
16

19th International Conference
on Digital Audio Effects

Brno, Czech Republic
September 5–9, 2016

http://dafx16.vutbr.cz



Proceedings published by:
Brno University of Technology
The Faculty of Electrical Engineering and Communication

Credits:
Proceedings edited, produced and cover designed by
Pavel Rajmic, František Rund, and Jiří Schimmel
DAFx-16 logotype by Adéla Geislerová

ISSN 2413-6700 (Print)
ISSN 2413-6689 (Online)

www.dafx16.vutbr.cz
www.dafx.de

All rights reserved.
All copyrights of the individual papers remain with their respective authors.



Welcome to DAFx-16 !

It is our great pleasure to welcome you to Brno to the 19th International Conference on
Digital Audio Effects held from Monday September 5 to Thursday September 8, 2016.

The local DAFx community in Brno, Czech Republic was established in 1997 when
the Brno University of Technology joined the European research project for co-operation
and scientific transfer EU-COST-G6 “Digital Audio Effects”. Since that time, we had great
opportunities to meet people from the DAFx community around the world at DAFx con-
ferences. In 2011, together with other colleagues from the university, we founded the Signal
Processing Laboratory that includes an acoustic signal processing group. One of our chal-
lenges is to build and equip the laboratories for R&D in the area of audio signal processing
and to attract more students to the fields of digital audio effects, sound analysis and syn-
thesis, and acoustics. Our great success was the launch of a new, interdisciplinary bachelor
study programme in Audio Engineering in 2013 and of a master study programme in 2016,
together with the Janáček Academy of Music and Performing Arts in Brno. We are deeply
honored of having the opportunity to host DAFx-16 at our institution.

DAFx-16 offers a scientific program intermingled with a concert and social events. The
first day of the conference consists of three tutorials. The first tutorial and musical demon-
stration given by Václav Peloušek and Lennart Schierling is on the instrument design at
the Bastl Instruments company. The second tutorial given by Jaromír Mačák offers an
overview of basic techniques used in real-time virtual analog modeling. The third tutorial
given by Jukka Pätynen and Sakari Tervo from the Aalto University School of Science is
on the latest advances in investigating the spatial, spectral, and temporal structure of the
acoustics of enclosures with visual techniques.

The DAFx program will also feature three distinguished speakers who will give their
keynote speeches on Tuesday, Wednesday, and Thursday. The first keynote speech given by
Doz. Dr. Peter Balazs from the Acoustics Research Institute in Vienna is focused on aspects
of short-time audio signal analysis and synthesis, and a number of interesting questions will
be answered using the general theory of frames, with applications to audio signal processing.
The second keynote speech given by Michael Hlatky will provide an insight into how the
people working in Native Instruments design the hardware, develop the software, decide
upon features, and what lessons they learned in more than 20 years after NI introduced the
first modular synthesizer for a desktop computer environment. The third keynote speech
given by D. Sc. Sakari Tervo from the Aalto University School of Science is on an approach
to the analysis and synthesis of the sound field measured with a microphone array via
parametric models.

The proceedings contain complete manuscripts of all peer-reviewed papers presented
at the conference. Each of the 56 submitted papers was evaluated by 3 to 6 reviewers,
and finally, 43 contributions were selected for presentation from Tuesday to Thursday:
29 oral presentations and 14 poster presentations. The oral presentations are organized in
8 sessions, covering topics such as time-frequency representation of audio signals, virtual
analog, sound synthesis, physical modeling, audio and music analysis, wave digital filters,
and spatial audio. The posters are not organized into topics to favor exchanges between
scientists of the same field of research. There are seven poster presentations both on Tuesday
and Wednesday, including two short announcement sessions in the auditorium.



Besides the scientific program, social events will be held during the evenings. The
welcome reception on Monday evening will take place in the Mechanic Music Parlor of the
Technical Museum in Brno. The reception will include a guided tour of the exposition
and the presentation of musical instruments. The DAFx concert will be held on Tuesday
evening at the Orlí Street Theatre, a new theatre venue of the Janáček Academy of Music
and Performing Arts in Brno. Before the concert, a short guided tour to the Brno city
centre will be organized. The social program will be concluded with a conference dinner on
Wednesday at the winery “U Kapličky” surrounded with wine yards, south from Brno.

We would like to thank all the people that helped us make this year’s conference hap-
pen, including the local organization team, all the reviewers from the DAFx-16 program
committee and the DAFx board members. Warm thanks go to the organizers of DAFx-14
and DAFx-15, who were very helpful by sharing their experience. Special thanks go to
the DAFx annual sponsors – Native Instruments GmbH, Soundtoys Inc., Ableton AG, and
iZotope, Inc., and to this year’s new sponsors – Steinberg Media Technologies GmbH and
AVT Group a.s. We would also like to thank the supporting institutions – Brno University
of Technology, Applied Sciences Open Access Journal, Technical Museum in Brno, Orlí
Street Theatre, and Moravia Convention Bureau. But most of all we would like to thank
the DAFx community who makes these conferences possible by contributing great scientific
work and enlightened discussions whenever we meet. The biggest acknowledgment therefore
goes to you, the authors, researchers and participants of this conference.

The DAFx-16 conference committee
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Keynotes
Peter Balazs: Frames in audio processing: What you use, but might not know
Given a certain number of sampling points, can it be useful to represent them with a
larger collection of points/values? If not, why are spectrograms usually using overlapping
windows? Given a particular analysis filter bank, when and how can a synthesis procedure
be found that enables perfect reconstruction? What are the conditions for that? Is a
quadrature-mirror condition the only way? How can a time-varying filter be implemented
by directly manipulating the time-frequency coefficients? What properties do such time-
frequency filters have? All those (and similar) questions will be answered by using the
theory of frames and its application to audio signal processing.

Michael Hlatky: Design at Native Instruments
Since Native Instruments introduced Generator, the first modular synthesizer for a desktop
computer environment more 20 years ago, the company has released a large variety of
hardware and software to perform and produce music. This talk will give an insight into
how we—the people working at NI—design the hardware, develop the software, decide upon
features and what lessons we learned.

Sakari Tervo: Parametric Spatial Room Impulse Response Analysis and Syn-
thesis: A High-Resolution Approach
The analysis of room acoustics is of great interest in subjective and objective studies of
acoustic spaces. Often, the goal in room acoustic studies is to explain the subjective expe-
rience of sound, for example, speech clarity or bassiness, with the objective measurements
of the sound field. In order to describe a sound field spatially, a microphone array im-
pulse response measurement is required. This keynote lecture presents an approach to the
analysis and synthesis of the sound field measured with a microphone array via parametric
models. Estimation methods of the parameters in the model, and the detection of which
model fits the data the best are described. Pros and cons of the parametric approach are
discussed and examples with some commercially available microphone arrays are described.

DAFX-1



Tutorials
Jaromír Mačák: Analog effects modeling—new ways to get old sounds
The term virtual analog effects has been known in digital audio effects community for several
years. But until recently, this type of audio effects have been accepted by a wider range of
musicians and end users as adequate equivalent to classic analog audio effects. This is due
to a significant improvement of the methods and algorithms for real-time digital simulation
of analog circuits. This tutorial will give an overview of basic techniques used in virtual
analog modeling based either on deep analysis of the circuit schematic or measurement
of analog audio effect. Pros and cons of both approaches will be mentioned as well as
real examples using these techniques with attention for real-time implementation of these
algorithms.

Jukka Pätynen & Sakari Tervo: Detailed Analysis of Room Acoustics by Spatio-
temporal Methods
The analysis of sound fields in rooms has been under interest for a long time. Many
traditional methods aim to describe the room-acoustic effect in terms of single number
values. However, numeric parameters often fail in communicating the multi-dimensional ef-
fects. The introduction of compact microphone arrays have enabled an increasingly detailed
analysis of the sound field. This tutorial will present the latest advances in investigating
the spatial, spectral, and temporal structure of the acoustics of enclosures with visual tech-
niques. These methods are demonstrated with a recently published, freely available analysis
toolbox.

Václav Peloušek & Lennart Schierling: Instrument Design Upside Down with
Bastl Instruments
Emulating inherently digital artefacts with analog technology? Sounds created by running
sound processing on processors virtually unable to render them? This Bastl [local term for
hack] mindset as a design approach for musical instruments and tools has been the key for
Bastl Instruments main developer Václav Peloušek to creating a range of desktop hardware
instruments and eurorack modules. Analog and digital circuits running at the edge of
collapse to work in harmony as part of digital-analog-mechanical hybrid systems. Lennart
Schierling is the main developer of Thyme—robot operated digital tape machine—very
universal sequencable hardware DSP processing unit to be released soon by Bastl.
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REAL-TIME AUDIO VISUALIZATION WITH REASSIGNED NON-UNIFORM FILTER
BANKS

Zdenek Prusa, Nicki Holighaus∗

Acoustics Research Institute,

Austrian Academy of Sciences

Vienna, Austria

{zdenek.prusa,nicki.holighaus}@oeaw.ac.at

ABSTRACT

Filter banks, both uniform and non-uniform, are widely used for

signal analysis and processing. However, the application of a time-

frequency localized filter inevitably causes some amount of spec-

tral and temporal leakage that, simultaneously, cannot be arbitrar-

ily reduced. Reassignment is a classical procedure to eliminate

this leakage in short-time Fourier spectrograms, thereby provid-

ing a sharper, more exact time-frequency domain signal represen-

tation. The reassignment technique was recently generalized to

general filter banks, opening new possibilities for its application

in signal analysis and processing. We present here the very first

implementation of filter bank reassignment in a real-time analysis

setting, more specifically as visualization in a basic audio player

application. The visualization provides a low delay moving spec-

trogram with respect to virtually any time-frequency filter bank by

interfacing the C backend of the LTFAT open-source toolbox for

time-frequency processing. Low delay is achieved by blockwise

processing, implemented with the JUCE C++ Library.

1. INTRODUCTION

Time-frequency representations, be it in the form of the short-time

Fourier transform (STFT) [1, 2], windowed MDCT [3] or (non-

uniform) filter banks [4, 5], are crucial tools for many signal anal-

ysis and processing applications. In particular, their squared mag-

nitude, the spectrogram is frequently used to determine the local

frequency content of an analyzed signal. The filtering process,

by convolution with a time- and frequency-localized filter, intro-

duces spectral and temporal leakage in the representation. In other

words, a perfectly frequency-(time-)localized signal will be rep-

resented with a certain spread over several frequency bands (time

positions), depending on the filter shape. This smoothing effect is

subject to Heisenberg’s uncertainty inequality and thus cannot be

arbitrarily reduced.

In an attempt to overcome this smoothing effect, various al-

ternative time-frequency representations have been proposed. The

quadratic time-frequency representations in Cohen’s class [6, 7],

for example, are given by the Wigner-Ville distribution (WVD) [8,

9] convolved with a smoothing kernel. While the spectrogram suf-

fers from a large amount of smoothing, the WVD produces un-

desirable interference terms. Cohen’s class representations allow

the choice of a kernel that places them somewhere between these

two extrema. Consequently, representations of this kind are often

∗ This work was supported by the Austrian Science Fund (FWF)
START-project FLAME (“Frames and Linear Operators for Acoustical
Modeling and Parameter Estimation”; Y 551-N13).

designed with a certain trade-off between smoothing and interfer-

ence attenuation in mind, e.g. the smoothed pseudo WVD [10] and

Born-Jordan distributions.

Non-uniform filter banks can to some degree compensate for

the leakage problem by varying the filter shape along frequency,

and thereby attempting to locally choose a time-frequency leakage

trade-off that least obscures important signal features. This can be

achieved either by following a fixed rule or in a signal-dependent

fashion. In particular, wavelet filter banks [11, 12] can be con-

structed through a dilation rule.

Similary, variation along time leads to nonstationary Gabor

transforms [13, 14]. Joint time-frequency adaptation provides ad-

ditional flexibility and has been studied e.g. in [15, 16]. All these

methods have in common with the filter bank setting, that they do

not reduce the smoothing effect overall, but instead try to select

locally a good trade-off between time and frequency smoothing,

adapted to signal characteristics.

