) has the ma-

trix formulation

λHsVs'V
T)(** diag . (11)

2.3. Amplitude and phase angle

The derivative algorithm only estimates rʹ(t). To complete the

estimation of s(t)=er(t) we still need to estimate r(0), which repre-

sents global amplification and phase shift. The least-square esti-

mate of r(0) is computed by correlation with a unit-amplitude

zero-phase sinusoid with exponent derivative rʹ(t):

ss

ss
r ~,~

~,
log)0( , 

t

dts
0

)(exp)(~  λh
T (12)

The instantaneous angular frequency, amplitude and phase angle

at 0 are Im{rʹ(0)}, eRe{r(0)} and Im{r(0)}, respectively.

3. PIECEWISE DERIVATIVE METHOD

The derivative algorithm above assumes that rʹ(t) follows the

same parametric model over the whole duration. [9] took h(t) as

a polynomial basis, i.e. h(t)=(tM-1,tM-2,…,1)
T
, and asserted the

validity of the signal model (2) by the Taylor expansion of rʹ(t).

Since Taylor expansions are usually accurate only in the neigh-

bourhood of the origin, this model is not suitable for long dura-

tion. On the other hand, piecewise polynomials, or splines, can

model arbitrary functions of arbitrary lengths using translations

of the same local model. In this section we adapt the derivative

algorithm to estimate rʹ(t) as a spline function. To distinguish

between the original and adapted versions, we call them local

and piecewise derivative algorithms, respectively.

3.1. General framework

We limit our discussion to splines with uniformly placed knot

points, and let them be 0, T, …, LT. We assume that we know the

waveform of a slow-varying sinusoid on [0,LT] and roughly

know its instantaneous frequencies at 0, T, … LT, both of which

can be obtained using a sinusoid tracker, e.g. [1].

We formulate rʹ(t) as a spline function by expressing it as a

(M-1)th-order polynomial on each [lT,lT+T), l=0, …, L-1:

lttlTr λh
T)()( , 0t<T, l=0, …, L-1, (13)

where h(t)=(tM-1,tM-2,…,1)
T
, λlCM. Vectors λ0, ..., λL-1 contain

the polynomial coefficients on the L segments, which are con-

strained by boundary conditions specific to the spline type. For

example, the continuity of rʹ(t) at lT requires

llT λhλh
TT)0()(1 

, l=1, …, L-1. (14)

In this paper we consider the linear interpolative formulation2

of splines, which expresses λl as a linear function of the spline

samples at the knot points, i.e. r'=rʹ(t) =(r’(0),..., r’(LT))
T
:

λl=Al r’, l=0, …, L-1. (15)

A0, …, AL-1 are real matrices depending on L, T and the spline

type. Substituting (15) into (13) we get

r'Ah lttlTr T)()( , 0t<T, l=0, 1, …, L-1. (16)

We call (13)~(16) the spline exponential model. A specific

spline interpolator has a linear interpolative formulation (15) as

long as all its boundary conditions are linear in terms of rʹ(t) and

its derivatives. The matrices A0, …, AL-1 for linear, quadratic and

cubic spline interpolators are derived in the Appendix.

We further define a function vector ρ(t)=(ρ0(t),…, ρL(t))
T
 by

lttlT Ahρ
TT)()( , 0t<T, l=0, 1, …, L-1. (17)

If both h(t) and Al are known then so is ρ(t). The independent

coefficients rʹ contribute to r’(t) through the entries of ρ(t):

r'ρ
T)()(ttr  , 0t<LT. (18)

Eq. (18) expresses the linear piecewise exponential model as a

special case of the linear exponential model (2), with ρ(t) replac-

ing h(t) as the basis. We can therefore construct a linear system

similar to (8)

r'vρv ,, Tss  . (19)

where v(t)=(v1(t), …, vdim(v)(t))
T
 is the vector of test functions. If

v
T
,sρsρ

T
,v is invertible, then (19) has a least square solution

2
 B-spline formulation is also a possibility. The interpolative ex-

pression is chosen because it preserves the task’s degree of free-

dom and allows us draw links with previous methods, like (18).

Proceedings of the 19th International Conference on Digital Audio Effects (DAFx-16), Brno, Czech Republic, September 5–9, 2016

 DAFX-257

  vρvvρρvr' ,,,,
1

ssss 


TTT
. (20)

Equations (19) and (20) give the piecewise derivative algorithm

for estimating sinusoids with model (16). Notice that although

we focus on spline exponentials in this paper, the algorithm itself

does not require h(t) to be a polynomial basis, and therefore can

be applied to a larger class of piecewise models of rʹ(t), as long

as they can be formulated as (16).

3.2. Computing coefficient matrix sρ
T
,v

While one can always compute ρ(t) explicitly with (17), the actu-

al estimation of r' only requires computing the matrix sρ
T
,v,

which has a piecewise implementation:
































1

0

][][

1

0

1

0

][

*

][

1

0

1

0

*
1

0

*

,)()()(

)()()()()()(,

L

l

lll

L

l

T

t

lll

L

l

T

t

LT

t

sttst

tlTtlTstlTttsts

AvhAhv

ρvρvvρ

TT

TTT

 (21)

where v[l](t)=v(lT+t) and s[l](t)=s(lT+t) represent the parts of v(t)

and s(t) sampled over interval [lT,lT+T).

3.3. Separate models for amplitude and frequency

We let h(t) be real and replace (15) with

ωCp'Bλ lll j , l=0, …, L-1, (22)

where p'=Re{r'} and ω=Im{r'} contain the amplitude growth

rates and angular frequencies at 0, T, ..., LT, respectively, and Bl

and Cl, l=0, ..., L-1, are real matrices that implement linear inter-

polations of p' and ω via (13). This formulation allows the am-

plitude and frequency be modelled with independent spline types,

and leads to the real implementation of the piecewise derivative

method:








































 

v

v

ω

p'

vρvρ

vρvρ

CB

CB

,Im

,Re

,Re,Im

,Im,Re

s

s

ss

ss

TT

TT

, (23)

where

ρB(lT+t)
T
=h(t)

T
Bl, ρC(lT+t)

T
=h(t)

T
Cl, 0t<T, l=0, …, L-1. (24)

A least square solution to (23) is computed in the same way as to

(8) using real arithmetic only.  vρ
B
,Ts  and  vρ

C
,Ts  are comput-

ed using (21) from the same set of intermediate results

s[l]h
T
,v[l], l=0, …, L-1.

3.4. Framing of test functions v(t)

In this section we present a specific construction of the test func-

tions v(t) using overlapping frames. We wish the interval [0,LT]

be uniformly covered by v(t), so that no part of s(t) is ignored or

overemphasized. It is intuitive to divide this interval into uni-

formly spaced frames and apply the same subset of test functions

to every frame. And as test functions must vanish at both ends, it

is necessary to have overlapping frames. In this paper we place

frame centres at the spline knots, i.e. T, 2T, …, (L-1)T, with 50%

overlap between adjacent frames. This gives L-1 frames of length

2T over the whole duration (Fig.1a). Given this framing scheme

we can write v(t)
T
=[v1(t)

T
 v2(t)

T …vL-1(t)
T
], in which all entries of

vl(t), l=1, …, L-1, are supported on [lT-T,lT+T], and are time-

shifted versions of the same local test functions:

vl(lT+t)= v1(T+t), l=1, ..., L-1, -TtT. (25)

Eq.(25) reduces the design of v(t) to that of v1(t), for which the

test functions in the local derivative method (section 2), e.g. win-

dowed Fourier atoms, can be used unchanged.

Figure 1 . Framing without and with boundary frames

(a) without boundary frames; (b)with boundary frames

As Figure1(a) shows, the vanishing requirement of test func-

tions inevitably leads to poor frame coverage near 0 and LT. To

make better use of data in these parts we add two boundary

frames supported on [0,T] and [LT-T,LT], respectively, and con-

struct test functions on these frames as

v0(t)= vL(LT-T+t)=v1(2t), (26)

as illustrated in Figure1(b).

3.5. Computational complexity

We examine the number of complex multiplications in the gen-

eral formulation of the piecewise derivative algorithm, finishing

with solving (20) using boundary frames as shown in Figure1(b).

Let I be the number of test functions per frame. The computation

considered includes computing the coefficients of (19), and solv-

ing (19) using (20).

Using boundary frames, 2I test functions are non-zero on

each of the L sections of size T. Accordingly, 2TI(M+1) multipli-

cations are needed to compute s[l]h
T
,v[l] for each l. L(L+1)IM

more multiplications are needed to compute sρ
T
,v using (21).

Computing sʹ,v requires 2LTI multiplications, i.e. the total

length of all test functions. The total number of multiplications

for computing (19) sums up to 2LT(M+2)I+L(L+1)MI. Compu-

ting v
T
,sρsʹ,v and v

T
,sρsρ

T
,v require LNI and L(L+1)2I/2

multiplications respectively; solving (20) by Gaussian elimina-

tion requires L(L+1)(2L+7)/6.

In comparison, if we apply the local derivative algorithm

over [0,LT] with boundary frames, i.e. applying the algorithm to

each of the L-1 frames of size 2T plus 2 frames of size T, then the

coefficients of (8) are computed L+1 times for a total signal dura-

tion of 2LT, and the linear system (8) is solved L+1 times.