In contrast, the reassignment method, introduced by Kodera

et al. [17] and extended by Auger and Flandrin [18, 19], attempts

the deconvolution of the short-time Fourier spectrogram. This is

achieved by obtaining instantaneous frequency and group delay

estimates from the partial derivatives of the phase of the STFT,

which are subsequently applied to reassign time-frequency energy

to its supposed point of origin, resulting in a considerably sharp-

ened time-frequency representation without unnecessary interfer-

ence. In [18], the authors also proposed an efficient means of

obtaining the partial phase derivatives, which was recently used

to extend the reassignment method to general non-uniform filter

banks [20]. The combination of non-uniform filter banks and the

reassignment method facilitates the design of highly efficient time-

frequency representations with excellent concentration. Therefore,

they can be of great use in audio signal analysis, visualization and

processing alike.

In this contribution, we recall the results from [20] and present

the first real-time capable implementation of reassigned filter banks

in the form of low delay audio visualization integrated into a ba-

sic audio player. The audio player and visualization software rely

on the open-source Large Time-Frequency Analysis Toolbox (LT-

FAT)1, specifically on its C backend, and the JUCE C++ Library2.

Organization of the paper: The next section recalls the the-

oretical background behind the reassignment method for general

filter banks. In particular, we show how to efficiently obtain the

reassigned filter bank representation from the original filter bank

coefficients by means of two additional filter bank analyses, specif-

ically designed for the task. Section 2.2 recalls the derivation of the

1http://ltfat.github.io
2http://www.juce.com

DAFX-3

http://www.kfs.oeaw.ac.at
mailto:zdenek.prusa@oeaw.ac.at
mailto:nicki.holighaus@oeaw.ac.at
http://ltfat.github.io
http://www.juce.com


Proceedings of the 19th International Conference on Digital Audio Effects (DAFx-16), Brno, Czech Republic, September 5–9, 2016

general reassignment operators from the short-time Fourier case.

Section 3 describes the user experience and functionality of the

player during runtime, while Section 4 provides some technical in-

formation about the implementation. Finally, the manuscript con-

cludes with a short discussion of possible future work.

2. PRELIMINARIES

Although the previous publications on reassignment were devel-

oped for continuous time signals, see references in Section 1, we

will present the theory for finite energy sequences f ∈ ℓ2(Z) to

reflect the actual implementation. We denote the DTFT of f as

f̂(ω) =
∑

l∈Z
f(l)e−2πiωl and the set of nonnegative integers

strictly smaller than K > 0 by ZK .

For a signal f ∈ ℓ2(Z), its STFT with respect to the window

g ∈ ℓ2(Z) is given by

Vgf(x, ω) = 〈f, gx,ω〉

=
√

Sgf(x, ω)e
2πiφ(x,ω),

(1)

where gx,ω[l] = e2πiω(l−x)g[l − x], Sgf = |Vgf |
2 is the

spectrogram and φ : Z× T → R is the phase of the STFT.

Let g = {gk ∈ ℓ2(Z)}k∈ZK
, a = {ak ∈ N}k∈ZK

a se-

quence of functions and decimation factors, respectively. We call

the system
{
gk[nak − ·]

}
n,k∈Z

a (analysis) filter bank (FB). The

associated K-channel filter bank analysis is given by

cn,k := cf [n, k] := 〈f, gk[nak − ·]〉. (2)

A filter bank forms a frame, if there are constants 0 < A ≤
B < ∞, such that A‖f‖22 ≤ ‖c‖2 ≤ B‖f‖22, for all f ∈ ℓ2(Z).
The frame property guarantees the stable invertibility of the coef-

ficient mapping by means of a dual frame {g̃n,k}n∈Z,k∈ZK
, i.e.

f =
∑

n,k

cn,k g̃n,k, for all f ∈ ℓ2(Z). (3)

2.1. Reassignment for filter banks

In [20] we show that reassignment can be applied to time-frequency

FBs. For that purpose denote by ωk the center frequency3 of gk.

Define

gTk [l] := lgk[l], g
F
k := e2πiωkl(e−2πiωklgk)

′, (4)

for all l ∈ Z, k ∈ ZK . Here f ′ denotes any suitable discrete

derivative of f . We can write

cTf [n, k] = 〈f, gTk [nak − ·]〉, cFf [n, k] = 〈f, gFk [nak − ·]〉. (5)

Moreover, we obtain the estimated true time position in samples

x0(nak, ωk) = nak + Re
(
cTf [n, k]/cf [n, k]

)
, (6)

whenever cf [n, k] 6= 0 and similarly the estimated true normalized

frequency position

ω0(nak, ωk) = ωk − Im
(
cFf [n, k]/cf [n, k]

)
. (7)

3For the reassignment procedure to make sense, we assume that gk is
well-localized around time 0 and ĝk is well-localized around frequency
ωk with ωj < ωk if j < k and that the points ωk , k ∈ ZK are well-
distributed on the torus.

We might prefer the reassigned representation to be defined on

the sampling points (nak, ωk). This leads to the reassigned filter

bank (RFB) defined as

cRf [n, k] :=
∑

(m,l)∈Ln,k

|cf [m, l]|2, (8)

where

Ln,k := {(m, l) ∈ Z
2 : (n0[m, l],k0[m, l]) = (n, k)}, (9)

and

k0[m, l] := arg min
k∈ZK

|ωk − ω0(lak, ωk)| and (10)

n0[m, l] :=

⌊
x0(lak, xk)

ak0(m,l)

⌉
. (11)

Note that in this setup, frequency reassignment has priority over

time reassignment.

2.2. Derivation of the reassignment operators

The reassignment operators for the filter bank case are in fact eas-

ily derived from known expressions for the reassignment operators

for the short-time Fourier transform. To see that, consider a func-

tion g ∈ ℓ2(Z), well-localized around x ∈ Z with its Fourier

transform ĝ well-localized around ω ∈ T. Then

g̃[l] := e−2πiωlg[l + x] (12)

is well-localized around 0 in time and frequency and we have

Vg̃f(x, ω) = 〈f, g̃x,ω〉 = 〈f, g〉. (13)

For the short-time Fourier transform Vg̃f , the reassignment oper-

ators are derived from the instantaneous frequency and group de-

lay and defined as x0(x,ω) = x − ∂
∂ω

φ(x,ω) and ω0(x,ω) =
∂
∂x

φ(x,ω), where φ is the phase of Vg̃f as in Eq. (1). In contrast

to the continuous case f, g ∈ L
2(R) usually present in the litera-

ture, the derivative ∂
∂x

over x ∈ Z depends on a chosen conven-

tion for discrete derivatives. In practice however, different discrete

derivatives provide similar reassignment results.

Auger and Flandrin [18] have shown that the reassignment op-

erators can be expressed as the pointwise product of the STFTs

with respect to 3 window functions, depending on the window g̃
and this is true for the discrete signals as well. We obtain:

x0(x, ω) = x+ Re (Vg̃T f(x, ω)/Vg̃f(x, ω))

= x+ Re

(
Vg̃T f(x, ω)Vg̃f(x,ω)

Sg̃f(x, ω)

)
(14)

and

ω0(x,ω) = ω − Im (Vg̃′f(x, ω)/Vg̃f(x, ω))

= ω − Im

(
Vg̃′f(x, ω)Vg̃f(x, ω)

Sg̃f(x, ω)

)
,

(15)

whenever Sg̃f(x, ω) 6= 0 and 0 else. Here, g̃′[l] = ∂
∂l
g̃[l] is the

discrete derivative and g̃T [l] := lg̃[l] is a time weighted version of

g̃.

Note that differentiation is a translation-invariant operator and

time weighting is invariant under modulation, i.e. multiplication
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with e2πiξl for ξ ∈ T. Therefore, with gT [l] := [l − x]g[l] and

gF (t) := e2πiωl(e−2πiωlg)′[l], we obtain

Vg̃T f(x, ω) = 〈f, gT 〉, and Vg̃′f(x, ω) = 〈f, gF 〉. (16)

Given a filter bank or continuous filter bank, simply set g = gk[−·]
to obtain Eqs. (6) and (7).

2.3. Filter bank choice

The reassignment method works optimally, only if the chosen filter

bank is already able to provide some (phase space/time-frequency)

separation of the individual signal components. Although RM is

able to improve the separation, and localization, of time-freuqency

components, if this is not the case, there are clear limits to this.

If, for example, a coefficient cf [n, k] contains equal amounts of

energy from two signal components centered at frequencies ω1 6=
ω2, then it cannot be expected that the estimated true frequency

position ω0(nak, ωk) provides a meaningful value. In practice,

it will usually point at some frequency in [ω1, ω2], at least not

degrading localization.

Consequently, RM can only provide optimal performance when

combined with a filter bank that is adapted to the signal class at

hand. In the setting of complex audio signals, this usually requires

good frequency localization in a band of low frequencies and, for

increasing frequency, a gradual increase localization in time res-

olution. Therefore, filter banks adapted to perceptually-motivated

frequency scales such as Bark, ERB or Mel [21, 22, 23, 24], or

constant-Q filter banks [25, 26, 27, 28], can be expected to per-

form well.

3. DESCRIPTION OF THE AUDIO PLAYER AND

VISUALIZATION

The main purpose of the proposed audio player application is to

provide a body and interface for the visualization of audio content

by means of a low delay spectro-temporal filter bank represen-

tation, with emphasis on reassigned filter banks. Nonetheless, it

provides most functionality expected of a basic audio player such

as playback control (play, pause, stop), loading several files into a

playlist, switching between tracks in the list and automatic looping

of the full playlist or single tracks. The basic interface, consisting

of the toolbar below the moving spectrogram in the main player

window, as well as the playlist window, should be familiar to any-

one that has used one of the countless media players available. For

an illustration and detailed explanation, see Figures 1 and 2.

In addition to the files in the playlist, the player provides a

temporary slot for loading a single file without adding it to the list.

This is done by selecting Open File → Load Audio file from the

top menu bar.

Audio devices can be selected through Options → Audio Set-

tings. If an input source is selected, the source selector allows

on-the-fly switching between file playback and the input source.

The main features, however, are the ability to switch between

the original and reassigned filter bank representations by the press

of the reassignment toggle and loading of alternative analysis fil-

ter banks during runtime, through the load filter bank button, see

Figure 1. The filterbanks can be generated using LTFAT in MAT-

LAB/GNU Octave and exported in a binary format using script

write_filterbank_bin.m included in the plugin source code

archive, see Section 4. The binary file contains the generated fil-

terbank gk, ak together with gTk and gFk for k = 0, . . . ,K − 1

Figure 1: Screenshot of the audio player interface, showing (left)

the non-reassigned spectrogram and the reassigned spectrogram

(right). The main player window performs the usual playback con-

trol tasks through the 5 playback control buttons. The loop toggle

can be used to choose between (not) looping the playlist or looping

the current track. The source selector switches between file input

(default) and input through the JACK input stream (only available

if JACK is selected in the audio settings). On-the-fly toggling be-

tween the standard and reassigned spectrogram is enabled by the

reassignment toggle, while the last two buttons allow loading an

alternative filter bank exported from MATLAB through the pro-

vided write_filterbank_bin.m and showing the playlist.

for a fixed buffer length. Currently, LTFAT contains the following

band-limited perfect-reconstruction filterbank generating routines:

• erbfilters – Equivalent rectangular bandwidth filter-

bank [23, 24]

• cqtfilters – Constant-Q filterbank [27]

• warpedfilters – General frequency warped filterbanks

[29]

• audfilters – Band-limited filters adapted to auditory

scales [24]

Custom filterbanks can be used provided they conform to LTFAT

filterbank format.

Finally, the dynamic range of the spectrogram visualization

can be varied by a slider, available on right-clicking the spectro-

gram element, see Figure 3.

4. TECHNICAL BACKGROUND OF THE

IMPLEMENTATION

Although the reassignment procedure was defined for general fil-

terbanks, in our contribution, we use band-limited filterbanks with

possibly rational subsampling rates (that is non-integer ak) which
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Figure 2: Screenshot of the playlist element. The playlist body

shows all the loaded files, with the currently played file highlighted

in blue. Individual items can be selected by a single click on the

entry. Multiple entries are selected by additionally pressing the

Ctrl or Shift buttons, similar to standard window manager behav-

ior. Double-clicking starts playback of the clicked file, while the +
and − buttons on the bottom of the window allow for adding files

to the playlist or removing them. If the playlist is closed, pressing

the playlist button in the main window makes it reappear.

enables an efficient implementation. More precisely, for the fil-

tering, we follow the computational framework from [28] (using

the phase convention introduced later in [30]) which was derived

for constant-Q transform, but it applies to general band-limited

filterbanks as well. By default, we use ERBlets [24] with 510 fil-

ters with rational subsampling rates and buffer length L = 4096
samples. The decimation factors are chosen to provide the least

redundant, perfect reconstruction system with no aliasing in the

subbands, given the fixed ERBlet filters. The frequency responses

are shown in Fig. 4.