Table 1. Complexity of piecewise and local derivative algorithms

 piecewise derivative alg. local derivative alg.

computing co-

efficients
2LTI(M+2)+L(L+1)MI 2LTI(M+2)

solving linear

system(s)
L3(I/2+1/3) LM2(I+M/3)

Table 1 compares the complexity of the two derivative meth-

ods, in which we have ignored less significant terms. In typical

applications M and I are small numbers (usually below 10), T is a

few orders of magnitude larger, while L has a flexible range. As

long as L is not too large, the complexity of both algorithms are

dominated by 2LTI(M+2). In this case the piecewise derivative

algorithm saves computation by allowing I be as small as 1,

while I≥M must be satisfied in the local derivative algorithm.

This benefit will be lost when L grows near TM 2 , as the extra

computation spent on solving (20) eventually outgrows the sav-

ing.

…

 0 T 2T 3T (L-3)T (L-2)T (L-1)T LT

(a)

…

 0 T 2T 3T (L-3)T (L-2)T (L-1)T LT

(b)

Proceedings of the 19th International Conference on Digital Audio Effects (DAFx-16), Brno, Czech Republic, September 5–9, 2016

 DAFX-258

4. AMPLITUDE AND PHASE

Like its local counterpart, the piecewise derivative algorithm on-

ly estimates r’(t). An alternative algorithm, such as the correla-

tion method (12) in 2.3, must be employed to determine the

global amplification and phase shift.

While in theory estimating r(t) at any point, e.g. r(0), is

enough for reconstructing r(t) by integrating r’(t), doing so ac-

cumulates potential errors over time. As piecewise models are

designed for long signals, the accumulated error can get dramatic.

For this reason we propose to estimate r(t) locally from short in-

tervals at various measurement points, then adjust the r’(t) esti-

mates to fit the local r(t) estimates. We present the details using

the separated formulation (22).

4.1. Local estimation

We estimate r(t) at knots lT, l=0, …, L, by applying the correla-

tion method (12) to a short interval near lT:

sws

sws
lTrr

l

l

l ~,~

~,
log)(~  , l=0, …, L, (27)

where rl is the local estimate of r(lT), wl is a window function on

[lT-T,lT+T] for l=1, .., L-1, on [0,T] for l=0, and on [LT-T,LT]

for l=L, and

 
t

ll djttr
0

)()()(~ ωCp'Bh
T ,)(~exp)(~ trts  . (28)

While these estimates can be used as they are, in applications like

additive synthesis it is desirable that the local estimates of r(t) be

coherent with the piecewise estimate of r’(t), i.e. klZ, l=0, …,

L-1, so that

lll

T

ll

TlT

lT

kjrrdtjtdttr 2)()()(1

0






 ωCp'Bh
T . (29)

This is achievable using an adjustment step described below,

which applies a fine tuning to (p',ω) to satisfy (29).

4.2. Adjustment of ω and p'

Let ω be the original frequency estimate and ω+ψ be the adjust-

ed estimate. Define


T

ll dtt

0

)(hCu
T , l=0, ..., L-1. (30)

Taking the imaginary part of both sides of (29) we get

llll krr 2}Im{)(1  ψωu
T , l=0, …, L-1. (31)

We start with a phase unwrapping process similar to that of

[1] to implicitly determine kl in (31), which we rewrite as

lllll krr 2}Im{ 1   ωuψu
TT , l=0, ..., L-1. (32)

ψu
T
l

 is the integral of an interpolation of ψ over [lT,lT+T]. As ψ

represents a fine adjustment we choose the klZ that minimizes

the right side of (32), which becomes

)2,}(Im{ 1 ωuψu
TT

llll rrres  
, l=0, ..., L-1, (33)

where res(x,2π) is the minimal-absolute residue of x modular 2π.

Notice that this choice of kl coincides with that of [1] motivated

by maximizing phase smoothness.

Define)2,}(Im{ 1 ωu
T

llll rrresb  
, b=(b0, ...,bL-1)

T
, and

U=(u0,...,uL-1), then (33) is simplified to

U
T
ψ =b. (34)

This is a linear system of ψ with L equations and L+1 unknown

variables. Since ψ is expected to be small, a simple choice is the

minimal-norm solution, given by

ψ = U(U
T
U)-1b. (35)

Finally the adjustment of ω is completed by

ψωω  . (36)

It is trivial to verify the adjusted ω satisfies (31).

Adjustment of p' follows the same procedure as above, ex-

cept that the phase unwrapping step is not needed.