4.1. Dependencies

The player was implemented using the C++ library JUCE [31]

(version 4.1.0), the implementation of the filterbank and the re-

assignment was linked from the C backend library4 of LTFAT [32]

which in turn uses FFTW library (version 3.3.4) [33] for the FFT

calculations.

All involved libraries are licensed under GPL, therefore our

program is licensed under terms of GPLv3 and its source codes

are freely available5.

The program was primarily developed on Linux, but it also

compiles and runs on Windows. The interested reader can find the

Introjucer project template included with the source code.

4http://github.com/ltfat/libltfat
5http://ltfat.github.io/related/reassignment

Figure 3: The dynamic range of the moving spectrogram can be

conveniently modified through the use of the dynamic range slider

appearing on right-click on the spectrogram.

4.2. Implementation

The input stream of audio data blocks is rebuffered according to

the filterbank buffer length L with half buffer length overlap. For

that purpose we employ a lock-free circular buffer. On the audio

thread, the data is only written to it as they arrive. The circular

buffer is repeatedly polled for new data in regular intervals (1/60 s

in our implementation) by a separate thread. When available, L
samples are read to a working buffer, but the circular buffer read

index is advanced only by L/2 samples.

Next, the buffer is weighted with a Hann window such that

sum of the shifted windows equals constant 1.

Three sets of filterbank coefficient subbands are computed us-

ing the chosen filterbank gk, ak (k = 0, . . . , K − 1) and its two

derived versions6 gTk and gFk . Each filter is defined by its frequency

response being nonzero only in the range [bmin,k, bmax,k] that is for

Bk = bmax,k − bmin,k + 1 frequency bins. The bandwidth Bk is

common for all three versions of k-th filter. Each filter produces

a subband consisting of Nk = L/ak coefficients. In the follow-

ing, we always assume that there is no aliasing in the resulting

subbands; therefore Nk ≥ B and ak is allowed to be a rational

number.

Formally written, the three sets of coefficient subbands cfw,k,

cTfw ,k and cFfw,k for a single buffer are obtained as follows (in

pseudo Matlab code):

1. Load buffer f of length L.

2. fw = w. ∗ f , where w is length L Hann window.

3. Fw = FFTL(fw)

6Our implementation of gF
k

relies on the spectral derivative, i.e. the fil-
ter is obtained by multiplying the frequency response of gk with (ω−ωk),
where ωk is the center frequency of gk. As long as gk and its Fourier
transform ĝk are concentrated, we have not observed any meaningful dif-
ference in the reassignment result when substituting the spectral derivative
with any other suitable discrete derivative. The reason for us choosing this
particular convention is simply that gF

k
is obtained by the same procedure

as gT
k

, applied in the Fourier domain.
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Figure 4: Frequency responses of the default filterbank. Every fifth

filter is shown.

4. For k = 0, . . . , K − 1 do

(a) Cfw,k = Fw. ∗ gk reduced to range [bmin,k, bmax,k]

(b) Extend Cfw,k with zeros to length Nk

(c) cfw ,k = IFFTNk
(circshiftNk

(Cfw,k,−bmin,k))

5. Repeat loop 4 for gTk and for gFk to obtain cTfw ,k and cFfw ,k.

If subband aliasing is present, i.e. Nk < B for some k, then

step 4(b) needs to be modified to fold Cfw to the appropriate length

Nk , but the remainder of this section remains valid.

Before applying the reassignment procedure, we use cfw ,k,

cTfw,k and cFfw,k from the current and from the previous buffers

to approximate the corresponding true coefficients cf , c
T
f , c

F
f at

the appropriate buffer location. To achieve that, the first half of

each subband k from the current buffer is element-wise added to

the second half of the corresponding subband from the previous

buffer.

The last step is obtaining the reassigned coefficients from (8)

using the just computed approximation of cf , c
T
f , c

F
f .

The overall delay, that is the delay between the instant the cir-

cular buffer has L samples available and the instant the data actu-

ally appears on the screen, consists of several contributions. The

constant part comes from the overlapping of subbands and it is

equal to L/2 samples. Additional delay is introduced by the com-

putation itself and by the time required to repaint the screen. Sum

of these values must be less than L/2 times the sampling rate,

otherwise the program starts skipping samples. Due to the multi-

threaded nature of the program, the periodic polling of the circular

buffer introduces jitter equal to the request period.

5. CONCLUSION AND OUTLOOK

In this contribution, we discussed the application of the reassign-

ment method to general filter banks. We provided a low delay

implementation in a basic audio player that uses the reassigned

coefficients for real-time visualization.

In [20], the authors have shown that the reassigned representa-

tion can be used as an interface for time-frequency processing, by

relying on the inverse reassignment map

iR[n, k]

= {(m, l) ∈ Z× ZK : (n0[m, l], k0[m, l]) = (n, k)},

which serves as a lookup table during processing. In other words,

the user selects a time-frequency region Ω ⊂ Z × ZK in the re-

assigned spectrogram to be processed and decides on a processing

operation. That processing operation is then applied automatically

to the filter bank coefficients cf [iR[Ω]]. If the filter bank forms a

frame, then the modified coefficients can be synthesized to obtain

a processed signal.

Simple processing capabilities could be easily added to the

current audio player by providing a brush tool similar to image

processing applications. Modifications could be applied by paint-

ing over the moving spectrogram, or by pausing playback and

painting in a stationary image of the currently displayed audio

segment. By implementing a synthesis filter bank, operating in

the background, the user could switch between playback the in-

coming audio stream on the right end of the visualization and the,

possibly modified outgoing audio stream on the left end.

Instead of loading separate filter banks individually, a single

file, containing a number of filter banks to switch between on-

the-fly would make changing between representations more con-

venient. In fact, this type of functionality is already partially im-

plemented

In applications where slightly longer delay is acceptable, block

processing scheme could be modified to more closely resemble

the framework proposed in [28]. This would reduce blocking ar-

tifacts, especially when short blocks and filters with very narrow

frequency response are considered.
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ABSTRACT

In recent work, redressed warped frames have been introduced for
the analysis and synthesis of audio signals with nonuniform fre-
quency and time resolutions. In these frames, the allocation of
frequency bands or time intervals of the elements of the represen-
tation can be uniquely described by means of a warping map. In-
verse warping applied after time-frequency sampling provides the
key to reduce or eliminate dispersion of the warped frame elements
in the conjugate variable, making it possible, e.g., to construct fre-
quency warped frames with synchronous time alignment through
frequency. The redressing procedure is however exact only when
the analysis and synthesis windows have compact support in the
domain where warping is applied. This implies that frequency
warped frames cannot have compact support in the time domain.
This property is undesirable when online computation is required.
Approximations in which the time support is finite are however
possible, which lead to small reconstruction errors. In this pa-
per we study the approximation error for compactly supported fre-
quency warped analysis-synthesis elements, providing a few ex-
amples and case studies.

1. INTRODUCTION

The availability of configurable time-frequency schemes is an as-
set for sound analysis and synthesis, where the elements of the
representation can efficiently capture features of the signal. These
include features of interpretation: e.g. glissandi and vibrati; human
perception: e.g. non-uniform frequency sensitivity of the cochlea;
music theory: e.g. scales (pentatonic, 12-tone, indian scales with
unequally spaced tones, etc.); physical effects: e.g. nonharmonic
overtones in the low register of the piano or of percussion instru-
ments and so forth. When used in the context of Music Informa-
tion Retrieval, the adaptation of the representation to music scales
is bound to improve. e.g. for instrument-, note-, chord- and over-
tone detection and recognition.

Traditionally, two extreme cases have been considered: Ga-
bor expansions featuring uniform time and frequency resolutions
and orthogonal wavelet expansions and frames featuring octave
band allocation and constant uncertainty of the representation el-
ements. In previous work [1, 2, 3, 4, 5, 6, 7], generalised Gabor
frames have been constructed which allow for non-uniform time-
frequency schemes with perfect reconstruction. In [3] the alloca-
tion of generalised Gabor atoms is specified according to a fre-
quency or time warping map. In [8] the STFT redressing method

∗ Part of the research contained in this work was performed by this au-
thor while he was a Master student at Mdw, Wien, under the guidance of
Prof. Gianpaolo Evangelista

is introduced, which, with the use of additional warping in time-
frequency, shows under which conditions one can have generalised
Gabor frames. These conditions stem from the interaction of sam-
pling in time-frequency and frequency or time warping operators,
which allow to incorporate the results in [3] in a more general
context. It is shown that arbitrary allocation of the atoms is ex-
actly possible in the so called painless case, i.e. in the case of
finite time support of the windows for arbitrary time interval al-
location and of finite frequency support of the windows for arbi-
trary frequency band allocation. Non-uniform frequency analysis
by means of warping was introduced in [7]. Non-uniform Gabor
frames with constant-Q were previously introduced in [1] , based
on the theory developed in [2], where an ad hoc procedure was
employed for their construction. In [3] we provided an alterna-
tive general method for their construction, using warping. In [8]
the redressing method was introduced and applied to the general
construction of non-stationary Gabor frames. In [9] the general
theory was revisited with the real-time computational aspects in
mind. There, the first approximate schemes were introduced with-
out extensive testing.

Since online computation of the generalised Gabor analysis-
synthesis is only possible with finite duration windows, the arbi-
trary frequency band allocation does not lead to an exact solution
in applications that require real-time, while the arbitrary time inter-
val allocation presents little or no problem. In [9] approximations
leading to nearly exact representations were introduced.

In this paper we expand on the results in [9] and provide a
study of the approximation error on a wide class of signals when
finite duration windows are required in arbitrary frequency band
allocation.

The paper is organised as follows. In Section 2 we review the
concept of applying time and frequency warping to time-frequency
representations, together with the redressing method, which in-
volves a further warping operation in the time-frequency domain to
reduce or eliminate dispersion. In Section 3 we introduce approx-
imations suitable for the online computation of redressed frame
expansions. In Section 4 the results of numerical experiments are
shown, which provide estimations of the approximation error. In
Section 5 we draw our conclusions.

2. REDRESSED WARPED GABOR FRAMES

In this section we review the concepts leading to the definition
of redressing in the context of frequency warped time-frequency
representations. First we review the basic notions of STFT (Short-
Time Fourier Transform) and Gabor frames. Then we move on to
the definition of warped frames and then to the redressing proce-
dure.
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2.1. STFT and Gabor Frames

Gabor expansions can be considered as a form of sampling and ex-
act reconstruction of the STFT. As is well-known, given a window
h and defining the time-shift operator Tτs(t) = s(t− τ) and the
modulation operator Mνs(t) = ej2πνts(t), the STFT is obtained
by applying the operator S to the signal s:

[Ss] (τ, ν) = 〈s, hτ,ν〉 = 〈s,TτMνh〉 =∫ +∞

−∞
s(t)h0,0(t− τ)e−j2πν(t−τ)dt,

(1)

where the overbar denotes complex conjugation.
A Gabor system is generated by the kernel of S by sampling

the time-frequency plane (τ, ν):

G(h, a, b) = {TnaMqbh : n, q ∈ Z} (2)

where a, b > 0 are sampling parameters.
The scalar products of the signal with the members of the Ga-

bor system
〈s,TnaMqbh〉, n, q ∈ Z (3)

provide evaluations of the STFT (1) of a signal s with window
h at the time-frequency grid of points (na, qb), with n, q ∈ Z.
The question whether the signal s can be reconstructed from these
evaluations can be addressed by introducing the concept of frame.

A sequence of functions {ψl}l∈I in the Hilbert space H is
called a frame if there exist both positive constant lower and upper
bounds A and B, respectively, such that

A‖s‖2 ≤
∑
l∈I

|〈s, ψl〉|2 ≤ B‖s‖2 ∀s ∈ H, (4)

where ‖s‖2 = 〈s, s〉 is the norm square or total energy of the
signal. Frames generate signal expansions, i.e., the signal can be
perfectly reconstructed from its projections over the frame.