5. EXPERIMENTS

We test the proposed algorithm on synthesized test signals and

compare it to the local derivative algorithm [9], the QUASAR

estimator [11], and original quadratic-interpolated fast Fourier

transform magnitude (QIFFT) method [15]. The piecewise deriv-

ative algorithm is tested with cubic and linear splines (labelled

PD3 and PD1), the local derivative algorithm is tested with cubic

and linear polynomials (LD3 and LD1), while the QUASAR esti-

mator (Q) is piecewise linear by design (as "quadratic phase"

means linear frequency).

We use each estimator to estimate parameters of a slow-

varying sinusoid, then reconstruct the sinusoid from the estimates

with a paired synthesizer. Errors are computed for estimated pa-

rameters and for sinusoids synthesized from them. The local es-

timators LD3, LD1 and QIFFT (QIF) do not come with “native”

synthesizers for more than one frame. We pair LD3 and LD1 with

natural cubic and linear spline interpolators respectively, and

QIFFT with the original McAulay-Quatieri phase-aligned synthe-

sizer [1]. For the reconstruct errors we also test a few reference

systems that synthesize from the true parameters. Reference sys-

tem using cubic and linear spline synthesizers are labelled R3 and

R1 respectively. [11] provides its own least-square interpolator,

which we also use as a reference ("RQ").

Both derivative algorithms use boundary frames. From 3.4,

the standard frame size is 2T; standard frame hop and boundary

frame size are T. Two test functions per frame are used in the

piecewise derivative algorithms (PD3, PD1); four per frame are

used in the local derivative algorithms (LD3, LD1).

For each test signal we use its waveform and reference fre-

quencies at measurement points 0, T, …, LT as inputs. Test sig-

nals over [0,LT] are supplied to the derivative algorithms; test

signals over [-T,LT+T] are supplied to the Q and QIF estimators

which do not fully handle boundary frames. Reference frequen-

cies are rough frequency estimates to tell the estimators where in

the T-F plane to expect the sinusoids. We provide these by

rounding ground truth frequencies to nearest whole DFT bins,

1bin=1/2T. The QUASAR estimator (Q) uses a single reference

frequency, which we supply with the average ground value.

For test functions of both derivative algorithms we follow [9]

and use Hann-windowed complex sinusoids whose frequencies

are tuned to the whole DFT bins closest to the reference frequen-

cies.

5.1. Test set

Frequency and amplitude-modulated sinusoids are used as test

signals. The frequencies are modulated by a sinusoidal modulator

of amplitude AM and period TM; the amplitudes are modulated by

passing the modulated frequency through one of three real trans-

fer functions: a linear function H1(f) that assigns the central fre-

quency a medium amplitude, and two quadratic functions H2(f)

and H3(f) that assign the central frequency either the minimal or

Proceedings of the 19th International Conference on Digital Audio Effects (DAFx-16), Brno, Czech Republic, September 5–9, 2016

 DAFX-259

maximal amplitude. We summarize the test set by (37a)~(37f),

where f, f0, AM are given in bins, and TM in frames, where 1

bin=1/(2T), 1 frame=T. Constant coefficients in (37d)~(37f) are

chosen so that the amplitude modulation depth is 2/3. For all

tests we use L=10 and T=1024, so that the length of each test

sample is 10240. For this choice of L and T the complexity of

both derivative algorithms is dominated by computing sρ
T
,v, so

that by using I=2 instead of 4 the piecewise algorithm saves near-

ly half the computation.

Table 2. Synthesized test set

)/2cos()(MMM0 TTtAftf   , (37 a)

)/2sin(
2

)(MM

MM

0 TTt
AT

tf
T

t 


  , (37b)

))(()(tfHta i , i=1, 2, 3; (37c)

MM01 /)5.1()(AAfffH  , (37d)

 2

M

2

02 /)(25.0)(AfffH  , (37e)

 2

M

2

03 /)(25.2)(AfffH  . (37f)

For the tests we sample TM uniformly at 6 positions between

5 and 15 frames, AM logarithmically at 6 positions between 1 and

32 bins, φM uniformly at 6 positions between 0 and 5π/6, f0 uni-

formly at 10 positions between 155 and 155.9 bins. This makes a

total of 6480 test signals. Apart from clean sinusoids, we also run

tests on sinusoids contaminated by concurrent sinusoids or white

noise. Reference systems are not tested with contaminated signals.

5.2. Results

We present the test results as accuracy measurements against se-

lected parameters (TM, AM, estimator) averaged over all relevant

test results. The measurements are amplitude accuracy (Ea), fre-

quency accuracy (Ef) and signal-to-error ratio (SER). Ea is com-

puted from the ground truth log amplitude derivatives p0, …, pL

and their estimates
0

~p , …,
Lp~ as

 






L

l

lla pp
L

E
0

2

10

~

1

1
log10 . (38a)

Ef is computed from the ground truth angular frequencies ω0, …,

ωL and their estimates
0

~ , …,
L~ as

 






L

l

llf
L

E
0

2

210

~

)1(4

1
log10 


. (38b)

SER is computed from the test signal s(t) and resynthesized si-

nusoid)(~ ts as

 


 


2

2

10
)(~

)(~)(
log10)(

ts

tsts
dBSER . (38c)

Higher values of Ea, Ef and SER indicate better amplitude,

frequency and reconstruction accuracy, respectively.

5.2.1. Clean sinusoids

Figure 2 compares results of tested estimators on clean signals.

Each curve presents the result from one estimator, as SER, Ef or

Ea against FM period TM in (a)(c)(e), and against FM extent AM

in (b)(d)(f), averaged over all φM, f0 and transfer functions

H1(f)~H3(f) used in (37c). SER results of reference systems are

included in (a) and (b).

Figure 2 . Comparing estimators on FM signals (cycle 1)

As may be expected, derivative estimators using cubic poly-

nomials outperform those using linear polynomials. Among esti-

mators using the same polynomial orders, the local derivative

algorithm does best in estimating log amplitude and frequency.

This can be attributed to that fact that it uses more parameters to

model the sinusoid (LD1 uses 5 per frame, LD3 uses 9, QIFFT

use 3, all others use less than 2.1). However, this advantage is

not observed in the SER results, which treat the whole duration

equally instead of focusing on the measurement points. Since the

test signals are off-model, better parameter estimation alone does

not guarantee better modelling accuracy. This is even more dis-

tinctively observed in Fig. 2(b), which shows that the reference

systems, in spite of holding the ground truth at measurement

points, do not always have the highest SER. On the whole the

two derivative algorithms provide similar SERs, and both PD3

and LD3 come close to R3. Good results are observed from

QUASAR estimator (Q) only if both AM and 1/TM are low. This

can be traced back to the heterodyne filtering technique it uses to

obtain its preliminary estimates, which cannot handle large fre-

quency modulations.

5.2.2. Test in the presence of other sinusoids

In the presence of concurrent sinusoids, the main influence on

the estimation comes from those with closest frequencies. In our

experiments the test signal s(t) is mixed with two concurrent si-

nusoids, with the same amplitude and initial phase as s(t) and

frequencies at ±B bins from s(t). The frequency gap B is sampled

logarithmically at 6 positions between 4 and 128 bins.

E
f

E
f

AM (bins)

(d)

TM (frames)

(c)
E

a

TM (frames)

(e)
E

a

AM (bins)

(f)

S
E

R
(d

B
)

TM (frames)

(a)

AM (bins)

(b)

S
E

R
(d

B
)

Proceedings of the 19th International Conference on Digital Audio Effects (DAFx-16), Brno, Czech Republic, September 5–9, 2016

 DAFX-260

Figure 3 .Comparing estimators on FM signals with additional sinusoids

Figure 3 compares the results of all tested estimators, each curve

presenting the result from one estimator, as SER, Ef or Ea against

frequency gap B, averaged over all TM, AM, φM, f0 and transfer

functions H1(f)~H3(f). While Ef and Ea results are averaged as

they are, negative SERs are treated as 0 when computing the av-

erage. Results of direct synthesis R3 and R1 are included for ref-

erence. We see that concurrent sinusoids have significant impact

on all tested estimators except QIF. For small values of B (i.e.

strong interference) the piecewise derivative algorithm shows

clear advantage in the presence of concurrent sinusoids: estima-

tor PD1 using a linear spline is already comparable to LD3 using

trinomials when B≤16. This can be attributed to the fact that the

piecewise derivative algorithm uses less free parameters, and

therefore is less likely to overfit. This explanation is also con-

firmed by LD1 outperforming LD3 under strong interference. The

apparent resistance of QIF to disturbance is related to the con-

struction of the test signals, as the choice of two symmetrical si-

nusoids on either side of ω(t) by whole DFT bins helps to mini-

mize their total impact on the quadratic interpolation.

5.2.3. Test in the presence of noise

In this part we mix the test signals with Gaussian white noise at 6

levels, specified by 6 signal-to-noise ratios (SNRs) from -15dB

to 45dB. Typical Cramer-Rao bounds for parameter estimation

from noisy data are not included because our test signals are not

synthesized to fit the parametric models.