A Gabor system that is a frame is called a Gabor frame. In
this case, the signal can be reconstructed from the corresponding
samples of the STFT (3). While not unique, reconstruction can be
achieved with the help of a dual frame, which in turn is a Gabor
frame generated by a dual window h̃. Perfect reconstruction es-
sentially depends on the choice of the window and the sampling
grid. One can show that there exist no Gabor frames when ab > 1.
See [10] for more informations about Gabor frames.

2.2. Warped STFT and Gabor Frames

The warped STFT can be obtained by warping the signal prior
to applying the STFT operator. In this paper we focus on pure
frequency warping.

A frequency warping operator Wθ̃ is completely characterised
by a function composition operator Wθ , such that Wθx = x ◦ θ,
in the frequency domain:

Wθ̃ = F−1WθF , (5)

where F is the Fourier transform operator. The function θ is the
frequency warping map, which transforms the Fourier transform
ŝ = Fs of a signal s into the Fourier transform ŝfw = Fsfw
of another signal sfw. We affix the˜symbol over the map θ as a
reminder that the map operates in the frequency domain.

If the warping map is one-to-one and almost everywhere dif-
ferentiable then a unitary form Uθ̃ of the warping operator can be
defined by the following frequency domain action

ŝfw(ν) =
[
Ûθ̃s

]
(ν) =

√∣∣ dθ
dν

∣∣ŝ(θ(ν)), (6)

where ν denotes frequency. We assume henceforth that all warping
maps are almost everywhere increasing so that the magnitude sign
can be dropped from the derivative under the square root.

Given a frequency warping operator Wθ̃ , the warped STFT is
defined through the operator Sθ̃ as follows

[Sθ̃s] (τ, ν) = [SWθ̃s] (τ, ν) =

〈Wθ̃s, hτ,ν〉 =
〈
s,W†

θ̃
hτ,ν

〉
,

(7)

which is indeed a warped version of (1), where W†
θ̃

is the adjoint
of the warping operator. If the warping operator is unitary then
we have W†

θ̃
= W−1

θ̃
= Wθ̃−1 . In that case, warping the signal

prior to STFT is perfectly equivalent to perform STFT analysis
with inversely frequency warped windows. The warped STFT is
unitarily equivalent to the STFT so that a number of properties
concerning conditioning and reconstruction hold [11].

The Fourier transforms of the frequency warped STFT analy-
sis elements are

ˆ̃
hτ,ν(f) =

[
̂Wθ̃−1hτ,ν

]
(f) =√

dθ−1

df
ĥ(θ−1(f)− ν)e−j2πθ

−1(f)τ ,

(8)

i.e., the warped STFT analysis elements are obtained from fre-
quency warped modulated windows centred at frequencies f =
θ(ν). The windows are time-shifted with dispersive delay, where
the group delay is τ dθ

−1

df
.

Frequency warping generally disrupts the time organisation of
signals due to the fact that the time-shift operator Tτ does not
commute with the frequency warping operator [9].

From (4) it is easy to see that any unitary operation, in partic-
ular unitary warping, on a frame results in a new frame with the
same frame bounds A and B [11]. Since the atoms are not gen-
erated by shifting and modulating a single window function, the
resulting frames are not necessarily of the Gabor type. However,
warping prior to conventional Gabor analysis and unwarping after
Gabor synthesis always leads to perfect reconstruction.

Starting from a Gabor frame (analysis) {ϕn,q}q,n∈Z and dual
frame (synthesis) {γn,q}n,q∈Z:

ϕn,q = TnaMqbh

γn,q = TnaMqbg,
(9)

where h and g are dual windows, warped frames can be generated,
following (8), by unwarping the analysis and synthesis frames. In
the case of non-unitary warping, a frequency domain scaling op-
eration is necessary in order to reconstruct the original signal. For
the case of unitary warping we simply have:

ϕ̃n,q = U†
θ̃
ϕn,q = Uθ̃−1TnaMqbh

γ̃n,q = U†
θ̃
γn,q = Uθ̃−1TnaMqbg,

(10)

where {ϕ̃n,q}q,n∈Z is the frequency warped analysis frame and
{γ̃n,q}n,q∈Z is the dual warped frame for the synthesis. With these
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definitions, one obtains the signal expansion

s =
∑
n,q∈Z

〈s, ϕ̃n,q〉γ̃n,q. (11)

Warped Gabor frames suffer from the same problem as the
warped STFT. Indeed the Fourier transforms of the warped Gabor
frame elements bear frequency dispersive delays so that disper-
sive time samples are produced by the direct application of the
frequency warped frame analysis.

2.3. Redressing Methods

As shown in [8, 9], the dispersive delays intrinsic to the warped
STFT can be redressed, i.e. made into constant delays in each anal-
ysis band if frequency unwarping is performed in the transformed
time domain, i.e. with respect to time shift. In other words, instead
of (7) we consider the similarity transformation W†

θ̃
SW

θ̃
on the

STFT operator, which is time-shift covariant. In fact, one has:[
̂Wθ̃−1SWθ̃s

]
(f, ν) = ĥ0,0(θ−1(f)− ν)ŝ(f), (12)

which is in the form of a time-invariant filtering operation, cor-
responding to convolution in time domain. The filters are fre-
quency warped versions of the modulated windows in the tradi-
tional STFT. The Fourier transform of the redressed analysis ele-
ments are

ˆ̃̃
hτ,ν(f) =

[
̂TτWθ̃h0,ν

]
(f) = ĥ0,0(θ−1(f)− ν)e−j2πfτ ,

(13)
which shows that the dispersive delays in the analysis elements (8)
are brought back to non-dispersive delays.

In redressing warped Gabor frames one faces a further diffi-
culty due to time-frequency sampling. In this case, inverse fre-
quency warping can only be applied to sequences (with the respect
to the time shift index) and may not perfectly reverse the dispersive
effect of the original map on delays.

Unitary frequency warping in discrete time can be realised
with the help of an orthonormal basis of `2(Z) constructed from an
almost everywhere differentiable warping map ϑ that is one-to-one
and onto [− 1

2
,+ 1

2
[, as follows:

µm(n) =

∫ +
1
2

− 1
2

√
dϑ
dν
ej2π(nϑ(ν)−mν)dν, (14)

where n,m ∈ Z (see [12, 13, 14, 15, 16]). The map ϑ can be
extended over the entire real axis as congruent modulo 1 to a 1-
periodic function.

Given any sequence {x(n)} in `2(Z), the action of the discrete-
time unitary warping operator Dϑ̃ is defined as follows:

x̃(m) = [Dϑ̃x] (m) = 〈x, µm〉`2(Z) . (15)

In fact, the sequence {x̃(m)} in `2(Z) satisfies

ˆ̃x(ν) =
√

dϑ
dν
x̂(ϑ(ν)), (16)

where theˆsymbol, when applied to sequences, denotes discrete-
time Fourier transform. The sequences ηm(n) define the nucleus
of the inverse unitary frequency warping `2(Z) operator D

ϑ̃−1 =

D†
ϑ̃

. where ηm(n) = µn(m).

In order to limit or eliminate time dispersion in the frequency
warped Gabor expansion, the discrete-time frequency warping op-
erator Dϑ̃−1 is applied to the time sequence of expansion coeffi-
cients over the warped Gabor frames. Since the operator is applied
only on the time index, for generality, one can include dependency
of the map and of the sequences ηn on the frequency index q. The
process can be equivalently described by defining the redressed
frequency warped Gabor analysis and synthesis frames as follows:

˜̃ϕn,q = D
ϑ̃−1
q
ϕ̃•,q =

∑
m

ηn,q(m)ϕ̃m,q

˜̃γn,q = D
ϑ̃−1
q
γ̃•,q =

∑
m

ηn,q(m)γ̃m,q,
(17)

obtaining:
s =

∑
n,q∈(Z)

〈
s, ˜̃ϕn,q

〉
˜̃γn,q. (18)

One can show [9] that the Fourier transforms of the redressed
frame are

ˆ̃̃ϕn,q(f) = A(f)ĥ(θ−1(f)− qb)e−j2πnϑq(aθ
−1(f)), (19)

where

A(f) =
√

dθ−1

df

√
dϑq

dν

∣∣∣∣
ν=aθ−1(f)

. (20)

Hence, dispersion is completely eliminated if

ϑq(aθ
−1(f)) = dqf (21)

for any f ∈ R, where dq are positive constants controlling the time
scale in each frequency band. In this case, the Fourier transforms
of the redressed frame elements become:

ˆ̃̃ϕn,q(f) =

√
dq
a
ĥ(θ−1(f)− qb)e−j2πndqf . (22)

When all dq are identical all the time samples are aligned to a
uniform time scale throughout frequencies. If the dq are distinct,
time realignment when displaying the non-uniform spectrogram
is a simple matter of different time base or time scale for each
frequency band.

Unfortunately, due to the discrete nature of the redressing warp-
ing operation, each map ϑq is constrained to be congruent modulo
1 to a 1-periodic function, while the global warping map θ can
be arbitrarily selected. Moreover, the functions ϑq must be one-
to-one in each unit interval, therefore they can have at most an
increment of 1 there.

In Fig. 1 we illustrate the phase linearisation problem. There,
the black curve is the amplitude scaled warping map dqθ(ν) and
the grey curve represents the map ϑq(aν), which is 1/a-periodic.
Both maps are plotted in the abscissa ν = θ−1(f). By amplitude
scaling the warping map θ one can allow the values of the map to
lie in the range of the discrete-time warping map ϑq . The ampli-
tude scaling factors happen to be the new time sampling intervals
dq of the redressed warped Gabor expansion.

In the “painless” case, which was hand picked in [3], the win-
dow h is chosen to have compact support in the frequency domain.
Through equation (19) and condition (21), the redressing method
shows that, given any continuous and almost anywhere differen-
tiable and increasing warping map, only in the painless case one
can exactly eliminate the dispersive delays with the help of (17). In
fact, in this case linearisation of the phase is only required within a
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Figure 1: Locally eliminating dispersion by means of discrete-time
frequency warping. Black line: curve derived from the original
map θ by amplitude scaling. Gray line: discrete-time frequency
warping characteristics for local phase linearisation.

finite frequency range given by the frequency support of the frame
elements [8, 9], which is compatible with the periodicity constraint
of the redressing maps ϑq .

In the general case, a perfect time realignment of the compo-
nents is not guaranteed. Notice, however, that, by construction, the
redressed warped Gabor systems are guaranteed to be frames for
any choice of the maps ϑq satisfying the stated periodicity con-
ditions, even when the phase is not completely linearised. Lo-
cally, within a certain band of the warped modulated windows it
is possible to linearise the phase of the complex exponentials in
(19). In the sequel we will refer to this band as the essential band-
width since, hopefully, the magnitude of the Fourier transform of
the window is negligible outside it, at least as a design goal.

Unfortunately, in general both the painless case and the par-
tially redressed cases lead to infinite duration windows, which are
undesirable when online computation is required. In the next we
are going to propose some approximations and study the recon-
struction error also through numerical experiments.

3. REAL-TIME COMPUTATION OF THE WARPED
GABOR EXPANSION

For real-time computation one needs to make assumptions on the
signal, as well on the window functions h in order to keep the
computational load as low as possible.

By requiring the window h to be real-valued and θ to be odd,

we obtain ˆ̃̃ϕn,−q(−f) = ˆ̃̃ϕn,q(f). If, additionally the input sig-
nal is real-valued, then the coefficients cn,q = 〈s, ˜̃ϕn,q〉 fulfil
cn,−q = cn,q and thus we only need to compute about half the
coefficients and frame elements. By enforcing shift-invariance of
the warped frame elements (i.e. ˜̃ϕn,q(t) = ˜̃ϕ0,q(t − na)), which
we must do since otherwise the pre-computation of the frame ele-
ments and hence the real-time computation of the expansion would
be impossible, it is sufficient to only store ˜̃ϕ0,q for non-negative
values of q. It is advisable that the warping map is selected as a
continuously differentiable function, since the error in the resyn-
thesised signal in the frequency domain at the points of discon-

tinuity of θ′ is very high. A strictly positive derivative helps the
atoms not get too stretched in the time domain, which is undesir-
able in real time applications. To avoid aliasing we further require
that θ(qb) = SR/2 and θ′′(qb) = 0 for some q ∈ N, where SR
denotes the sampling rate. This ensures that the high frequencies
are smoothly mapped back to the negative frequencies and avoids
extra aliasing introduced by the approximation. By requiring the
Fourier transform of the window h to have an analytic expression,
we can avoid numerical errors in the computation of the warped
windows. We further only worked with windows which are dual
to itself, i.e. ϕn,q = γn,q which is actually not a necessary restric-
tion.

3.1. Implementation Details

We implemented the approximate warped redressed Gabor analy-
sis and synthesis as C externals interfaced to Pure-Data (32 bit and
64 bit). It runs both under Windows and Linux and can use multi-
ple cores. The warped windows are computed using equation (22)
and applying an IDFT of that data. The inner products cn,q are
directly computed with a loop. Also for the synthesizing part, the
sum

∑
n,q cn,q

˜̃ϕn,q is directly computed. It turned out that this is
sufficiently fast for real-time computation and whence we made no
use of fast convolution algorithm. Since the data rate of the anal-
ysis part is not uniform in time, PD’s signal connections are not
suitable to transfer the coefficients. Therefore we use the signal
connections to transfer pointers rather than signals.

3.2. Interface Details

For simplicity we require that the essential bandwidth B is a mul-
tiple K ∈ N of the frequency shift parameter b, i.e. B = Kb.
Then, in order to obtain a frame the following conditions must be
fulfilled as can be seen easily in Figure 1 [9, eq. (34) to (36)]:

abK ≤ 1

dqBq ≤ 1
(23)

where Bq is the ess. bandwidth of the warped modulated window.

Bq = θ

(
qb+

B
2

)
− θ

(
qb− B

2

)
(24)

In the case of an exponential increasing warping map, it makes
sense to set the frequency shifting parameter in a way that adjacent
notes fall away from the windows main lobe in the frequency do-
main (If there is such a main lobe, as in the case of the raised
cosine window). This on the other hand determines the window
length Th, a minimal value for R and the time shift parameter

a =
Th
R

(25)

with R ≥ K due to equation (23). We set R = K for simplicity.
Equations (23) are fulfilled by setting

b =
1

aRCb

dq '
1

BqCd

(26)

whereCb, Cd can be chosen inside the PD-patch. Cb together with
R controls the oversampling, where Cd controls the bandwidth in
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Figure 2: This is a sample patch for the use of our Pure-Data Im-
plementation. wabor˜ and invwabor˜ are for analysing and synthe-
sising. They are connected with two signal-paths. invwabor˜ holds
at the right outlet the delay in samples due to the analysis-synthesis
procedure. welay˜ is a simple delay line. If perfect reconstruction
is achieved, the output at dac˜ is zero. With the toggles the exter-
nals can be switched on and off. The bangs are for outputting the
parameters used.

which the phase is linearised and also influences the oversampling.
The dq are different for each band which results in a non-uniform
data rate for each band. We remark that the numbers dq have to be
chosen, such that dq/SR ∈ N, where SR is the sampling rate.

The number of bands qsup we need for a given SR is

qsup =
θ−1(SR/2)

b
. (27)

The assumptions on the warping map ensure that this is a natural
number.

Due to the warping, the supports of the windows are in general
unbounded. Thus we compute the windows with a zero padded
array of length of Tc (c for compute), which is defined as

Tc =
Th
θ′inf

CTc (28)

where CTc ≥ 1 can be chosen inside the PD-patch and θ′inf =
inff∈R θ

′(f). Due to the same reason it is indispensable to cut
the windows after warping. To define a sensible atom length Tq
after warping, we set the atoms to zero after the point from which
they were smaller than

∣∣ ˜̃ϕq(t)∣∣ < 1/Ccut maxt
∣∣ ˜̃ϕq(t)∣∣, with Ccut

a constant which can be chosen inside the PD-patch. Afterwards
the windows are truncated accordingly and with respect to the pa-
rameter Tmax, which defines the maximal desired window length.
It is important that the windows are cut after aligning them to the
time origin. The second approach suggested in [9] to obtain win-
dows with finite length by computing only a linearised version of
the warped windows, leads to very bad reconstruction.

3.3. Computational Costs

3.3.1. Analysis

A rough estimation yields the following. Let Tq denote the length
of the qth-window . It will be clear from the context if Tq denotes
seconds or samples. To compute the inner product of that window
with the signal one needs 2Tq many real multiplications and sum-
mations. This has to be done every dq samples. Hence, per sample
we have 4Tq/dq many floating point operations (flops) in average.
If the essential bandwidth is not too large, then Tq is proportional

Abbrev. Explanation

SR Sampling Rate
Bq Essential bandwidth of the qth window
Tc, CTc Length of the window used in precomputation
Th Length of the original window
Tq Length of the qth window
Tmax Maximal window length used for

real time computation
Ccut Parameter controlling the truncation of the win-

dows in the time domain after precomputing
b, Cb Frequency shift parameter
d, Cd Time shift parameter of the warped windows
qsup Number of bands

Figure 3: Summary of the variables used in the PD implementa-
tion. The parameters CX control their variable X .

to T0/θ
′(qb) and dq is proportional to 1/(Kbθ′(qb)) since, lin-

earising θ around qb yields θ(qb+ Kb
2

) ' θ(qb) + θ′(qb)Kb
2

and
hence

Bq = θ

(
qb+

Kb

2

)
− θ

(
qb− Kb

2

)
' θ′(qb)Kb

⇒ dq =
1

Bq
' 1

θ′(qb)Kb
(29)

Summing up over all windows we get the average number of
operations per sample Navg:

Navg =
∑
q

4Tq
dq
∼
∑
q

4T0

θ′(qb)

Kbθ′(qb)

1
= 4KbqsupT0 (30)

Where qsup, defined above, denotes the number of bands and de-
pends on θ−1. That means the complexity of the analysis part is
proportional to T0, K and b and qsup ∼ θ−1(SR).

If there is a lower bound for the dq’s, one can choose identical
numbers for all bands. However, this can increase the computatio-
nal load tremendously, making real time computation impossible.

The above is an estimation of the average computational cost.
In the worst case all inner products of the windows with the signal
have to be computed starting at one frame. The number of opera-
tions for that frame is∑

q

4Tq ' 4
∑
q

T0

θ′(qb)
(31)

However, if one processes the audio stream block wise, the
worst case cannot arise for all samples in the block at once, be-
cause two worst case scenarios have a distance of at least M =
maxq dq (actuallyM = Πqdq). The nextM samples have for sure
lower computational cost. Furthermore, the next m = minq dq
samples have zero computational cost. Therefore the average costs
are a suitable measure for the analysis process.

3.3.2. Synthesis Part

The complexity of the synthesis part is the same as that of the
analysis part. Furthermore, in the synthesis part the worst case
scenario can be avoided, because only the parts of the next frame
buffer have to be computed in real-time, the rest can be computed
later. Nevertheless, our given implementation is not optimized in
this direction.
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3.3.3. Memory Costs

Our algorithm for precomputing the windows needs 2qT0 cells.
With slight modifications it only needs T0 +

∑
q Tq . The small-

est possible number of cells being needed is
∑
q Tq . The anal-

ysis and synthesis algorithm both need at least a buffer of size
Audiobuffer + Tmax, where Tmax denotes the window length of
the longest windows used in the analysis and synthesis, and Au-
diobuffer the buffer length in which the audio is processed.

The frame elements for our tests below needed about 65 MB.

4. COMPUTATIONAL ERROR

The measured err-numbers are the difference between the aver-
aged RMS-amplitude in dB of the input signal and the analysed-
synthesised output signal (i.e. negative signal to noise ratio). For
comparison: 16 bit quantization (which is CD-quality) has err '
−96 dB, 8 bit quantization has err ' −50 dB. The tests were con-
ducted with the PD-patch available at tommsch.com/science.php
in real-time over a time of about 20 s with double precision float-
ing point numbers and a sample rate of 44.1 kHz. We used the
following stationary and non-stationary test signals
• white: White noise
• sine X: A pure sine tone with X Hz
• const: A constant signal
• clicks: Clicks with a spacing of 1 s
• beet: Beethoven - Piano Sonata op 31.2, length 25 s.
• speech: A man counting from one to twenty, length 20 s.
• fire: A firework, length 23 s.
• atom: A sample of sparse synthesised warped Gabor atoms

which were also used for that specific test run.
Since our method would lead to perfect reconstruction if the

windows were time-shift invariant, the behaviour of the algorithm
for stationary signals over a long time is of greatest interest. The
constant signal is of interest since it is the one with the lowest
possible frequency and our algorithm may bear problems with low
frequencies due to the necessary cutting. The clicks represent the
other extreme point of signals. The atoms are of interest since they
shows whether our algorithm has the ability to reproduce its atoms
with high quality.

For the warping map, we used a function which is exponen-
tially increasing between two frequencies fin and fout, namely
θ(f) = f02−f/k where f0, k ∈ R are constant parameters which
can be set inside the PD-patch. For all the tests we set f0 = 12
and k = 36. Outside of ±fout and between ±fin the map is
linear. The function attains exactly Nyquist frequency, i.e. at
θ((qsup − 1)b) = SR/2. The frequencies fin, fout are chosen
such, that the resulting map is C1. See Figure 4 for a plot of θ−1.

4.1. Raised Cosine Window

As proposed in [9] we first performed tests with a raised cosine
window.

h(t) =

{√
2b
R

cos πtT − T
2
≤ t ≤ + T

2

0 otherwise
(32)

with Fourier-Transform

ĥ(ν) =

√
b

2R

(
sinc(νT− 1

2
) + sinc(νT + 1

2
)
)

(33)

Ν

Θ
-1HΝL

Νin Νout SR�2

fin

fout

Hqsup-1Lb

Figure 4: The used warping map θ. It is C1, linear between ±fin
and outside of ±fout and passes through SR/2.

Figure 5: The picture shows a warped raised cosine window in
the time domain. The upper part is a magnification around zero.
Ripples, due to the slow decay in the frequency domain, are clearly
visible.

where T is the total duration of the window, R ≥ 3 is an integer,
f0 = 3

2T , a = 3
2Rf0

, b = 2f0
R

. See [9, Section 4] for an ansatz
about how to compute these parameters. This window has a very
slow decay in the frequency domain after warping:

ˆ̃̃ϕ0,q(f) =

√
dq
a
ĥ(θ−1

e (f)− qb) ' 1

log2 f
(34)

This means that either the warped windows are not bounded any-
more (i.e.: ˜̃ϕq /∈ L∞(R)) or that they are discontinuous, which is
clearly visible in the warped windows, a plot of one window can be
seen in Figure 5. Hence the computation of the warped windows
with the IDFT bears numerical errors. Also the test results with
this window were suboptimal, yielding an error between −50 dB
and−60 dB, depending on the chosen parameters and input signal.

Changing the parameter R or the parameter Cd had a signif-
icant effect on the error. In Figure 6 on can see the influence of
R. This can be expected, since the essential bandwidth, in which
the phase is linearized, depends on that parameter. Since oversam-
pling is directly proportional to the computational load (as com-
puted in (30)), for real-time applications there is a natural upper
bound. Cd ≈ 2, 5 provided good results. Too small and too big
numbers for Cd both gave worst results.

On the contrary, changing the parameter b while preserving
the oversampling factor R and the parameter a had no effect, as
long Cb ≤ 2.

The relation between the window length after cutting and the
error was nearly proportional to the value of

∑
q Tq in a certain

range, see Figure 8. From this observation one can determine a
suitable cutting parameter Ccut. Changing the parameter Tmax has
clearly only an influence on the err for low frequencies.
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4
∑

Tq/dq qR sup b err

6 Hz672,013.1k −74.4
4,8 Hz832,522.1k −86.4

4 Hz993,025.9k −94.4

Figure 6: Influence of the parameter R on the error. Gaussian
Window, B=24 Hz, R, qsup, b=variable, T=0.167 s, Cd = 2,
Tmax=0.629 s, CTc=2, a=0.04167 s, Ccut = 20, test signal: white
noise. Values in dB.