Figure 4 compares the results of all tested estimators , each

curve presenting the result from one estimator, as SER, Ef or Ea

against input SNR, averaged over all TM, AM, φM, f0 and transfer

functions H1(f)~H3(f). Negative SERs are treated as 0 when com-

puting the average. Again, for small values of SNR (i.e. strong

noise) the piecewise derivative algorithms shows consistent ad-

vantage over their local counterparts, and LD1 once more outper-

forms LD3. In the lower end of SNR the QIFFT method returns

the best frequency estimate. This is the result of the estimate be-

ing explicitly bounded near the reference frequency no more than

0.5 bin from the ground truth, without much chance of large de-

viation even in extraordinary noise.

 Figure 4 . Comparing estimators on FM signals with white noise

5.3. Summary

We have tested sinusoidal parameter estimation accuracy based

on the piecewise derivative and local derivative algorithms, as

well as the QUASAR estimator, using signals synthesized inde-

pendent of the parametric models. For clean sinusoids the local

derivative algorithm has the best parameter estimation accuracy,

but the piecewise algorithm has the best reconstruction SER. The

QUASAR estimator has similar performance to PD1 only for very

low modulation, and degrades quickly for high modulation. For

sinusoids contaminated with noise or concurrent sinusoids, the

piecewise derivative algorithm shows consistent improvement in

estimation accuracy, which we attribute to long-term modelling

and the reduction of the number of parameters. Notably, these

improvements are achieved with half the computation cost of the

local derivative method, making the piecewise version even more

favourable.

Although we have treated the non-iterative and iterative es-

timators as mutually exclusive in the experiments, in reality they

are not. A good non-iterative method, such as the piecewise de-

rivative algorithm, can help provide an iterative algorithm an ini-

tial estimate close to global optimum, therefore relieves the latter

of such potential disadvantages as heavy computation and con-

vergence at local optimum.

6. REAL-WORLD EXAMPLE

In this section we provide a real-world audio example using the

two derivative algorithms to estimate frequencies and frequency

slopes of sinusoidal partials.

We run the local and piecewise derivative algorithms on a

pure vocal recording of a soprano singing /a:/. The spectrogram

of the three lowest partials is given in Figure 5(a). We use linear

frequency for the local derivative algorithm and linear spline fre-

quency for the piecewise derivative algorithm.

For the three lowest partials we draw the frequency results in

Figures 5(b) and 5(c). The local derivative algorithm estimates

the frequency over individual frames as short line segments, each

covering the duration of 2T. The piecewise derivative algorithm

estimates it over the whole duration as a linear spline. While no

S
E

R
(d

B
)

SNR (dB)
(a)

E
f

SNR (dB)
(b)

E
a

SNR (dB)
(c)

S
E

R
(d

B
)

B (bins)
(a)

E
f

B (bins)
(b)

E
a

B (bins)
(c)

Proceedings of the 19th International Conference on Digital Audio Effects (DAFx-16), Brno, Czech Republic, September 5–9, 2016

 DAFX-261

frequency ground truth is available for real-world recordings, the

disagreement of local estimates from adjacent frames provides an

indication of the accuracy of the local derivative algorithm, while

the smoothness of the frequency trajectories provides an indica-

tion of that of the piecewise algorithm. For the clean vocal signal

both algorithms provide good frequency estimates.

Figures 5(d) and 5(e) shows the results when 0dB white

noise is added to the signal. In the presence of this noise only the

strongest fundamental partial retains good estimates. For the

weaker partials both algorithms suffer performance loss. Alt-

hough the drawings of Figs. 5(d) and 5(e) are not directly compa-

rable, 5(e) does show more stable frequency slope than 5(d), in

which the frequency slope errors are large enough to turn local

frequency trajectories into near-vertical spikes. Since the piece-

wise algorithm relies on a global signal model, it is reasonable to

expect higher noise tolerance, because the global constraints help

to reduce the number of free parameters and prevent overfitting

to local noise sources.

Figure 5 . Local and piecewise frequency estimation of vocal /a:/

7. CONCLUSION

In this paper we have discussed the theory and implementation of

a piecewise derivative algorithm, which approximates a slowly

varying complex sinusoid as a spline exponential function. This

algorithm is based on the recently developed distributive deriva-

tive algorithm, currently the state-of-the-art for non-stationary

sinusoid estimation on short intervals. By adapting the derivative

approach to piecewise models, we are able to estimate time-

varying sinusoids of flexible length. The algorithm is simple,

non-iterative, and more robust against noise than the (local) dis-

tributive derivative algorithm.

Apart from as the analyser of a sinusoidal modelling system,

the proposed estimator may find applications wherever observa-

tion of sinusoidal parameters at a sequence of frames is required.