Tc/Th GaussianRaised Cosine

1,0 −63, 1 −62, 8
1,2 −66, 9 −66, 1
1,4 −70, 2 −71, 3
1,6 −71, 0 −73, 3
1,8 −71, 1 −76, 0
2,0 −71, 1 −77, 7
2,5 −71, 1 −78, 3
5,0 −71, 0 −78, 3

16,0 −71, 0 −71, 5

Figure 7: Influence of the parameter Tc on the error for the Gaus-
sian and the raised cosine window. Parameters as in Figure 10
and 9. Only the Parameter CTc was changed. Signal: White noise.
Values in dB

The parameter CTc had no big influence as long it was about
Tc was about twice the window length Th, see Figure 7

The warping map has a very big influence on the error. At
points where the map is not smooth the error for these frequencies
is order of magnitudes higher. This can be seen in Figures 9 and 10
for the sine with 30 Hz signal. At this point, our used warping map
is only C1. For a C0 warping map the error was again 10 dB
higher.

The table in Figure 9 shows selected numerical results with
well chosen parameters for the raised cosine window. All val-
ues in dB, values above −60 dB and below −70 dB are colored.
The number 4

∑
Tq/dq denotes the average computational aver-

age complexity (see above).

4.2. Gaussian Window

In order to obtain a window with proper decay in the frequency
domain after warping, we used a Gaussian window. This window
does not overlap-add to one. Hence higher overlap is necessary to
minimize the deviation from one. The warped windows were still
fast decaying in the time domain, resulting in the possibility to cut
them much shorter then the warped raised-cosine windows which
compensated the high computational load due to the high overlap.

Our used Gaussian window and its Fourier Transform is

h(t) = C

√
b

2R
e
− 1

4
t2

T2 , ĥ(t) = C T

√
b

R
e−t

2T2

(35)

where T is the total duration of the window,R ≥ 2 the overlap fac-
tor is an integer, f0 = R

2T , a = T
R

, b = 1
aR

and C ' 0.893249 · · ·
is a constant factor used to approximate the overlap-add to one
condition.

This window has a fast enough decay to ensure that the warped
windows in the frequency domain still are in L1(R) and hence
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-20
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Figure 8: Influence of the truncation length of the computed win-
dow. Test signal: white noise. Red squares and yellow diamonds:
Raised Cosine Window with different parameters, blue dots: Gaus-
sian window. Ccut=variable, all other parameters are fixed. The
value of

∑
Tq is directly proportional to the error in a certain

range.

signal err signal err

white −70, 6 clicks −57, 0
sine 30 −53, 3 beet −66, 8
sine 440 −63, 3 speech −61, 9
sine 20k −76, 9 fire −62, 8
const −84, 7 atom −62, 7

Figure 9: Test results for the raised cosine window. B=24 Hz,
R=7, qsup=229, T=0.30 s, Tc=1.4 s, Tmax=0.5 s, a=0.04167 s,
b=1.714 Hz, Cb=2, Cd=4, Ccut=55, 4

∑
Tq/dq = 33.6k. Values

in dB.

signal err signal err

white −71, 3 clicks −57, 3
sine 30 −61, 5 beet −70, 2
sine 440 −70, 0 speech −69, 8
sine 20k −81, 2 fire −68, 4
const −63, 7 atom −69, 1

Figure 10: Test results for the Gaussian window. B=24 Hz, R=4,
qsup=132, T=0.167 s, Tc=0.8 s, Tmax=0.4 s, a=0.04167 s, b=3 Hz,
Cb=2, Cd=2, Ccut=1000, 4

∑
Tq/dq = 7.3k. Values in dB.

their Inverse Fourier transformed (i.e. the warped windows in the
time domain) are bounded and continuous. This window leads to
significantly better results down to−96 dB which is the limit when
using PD’s single precision numbers. The influence of the param-
eters on the error was the same as for the raised-cosine window.

The tables in Figure 10 show selected numerical results.
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4.3. Comparison of these two windows

For the raised cosine a high number of bands must be used to
achieve a small error. In Figure 8 the tests of the red dots are
conducted using 92 bands, the tests with yellow dots were with
229 bands. Since the windows have a bad decay in the frequency
domain, a high essential bandwidth has to be used too, which en-
tails big overlap in time. and hence a very high average compu-
tational load, in our example 33.6k floating point operations per
sample. If one uses similar parameters to the ones used for the
Gaussian window in Figure 10, the error is in the range of−36 dB.

Gaussian windows on the other hand do not overlap add to one
and hence are not dual to themselves. Hence we at first used a very
high overlap to minimize the deviation from 1, which turned out
to be not necessary later. The fast decay in the time domain allows
to cut the windows much shorter than the raised cosine window.
This decreases the computational load, in our example only 7.3k
flops per sample in average. In Figure 8 one can see that for the
Gaussian window, with proper parameters, the error is in the range
of −90 dB.

5. CONCLUSIONS

We have introduced a novel, flexible, easy way to construct frames
starting from a classical Gabor frame. Tests show, that even in the
painful case, where perfect time realignment of the components
is not guaranteed and hence our method does not lead to perfect
reconstruction, the error can be made as small as the accuracy of
single precision floating point numbers for a wide range of signals.
This does not prove that the error is small for all signals, but gives
a good estimation of the error to be expected. The transform is
working in real time.

We are going to implement maps that can be arbitrarily de-
fined, e.g., by means of interpolation of a selected number of points.
We will also implement Gabor Multipliers [17] in the redressed
warped Gabor expansion (partially done already with the external
winary˜).

Since we already implemented this method as a Pure Data ex-
ternal, it is ready to use for audio-applications. The whole external
explained in detail as well as the source code can be found online
at tommsch.com/science.php and in [18].
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ABSTRACT
The knowledge of the phase of STFT is a prerequisite for a suc-
cessful signal reconstruction. However, the phase might be lost or
no longer applicable depending on the kind of processing involved.

We propose a real-time spectrogram inversion algorithm based
on the relationship of the gradients of the phase and the logarithm
of the magnitude and on the gradient integration theorem. We
present a detailed comparison with the state-of-the-art phase re-
construction algorithms.

1. INTRODUCTION

The first algorithm for the signal reconstruction from the (modi-
fied) STFT magnitude was introduced by Griffin and Lim in [1]
(Griffin-Lim Algorithm – GLA) more than 30 years ago. Since
then, several other algorithms have been developed, but the fact the
algorithms typically require many iterations acting on the whole
signal prohibited their widespread use e.g. as an alternative re-
construction procedure for the phase vocoder [2]. Other possible
applications include e.g. compression, source separation, channel
mixing, adaptive filtering and denoising. See e.g. [3] for a detailed
overview of the reconstruction algorithms and applications.

A real-time version of GLA was introduced in [4] (Real Time
Spectrogram Inversion Algorithm with Look Ahead – RTISI-LA).
The algorithm is still iterative, but the signal is reconstructed frame-
by-frame using a clever phase initialization such that only few iter-
ations are necessary in order to get a good result. The downside of
this algorithm is that it requires several “look-ahead” frames which
increases the processing delay. Modifications of RTISI-LA were
proposed in [5, 6, 7].

Recently, another real-time capable algorithm was introduced
in [8] (Single Pass Spectrogram Inversion – SPSI). The algorithm
is based on the notion of phase consistency introduced in connec-
tion with the phase-locked vocoder. Assuming the signal consists
of sum of sinusoidal components, their phase grows in time at the
rate of their instantaneous frequencies. In the algorithm, the in-
stantaneous frequency is estimated in each frame by peak picking
and quadratic interpolation. Thanks to this, the algorithm does not
introduce any additional delay, but, on the other hand, it cannot
properly handle any deviation from the model assumptions e.g. the
quality of reconstructed transients and impulse-like components is
poor.

The proposed algorithm (Real-Time Phase Gradient Heap In-
tegration – RTPGHI) is based on the STFT phase-magnitude rela-
tionship first introduced in [9]. The offline version of the present
∗ This work was supported by the Austrian Science Fund (FWF)

START-project FLAME (“Frames and Linear Operators for Acoustical
Modeling and Parameter Estimation”; Y 551-N13).

algorithm (PGHI) along with the theoretical background has al-
ready been presented in [10]. This paper focuses on adapting the
algorithm to the real-time setting. In the basic form it requires one
look-ahead frame, but even zero delay can be achieved at a cost of
a performance degradation.

The paper is organized as follows: section 2 contains a short
theoretical introduction while section 3 presents the phase recon-
struction algorithm itself. The paper is concluded with section 4
where the performance evaluation can be found.

2. THEORY SUMMARY

The STFT of f with respect to a real valued window g is usually
defined as

(Vgf)(ω, t) =

∫
R
f(τ + t)g(τ)e−i2πωτ dτ, ω, t ∈ R (1)

= Mf
g (ω, t)eiΦfg (ω,t), (2)

and the spectrogram as the modulus squared. The (complex) loga-
rithm separates the modulus and the phase such as

log(Vgf)(ω, t) = logMf
g (ω, t) + iΦfg (ω, t). (3)

The Gaussian window with time-frequency support ratio γ

ϕγ(t) =

(
γ

2

)− 1
4

e
−π t

2

γ (4)

is known to posses optimal properties and, moreover, to allow al-
gebraic treatment of the formulas. In particular, it has been shown
that the phase gradient

∇Φfϕγ (ω, t) =

(
∂Φfϕγ
∂ω

(ω, t),
∂Φfϕγ
∂t

(ω, t)

)
(5)

and the gradient of the log-magnitude relate to each other in the
following way [9, 11, 10]

∂Φfϕγ
∂ω

(ω, t) = −γ ∂
∂t

log(Mf
ϕγ (ω, t)) (6)

∂Φfϕγ
∂t

(ω, t) =
1

γ

∂

∂ω
log(Mf

ϕγ (ω, t)) + 2πω. (7)

In theory, the knowledge of the original phase at a single point
Φfϕγ (ω0, t0) and the gradient theorem would be sufficient to re-
cover the original phase using

Φfϕγ (ω, t) =

∫ 1

0

∇Φfϕγ
(
L (τ)

)
·dL
dτ

(τ) dτ+Φfϕγ (ω0, t0), (8)
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whereL(τ) = [Lω(τ), Lt(τ)] is any line (ω0, t0)→ (ω, t). When
the phase is unknown completely, one obtains a global constant
phase shift. In case of real signals, the global phase shift turns into
the reconstructed signal sign ambiguity.

In practice however, and in the real-time setting in particu-
lar, several factors make the direct application of such result dif-
ficult. First and foremost, the discretization of STFT inevitably
introduces aliasing in some form. This causes the relations (6) and
(7) not to hold exactly everywhere. Second, one can only work
with truncated Gaussian window or with other finitely supported
windows, for which the relations hold only approximately. Third,
the numerical line integration is prone to error propagation. As a
result, the reconstruction algorithm typically produces a phase er-
ror with “patches” of constant phase shifts, which is common for
all algorithms available. Fig. 1 shows an example of such an er-
ror using an excerpt from the glockenspiel test signal. It depicts
the absolute difference between the original and the reconstructed
phase (modulo 2π) taking the circular nature of the phase into ac-
count i.e. taking the shorter distance on the circle. The phase error
is in rad/π and it was set to zeros for very small coefficients.

Figure 1: Typical phase difference pattern for the proposed algo-
rithm.

Luckily, it seems that such relative phase shifts of time-frequency
components do not degrade the perceived quality substantially.

Even more ambiguity enters in case of modified or completely
synthetic spectrograms, for which it is not clear whether (6) and
(7) hold at all.

3. THE ALGORITHM

The goal of the present algorithm is to exploit (6),(7) and (8) to
recover phase from the magnitude and, ultimately, to reconstruct
the original signal.

The first step is obtaining the phase gradient via numerical
differentiation and the second one is the numerical line integration
on the rectangular grid.

3.1. Phase Gradient Approximation

The discrete version of STFT is defined as

(Vgf) (m,n) =
∑
l∈I

f(l + na)g(l)e−i2πml/M (9)

= s(m,n)eiφ(m,n), (10)

where f ∈ `2(Z) and g ∈ `2(Z) are both real sequences, m =
0, . . . , bM/2c whereM is the number of frequency channels, n ∈
Z and the parameter a is the time step in samples. The finite sup-
port of g will be bounded such that it is zero outside of the sum
index set I =

{
−dM/2e+ 1, . . . , bM/2c

}
. The windows will

be further restricted to be whole point symmetric such that their
discrete-time Fourier transform is real.

The time-frequency ratio γ of the Gaussian window which is
closest to the given window g can be obtained as

γ = Cg · len(g)2, (11)

where len(g) determines the length of the window support in sam-
ples and the constant Cg is window specific. The values for win-
dows used in this paper can be found in Table 1. They were ob-
tained by a simple heuristic search.

Table 1: Cg constants for (12) for common windows

Hann 0.25645
Hamming 0.29794
Blackman 0.17954

It is also possible to use a truncated discrete Gaussian window
ϕT
γ . Assume the window is truncated at the relative height h and it

is required to be w samples long; then the γ parameter is obtained
as

γ = −π
4

w2

log(h)
. (12)

The (scaled) discrete STFT phase gradient ∇φ = (φω, φt)
can be approximated using centered difference scheme

φω(m,n) = − γ

2aM

(
slog(m,n+ 1)− slog(m,n− 1)

)
,

(13)
φt(m,n) =

aM

2γ

(
slog(m+ 1, n)− slog(m− 1, n)

)
+ 2πam/M,

(14)

assuming slog(m,n) = log
(
s(m,n)

)
and setting φt(0, n) and

φt(
⌊
M/2

⌋
, n) to zeros. The use of the centered difference scheme

ensures the correct alignment of the sampling grids of both the gra-
dient components with the sampling grid of the coefficients. The
gradient is scaled such that the lengths of steps in the following
numerical integration scheme are equal to 1 in both directions. Al-
ternatively, a causal finite difference scheme can be used for com-
puting φω

φcausal
ω (m,n) =

− γ

2aM

(
3slog(m,n)− 4slog(m,n− 1) + slog(m,n− 2)

)
.

(15)

In general, the misalignment of the sampling grids however intro-
duces a performance degradation.

3.2. Real-Time Heap Integration

The gradient integration is done using the cumulative sum and the
trapezoidal rule. The integration paths are chosen adaptively ac-
cording to the coefficient magnitude following the direction of the
ridges fist. The algorithm actually does not use integration paths
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directly because only a single coefficient and its immediate neigh-
bors are needed at a time.

Another simplification comes from the fact that the integration
is only done in the horizontal or in the vertical directions which
makes the (vector) derivative of the line segment ( dL

dτ
from (8)) to

have only one nonzero element. Therefore, only one element of
the gradient is active at a time during the integration.

For the purpose of keeping track of the coefficients with al-
ready computed phase, the algorithm employs a heap data struc-
ture which always keeps the coefficient with the largest magnitude
at the top. The heap data structure is equipped with efficient in-
sertion and deletion operations. The algorithm further accepts a
relative magnitude threshold tol which controls which coefficients
are included in the integration. The coefficients below tol are as-
signed a random phase value. The reasoning for this choice is that
when tol is high, the random phase causes less disturbing artifacts
when compared to zero phase. The algorithm is summarized as
Alg. 1.

In words (assuming tol = 0 for simplicity), the algorithm
starts of by marking coefficients from the n frame as unknown
(line 2) and continues by inserting coefficients from the n−1 frame
into the heap (line 5) making them all potential initial points. The
integration itself starts by removing the biggest coefficient from
the heap (line 8) and it is used to spread the phase to the only
neighbor in the n frame (line 11). The just computed coefficient
is marked as known (line 12) and it is then inserted into the heap
(line 13) to serve as a potential phase source. The algorithm then
continues by selecting and removing the biggest coefficient from
the heap and this time, the coefficient from frame n might have
been selected (line 16) and in that case, the phase is spread to the
neighbors above (line 18) and below (line 23) and both are marked
as known and they are inserted into the heap. The algorithm con-
tinues until no coefficients with unknown phase are left.

The reconstructed phase φ̂(m,n) is combined with the mag-
nitude such that ĉ(m,n) = s(m,n)eiφ̂(m,n) and the signal f̂ is
reconstructed using a dual window and the overlap-add procedure.

In some cases, the phase is partially known. Such information
can be easily exploited by altering the algorithm such that the line
5 in Alg. 1 is repeated with indices (m,n) of the coefficients with
the known phase of the current frame n.

4. EVALUATION

In the experiments we used the following error measure introduced
in [1]

E =

∥∥∥∥s− ∣∣∣Vg f̂ ∣∣∣∥∥∥∥
fro

‖s‖fro
, (16)

where s is the target magnitude spectrogram, f̂ is the reconstructed
signal and ‖·‖fro denotes the Frobenius norm. The transform Vg
uses the same parameters (g, a andM ) as the one used to obtain s.
Values in decibels are obtained by 20 log10(E). It has often been
pointed out that such error measure does not reflect error of the
reconstructed signal (see e.g. [3]) nor the actual perceived quality
degradation. Therefore it should only be considered as a rough
indicator. Listening tests would have been conducted in order to
get a fair comparison.

For the tests, we used the SQAM database [12] which consists
of 70 recordings sampled at 44.1 kHz. Only the first 10 seconds

Algorithm 1: Phase Gradient Heap Integration for n-th
frame

Input: Phase time derivative φt(m,n) and magnitude
s(m,n) of frames n and n− 1, phase frequency
derivative φω(m,n) for frame n, estimated phase
φ̂(m,n) for frame n− 1 and relative tolerance tol .

Output: Phase estimate φ̂(m,n) for frame n.
1 abstol ← tol ·max

(
s(m,n) ∪ s(m,n− 1)

)
;

2 Create set I =
{

(m,n) : s(m,n) > abstol
}

;
3 Assign random values to φ̂(m,n)(m,n)/∈I ;
4 Construct a self-sorting heap for (m,n) tuples;
5 Insert (m,n− 1) for m =

(
m : s(m,n− 1) > abstol

)
into the heap;

6 while I is not ∅ do
7 while heap is not empty do
8 (mheap , nheap)← remove the top of the heap;
9 if nheap == n− 1 then

10 if (mheap , n) ∈ I then
11 φ̂(mheap , n)← φ̂(mheap , n− 1) +

1
2

(
φt(mheap , n− 1) + φt(mheap , n)

)
;

12 Remove (mheap , n) from I;
13 Insert (mheap , n) into the heap;
14 end
15 end
16 if nheap == n then
17 if (mheap + 1, n) ∈ I then
18 φ̂(mheap + 1, n)← φ̂(mheap , n) +

1
2

(
φω(mheap , n) + φω(mheap + 1, n)

)
;

19 Remove (mheap + 1, n) from I;
20 Insert (mheap + 1, n) into the heap;
21 end
22 if (mheap − 1, n) ∈ I then
23 φ̂(mheap − 1, n)← φ̂(mheap , n)−

1
2

(
φω(mheap , n) + φω(mheap − 1, n)

)
;

24 Remove (mheap − 1, n) from I;
25 Insert (mheap − 1, n) into the heap;
26 end
27 end
28 end
29 end

from the first channel of each sound sample was used in the evalu-
ation.

The code (runnable in Matlab or GNU Octave[13]) for repro-
ducing tables presented in this manuscript are freely available1.
Note that LTFAT – Large Time-Frequency Analysis Toolbox2 [14]
(version 2.1.2 and above) and PHASERET – Phase Retrieval Tool-
box3 (version 0.1.0 and above) are required in order to run the
scripts. Both toolboxes are freely available.

In the tests, 4 different compactly supported windows of full
FFT length M = 2048 are used. The Gaussian window was trun-
cated at relative height h = 0.01. The hop factor a and therefore
the redundancy M/a was varied.

1http://ltfat.github.io/notes/043
2http://ltfat.github.io
3http://ltfat.github.io/phaseret
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4.1. Performance Comparison

We evaluate the performance of variants of the algorithms for zero
(0) or one (1) lookahead frames. The SPSI algorithm naturally
falls just into the former category, while RTISI-LA can benefit
from more than one lookahead frame. The relative tolerance of
the proposed algorithm was set to 10−6. For the RTISI-LA al-
gorithm an asymmetric window and 16 per-frame iterations were
used. All tested algorithms are able to run in real-time in the tested
setting.

Tables 2, 3 and 4 show average E in dB for the test database
for a = 512, a = 256 and a = 128 respectively. Scores for
individual files and Matlab/GNU Octave scripts reproducing the
results can be found at the accompanying web page.

Table 2: Algorithm comparison, a = 512.

Gauss Hann Hamming Blackman
SPSI -17.82 -16.72 -16.53 -17.62

RTPGHI (0) -17.76 -17.50 -17.58 -17.82
RTISI (0) -22.80 -21.75 -21.08 -22.82

RTPGHI (1) -20.91 -20.25 -20.07 -20.76
RTISI-LA (1) -26.08 -25.14 -24.01 -26.63

Table 3: Algorithm comparison, a = 256.

Gauss Hann Hamming Blackman
SPSI -17.88 -17.09 -16.79 -17.79

RTPGHI (0) -21.79 -21.10 -21.01 -21.78
RTISI (0) -21.15 -20.20 -19.53 -21.07

RTPGHI (1) -24.87 -22.74 -21.98 -24.59
RTISI-LA (1) -22.11 -19.90 -19.14 -21.90

Table 4: Algorithm comparison, a = 128.

Gauss Hann Hamming Blackman
SPSI -17.99 -17.16 -16.82 -17.92

RTPGHI (0) -26.13 -23.48 -22.33 -25.93
RTISI (0) -20.18 -19.70 -19.01 -20.35

RTPGHI (1) -26.83 -23.50 -22.47 -26.21
RTISI-LA (1) -17.85 -16.66 -16.12 -17.71

Table 2 clearly shows that the RTISI-LA algorithm is superior
when a bigger hop factor (a = 512) is used.

Table 3 already shows improvement for the proposed algo-
rithm and in table 4, the proposed algorithm performs the best
by a large margin. Another observation is that the performance
gap between both variants of the proposed algorithm is virtually
nonexistent when high enough overlap is used.

While the proposed algorithm clearly benefits from a higher
window overlap due to the reduction of the aliasing, it is not true
for the other two algorithms. The error achieved by SPSI seems
to be unaffected and for RTISI it actually grows. This is a known
property of RTISI and it is explained in [4]. Moreover, since higher
overlap STFTs are more robust to (unwanted) coefficient pertur-
bations the reconstructed signals tend to sound better than lower
window overlap STFT reconstruction with the same error E.

The performance of the RTISI-LA algorithm can be obviously
further improved by employing more lookahead frames and more

iterations. Each lookahead frame however introduces additional a
samples to the overall processing delay and only a limited number
of per-frame iterations can be done within the real-time deadline
restriction.

A real-time demo script comparing all three algorithms can be
found in the PHASERET toolbox 4.

4.2. Modified Spectrogram

In order to compare performance of the algorithms on modified
spectrograms, we implemented comb-filter free audio mixing of
two signals from [5]. The phaseless reconstruction is done with
the sum of STFT modulus of a signal with its slightly delayed
version. Since usage of any objective measure does not seem to
be relevant for a systematic comparison, we only provide the real-
time implementation and leave the evaluation to interested readers.
The demo is available in the PHASERET toolbox 5.

4.3. Timing

All three algorithms were implemented in C and per-frame execu-
tion times were compared in Tab. 5 for the same setting as in Tab. 3.
Because the execution time of the present algorithm is highly sig-
nal dependent, we are mainly interested in the worst-case perfor-
mance, which is also the crucial indicator for the real-time setting.
The implementations were done in such a way that no memory
allocation occurs during the execution.

Table 5: Worst per-frame exetution time in ms, from∼ 105 frames

SPSI RTPGHI RTISI-LA
1 it. 4 it. 8 it. 16 .it

0.23 0.56 0.31 0.58 1.16 2.18

The benchmark was run with the highest priority on an idle PC
equipped with Intel Core i5-4570@3.20GHz and 8 GB RAM run-
ning Xubuntu 14.04.3 LTS with generic kernel 3.13.0-65. GCC
5.3.0 with the -O3 optimization switch was used to produce the
binary. The FFTW3 library [15] was used for computing (short-
ened) FFT for real signals with the FFTW_MEASURE plan option.
Though we cannot rule out the possibility that the implementations
are suboptimal (no explitic attempt was made to exploit SSE/AVX
instruction sets or paralelization of the code), we tried to use the
best practices for all of them. Moreover, the source code of the
benchmark is available at the accompanying webpage.