For example, musicologists are interested in accurate tracing of

vocal and instrumental vibratos and tremolos. In the frequency

sweep test popular with audio, the proposed algorithm will allow

faster sweep rate (since it does not assume stationarity) and will

automatically return the result as a spline function.

The piecewise derivative algorithm has no source separation

capacity, therefore does not solve the more difficult problem of

estimating sinusoids overlapping other sinusoids or noise in both

time and frequency. However, our tests show that the piecewise

algorithm is less susceptible to concurrent sinusoids and noise

than the local derivative algorithm.

Although we have focused our discussions on the spline ex-

ponential model, the piecewise derivative algorithm is also appli-

cable to other linear piecewise parameterizations of the complex

exponent, as long as they are compliant to (16).

8. ACKNOWLEDGEMENT

Part of this work was finished when the author was with Queen

Mary, University of London and Professor Mark Sandler, with

support from the Centre for Digital Music platform grant.

9. REFERENCES

[1] R.J. McAulay and T.F. Quatieri, “Speech analysis/synthesis based

on a sinusoidal representation,” IEEE Transactions on Acoustics,

Speech, and Signal Processing, vol.34, no.4, 1986, pp.744-754.

[2] X. Serra, “Musical sound modeling with sinusoids plus noise,” Mu-

sical Signal Processing, Swets & Zeitlinger Publishers, 1997,

pp.91-122.

[3] Wen X. and M. Sandler, “On the characterization of slowly varying

sinusoids,” EURASIP Journal on Audio, Speech and Music Pro-

cessing, vol. 2010, article 941732, 7 pages.

[4] F. Keiler and S. Marchand, “Survey on extraction of sinusoids in

stationary sounds,” in Proc.5th International Conference on Digital

Audio Effects (DAFx), Hamburg, 2002.

[5] P. Masri and N. Canagarajah, “Extracting more detail from the

spectrum with phase distortion analysis,” in Proc. 1st COST-G6

Workshop on Digital Audio Effects (DAFx), Barcelona, 1998.

[6] A. Röbel, “Frequency slope estimation and its application for non-

stationary sinusoidal parameter estimation,” in Proc. 10th Interna-

tional Conference on Digital Audio Effects (DAFx), Bordeaux,

2007.

[7] M. Abe and J. O. Smith III, “AM/FM rate estimation for time-

varying sinusoidal modeling,” in Proc. International Conference

on Acoustics, Speech, and Signal Processing, Philadelphia, 2005.

[8] Wen X. and M. Sandler, “Notes on model-based non-stationary

sinusoid estimation using derivatives,” in Proc. 12th International

Conference on Digital Audio Effects (DAFx), Como, 2009.

[9] M. Betser, “Sinusoidal polynomial parameter estimation using the

distribution derivative,” IEEE Transactions on Signal Processing,

vol.57 no.12, 2009.

[10] S. Muševič and J. Bonada, “Distribution derivative method for

generalized sinusoid with complex amplitude modulation,” in Proc.

18th International Conference on Digital Audio Effects (DAFx),

Trondheim, 2015.

[11] Y. Ding and X. Qian, “Processing of musical tones using a com-

bined quadratic polynomial-phase sinusoid and residual (QUASAR)

signal model,” Journal of the Audio Engineering Society, vol.45,

no.7/8, 1997.

[12] A. Röbel, “Adaptive additive modeling with continuous parameter

trajectories,” IEEE Transactions on Audio, Speech, and Language

Processing, vol.14 no.4, 2006.

[13] M. Desainte-Catherine and S. Marchand, “High-precision Fourier

analysis of sounds using signal derivatives,” Journal of the Audio

Engineering Society, vol.48 no.7/8, 2000.

[14] S. Marchand and P. Depalle, “Generalization of the derivative

analysis method to non-stationary sinusoidal modeling,” in Proc.

(a) spectrogram

(b) local estimation, clean (c) piecewise estimation, clean

(d) local estimation, noisy (e) piecewise estimation, noisy

Proceedings of the 19th International Conference on Digital Audio Effects (DAFx-16), Brno, Czech Republic, September 5–9, 2016

 DAFX-262

11th International Conference on Digital Audio Effects (DAFx),

Espoo, 2008.

[15] M. Abe and J. O. Smith, “Design criteria for simple sinusoidal pa-

rameter estimation based on quadratic interpolation of FFT magni-

tude peaks,” in Proc. AES 117th Convention, San Francisco, 2004.

10. APPENDIX: PIECEWISE MATRIX FORMULATIONS

OF LINEAR, QUADRATIC AND CUBIC SPLINES

We denote a spline by x(t) and its samples at the knot points by

x=(x0, …, xL)
 T

, xl=x(lT), l. The linear interpolative formulation

expresses x(t) as linear functions of x0, …, xL. Accordingly, the

polynomial coefficients over [lT,lT+T), i.e. λl, can be given as a

linear transformation of x:

λl=Alx, l. (A1)

10.1. Linear spline

A linear spline is specified by









.,,0,)(

,1,,0,0,)(0,1,

LlxlTx

LlTtttlTx

l

ll




 (A2)

It has the closed-form expression

TtxTtxtlTx ll /)/1()(1  
. (A3)

For this spline type we can immediately write























 )1(22

1

/1/1
lLll

TT
00A . (A4)

10.2. Quadratic spline

A quadratic spline is specified by















 .1,,1),()(

,,,0,)(

,1,,0,0,)(0,1,

2

2,

LllTxlTx

LlxlTx

LlTttttlTx

l

lll







 (A5)

The standard approach for quadratic spline interpolation com-

putes the polynomial coefficients from an intermediate vector

z=(z0, …, zL-1)
T
, zl= ly , by






























































1

22

0,

1,

2,

01

00

/1/1

0

1

/1

l

l

l

l

l

l

x

x
TT

z

T







 (A6)

or

λl=(03×l AZ 03×(L−l−1))z + (03×l AC 03×(L−l−1))x , (A7)

where AZ and AC replace the two matrices in (A6) for briefness. z

is related to x by the linear system

.

011

0

011

011

2

11

11

11

xz

















































 T
 (A8)

Eq.(A8) is underdetermined by one equation. We introduce an

additional constraint by minimizing the square norm of the

spline’s derivative, i.e.

  


















 





1

0

2

2

112

0

2)(
42

3
)(

L

l

llll

ll

LT

T

xx

T

xx
zz

T
dttxI . (A9)

We call the specific quadratic spline that minimizes (A9) the

minimal-variation quadratic spline. Let dI/dz=0, we get a new

linear equation

0)1()1(2)1(
1

1

0

1

0

 








L

L
L

l

l

l
L

l

l

l xxxzT . (A10)

Eq.(A10) pads up the matrix on the left of (A8) to L×L and the

on the right to L×(L+1), after which (A8) takes the form

MLz=MRx, ML being square and invertible. Substituting

z=ML
−1MRx into (A7) we get

λl=((03×l AZ 03×(L−l−1))ML
−1MR + (03×l AC 03×(L−l−1)))x . (A11)

This gives the formulation of Al in (A1) as

Al=(03×l AZ 03×(L−l−1))ML
−1MR + (03×l AC 03×(L−l−1)). (A12)

10.3. Cubic spline

A cubic spline is specified by















 .1,,1),()(),()(

,,,0,)(

,1,,0,0,)(0,1,

2

2,

3

3,

LllTxlTxlTxlTx

LlxlTx

LlTtttttlTx

l

llll







 (A13)

The standard approach for cubic spline interpolation computes

the polynomial coefficients from an intermediate vector z=(z0,…,

zL)
T
, zl= ly  , by



























































































 11

0,

1,

2,

3,

01

/1/1

00

00

00

6/3/

02/1

6/16/1

l

l

l

l

l

l

l

l

x

x

TTz

z

TT

TT









 (A14)

or

   x0A0z0A0λ)1(4C4)1(4Z4   lLllLll
 (A15)

where AZ and AC replace the two matrices in (A14) for briefness.

z is related to x by the linear system

.

121

121

121

6

141

141

141

2
xz

















































 T

 (A16)

This is an underdetermined system. Two more constraints are

needed to uniquely specify z from x. The constraints typically

concern the behaviour of z near 0 and L, referred to as the

boundary mode, e.g.

a) natural mode: z0=zL=0;

b) quadratic run-out mode: z0=z1, zL=zL-1;

c) cubic run-out mode: z0=2z1-z2, zL=2zL-1-zL-2.

Whichever mode we choose, the constraints pad up the matrices

on both sides of (A16) to (L+1)×(L+1), after which (A16) takes

the form MLz=MRx, ML being invertible. Substituting

z=ML
−1MRx into (A15) we get

λl=((04×l AZ 04×(L−l−1))ML
−1MR + (04×l AC 04×(L−l−1)))x. (A17)

This gives the formulation of Al in (A1) as

Al=(04×l AZ 04×(L−l−1))ML
−1MR + (04×l AC 04×(L−l−1)). (A18)

https://ccrma.stanford.edu/~jos/mdft/Sinusoids.html
https://ccrma.stanford.edu/~jos/parshl/Peak_Detection_Steps_3.html#sec:peakdet
https://ccrma.stanford.edu/~jos/mdft/Fast_Fourier_Transform_FFT.html