5. CONCLUSION

A novel real-time algorithm for signal reconstruction from the STFT
magnitude was presented. The tests showed that for fixed delay
it is able to outperform the state-of-the-art algorithms when high
enough window overlap is used. Moreover, the benchmark shows
that the worst per-frame execution time of the proposed algorithm
is about twice as much as of the SPSI algorithm and rouhly equal
to execution time of the RTISI-LA algorithm with 4 iterations.

4demo_blockproc_phaseret.m
5demo_blockproc_phaseretmix.m
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ABSTRACT

Within this paper a method for morphing audio signals is pre-
sented. The theory is based on general frames and the modification
of the signals is done via frame multiplier. Searching this frame
multiplier with given input and output signal, an inverse problem
occurs and a priori information is added with regularization terms.
A closed-form solution is obtained by a diagonal approximation,
i.e. using only the diagonal entries in the signal transformations.
The proposed solutions for different regularization terms are ap-
plied to Gabor frames and to the constant-Q transform, based on
non-stationary Gabor frames.

1. INTRODUCTION AND MOTIVATION

What does it mean to convert one signal into another? In this paper
a sound-signal modification is performed by morphing one sound
into another, i.e. it is assumed that there exist sounds "in between"
two given, distinct sounds. This morphing enables to interpolate
between two sounds with sufficient similarity, i.e. in the case of
instrument morphing, the same fundamental frequency.
Existing methods are based on parametric models based on param-
eter interpolation [1, 2].Our method allows to observe the modifi-
cation necessary for morphing directly in the time-frequency do-
main. In our task the input and output signals are given and the
transfer function which is modeled as a frame multiplier has to
be estimated. Hence, the preferred output is given and we would
like to compute the cause for this output. Reformulating the prob-
lem into a minimization of a functional, the estimation is trans-
formed into a linear inverse problem. In order to add some a priori
information to the minimization problem, we add regularization
terms. Such an inverse problem normally can be solved by itera-
tive shrinkage methods [3, 4] among others, because otherwise a
huge matrix system must be inverted. One possible simplification,
to gain a better understanding and to obtain a closed-form solution
of satisfactory quality, is to perform a diagonal approximation, i.e.
considering only the diagonal entries of the matrix from the signal
transformations. Stating the exact solution for several regulariza-
tion terms is the main result of this paper and can be found in
Theorem 3.1 in Section 3.1.
Moreover we perform some numerical experiments using the ob-
tained solutions in MATLAB. In these experiments Gabor frames
and non-stationary Gabor frames leading to a constant-Q trans-
form, as described in Section 4, are considered. Additional ex-
periments as well as the MATLAB code and corresponding sounds

∗ This work was supported by the Vienna Science and Technology Fund
(WWTF) project SALSA (MA14-018).

can be found on the website [5]. This paper is a generalization of
the first author’s master thesis [6]. The basic principles have been
developed, in the context of Gabor multipliers, in [7, 8, 9, 10].

2. BASICS

Frames generalize the concept of a basis, in the sense that the
frame functions need not be linearly independent. The resulting
redundancy leads to increased stability against noise or data loss.
In the following we consider a general Hilbert spaceH, for exam-
ple L2(Rd) or CL.

Definition 2.1 ([11]). (Frame, Frame Bounds, Tight Frame)
A sequence {ej : j ∈ J} ⊆ H is called a frame if there exist
A,B > 0 such that ∀f ∈ H

A‖f‖2 ≤
∑
j∈J

|〈f, ej〉|2 ≤ B‖f‖2. (1)

Any two constants A,B satisfying equation (1) are called frame
bounds. If A = B, then we call {ej : j ∈ J} a tight frame.

If H = CL, the coefficient space is also finite dimensional,
i.e. |J | = K <∞.
The following important operators included in a signal processing
procedure will help to develop the theory of our problem.

Definition 2.2 ([11]). (Analysis-, Synthesis- and Frame opera-
tor)
Let {ej : j ∈ J} be a sequence in a Hilbert spaceH and f ∈ H,
then the coefficient operator or analysis operator T : H → `2(J)
is defined as

(T f)j = 〈f, ej〉 = cj j, ∈ J (2)

The adjoint of the analysis operator T ∗ : `2(J) → H is the syn-
thesis operator or reconstruction operator and is defined for a fi-
nite sequence c̃ = (c̃j)j∈J ∈ `2(J) by

T ∗c̃ =
∑
j∈J

c̃jej ∈ H. (3)

Combining these two operators leads to the definition of the frame
operator S : H → H

Sf = T ∗T f =
∑
j∈J

〈f, ej〉ej . (4)

In the following proposition we introduce dual frames which yield
a reconstruction formula.
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Proposition 2.3 ([11]). (Dual frame)
If {ej : j ∈ J} is a frame with frame bounds A,B > 0, then
{S−1ej : j ∈ J} is a frame with frame bounds B−1, A−1 >
0, the so-called dual frame. Every f ∈ H has non-orthogonal
expansions

f =
∑
j∈J

〈f, S−1ej〉ej =
∑
j∈J

〈f, ej〉S−1ej ,

where both sums converge unconditionally inH.

A signal processing step between the analysis and the synthesis
operator in Definition 2.2, where the coefficients are multiplied by
weights wj , j ∈ J, can be performed. Thus

c̃j = wj · cj .

This leads to the the following definition:

Definition 2.4 ([12]). (Frame multiplier)
Let H1,H2 be Hilbert spaces, let (gj)j∈J ⊆ H1 and (γj)j∈J ⊆
H2 be frames. Fix a sequence m = (mj)j∈J ∈ l∞, then we
define the frame multiplier

Mm;g,γ : H1 → H2

for the frames (gj) and (γj), as

Mm;g,γ(f) =
∑
j

mj〈f, gj〉γj .

The sequence (mj)j∈J mentioned in this definition is called the
symbol mask of M and can be interpreted as a time-frequency
transfer function.
In the following section, we are going to introduce the inverse
problem which leads to the estimation of a set of masks, in de-
pendence on a regularization parameter λ, for the controlled mod-
ification of one given sound towards a given target sound.

3. ESTIMATION OF THE FRAME MULTIPLIER

In this section, we consider a normed tight frame (i.e. A = B = 1)
(gj)j∈J ⊆ H. Assume the input and output signal s, z ∈ H to be
given, hence the relation

z = Mm;gs

to be valid. Now we want to identify the linear system, where the
system is treated as a frame multiplier. Let T and T ∗ be fixed, we
can reformulate optimality as the minimization of a functional and
its estimation can therefore be transformed into a linear inverse
problem:

m̃ = arg min
m
‖z − T ∗g mTgs‖22.

To gain more stability in order to solve the inverse problem, we
add a regularization term. We therefore have to minimize the ex-
pression

Φ(m) = ‖z − T ∗g mTgs‖22 + λr(m), (5)

where r(m) : `∞ → R+ is a regularization term and λ ∈ R+

is a regularization parameter. The choice of regularization term is
discussed in the next section,Theorem 3.1.

3.1. Diagonal Approximation

Since the frames used in analysis and synthesis usually lack or-
thogonality iterative methods need to be employed to obtain an
exact solution of (5), cp. [3]. In the special case of Gabor frames it
has been shown [7, 8] that an approximate solution can be achieved
by reducing the term T ∗g mTgs to its diagonal entries. We will
address a different example, namely non-stationary Gabor frames
leading to a constant-Q transform. The diagonal case brings us to
closed-form solutions. These solutions lead to satisfactory quality
for example in experiments on audio signals as has been observed
in the experimental Section 4.
Using these solutions, iterative algorithms can be applied to achieve
exact solutions of equation 5. However the difference in percep-
tion is marginal, but the computational effort increases.
For some further information we refer to [13], [7], [8] and [14]. In
order to achieve a diagonal approximation, we reformulate (5) in
the transform domain

Φ(m) = ‖T ∗g (Tgz −mTgs)‖22 + λr(m).

Reducing to the diagonal and writing S = Tgs and Z = Tgz,
leads to

Φ(m) = ‖Z −m · S‖22 + λr(m). (6)
If the source equals the target, the mask m should be equal to
1 and the regularization term should vanish. This motivates the
choice of regularization terms with entries m − ~1. If Z and S
are different, we can use different terms of regularization. The
regularization term helps us to indicate some a priori information
in the shape of the solution (the transformed signal). The choice of
r(m) is discussed in Remark 3.2. The parameter λ helps balancing
between these a priori information of the form and the properties of
reconstructing the mask [7]. We are now going to present different
choices of regularization terms by stating the following theorem.
Theorem 3.1. Let Φ : CL → R be a functional of the form

Φ(m) = ‖Z −m · S‖22 + λr(m), (7)

where λ ∈ R+ and r : CL → R is a regularization term. Minimiz-
ing this functional for different solutions with respect to different
regularization terms as follows:
a) r(m) = ‖m− 1‖22 leads to the solution

m̃` =
S`Z` + λ

|S`|2 + λ
∀` ∈ {0, ..., L}.

b) r(m) = ‖ |m| − 1‖22 leads to the solution

m̃` =
|Z`S`|+ λ

|S`|2 + λ
· ei arg(S`Z`) ∀` ∈ {0, ..., L}.

c) r(m) = ‖m− 1‖1 leads to the solution

m̃` =

{
|S`||Z`−S`|−λ2

|S`|2
· eiϕ + 1 if |S`| |T` − S`| > λ

2

1 else
,

where ϕ = arg(S`(Z` − S`)) ∀` ∈ {0, ..., L}.
d) r(m) = ‖ |m| − 1‖1 leads to the solution

m̃` =


|Z`S`|−λ2
|S`|2

ei arg(S`Z`) if |Z`S`|
|S`|2

> 1 + λ
2|S`|2

|Z`S`|+λ
2

|S`|2
ei arg(S`Z`) if |Z`S`|

|S`|2
< 1− λ

2|S`|2

1 else

∀` ∈ {0, ..., L}.

DAFX-24



Proceedings of the 19th International Conference on Digital Audio Effects (DAFx-16), Brno, Czech Republic, September 5–9, 2016

Note that some of these solution formulas can be found for the case
of Gabor multipliers in [7, 8]. Since we found them to be useful in
the general case of frame multipliers [12], we include their proof
in the appendix, Section 7.

Remark 3.2. Let Φ : CL → R be as in (7). Then the different
regularization terms have the following properties:
a) r(m) = ‖m− 1‖22 helps to control the total energy. Moreover,

if we use normed tight frame bounds, i.e. A = B = 1,we favor
a multiplier close to the identity operator. This regularization
term produces spurious oscillations in the mask m̃, caused by
a bad estimation of the phase. A simple calculation shows the
reason of the oscillations. Let (j, k) be a point of the time-
frequency plane and let the input and the output signal have
a phase difference of π, i.e. Z = Seiπ . Then m̃ at the point
(j, k) is given by

m̃ =
SZ + λ

|S|2 + λ
=
|S|2 eiπ + λ

|S|2 + λ
.

This short calculation shows the presence of amplitude modu-
lations of the mask due to the diagonal approximation, cp. [7,
p. 43 et seq.].

b) r(m) = ‖ |m| − 1‖22 gives us the possibility of avoiding spu-
rious oscillations of the amplitude of m̃, apart from that fact it
has the same properties as the previous regularization term in
a).

c) r(m) = ‖m− 1‖1 yields sparsity, where the mask is forced to
stay close to 1 which corresponds to "no transformation". This
regularization term also produces spurious oscillations.

d) r(m) = ‖ |m| − 1‖1 forces m̃ to sparsity of the deviation
from the absolute value 1 and also avoids the oscillations of the
previous regularization term in c). For some more information
on this regularization term consider [14].

In the next section we will visualize these properties by analyzing
examples for diagonal approximation with different regularization
terms.

4. NUMERICAL EXPERIMENTS

4.1. Two examples of frames used in audio processing

The results in Section 3.1 hold for general frames and in particu-
lar also in higher dimensions, that is, for frames for L2(Rd) with
d > 1. This can be interesting for image or video processing. In
the current work, however, we focus on audio signals and present
some numerical simulations using classical Gabor frames [11] on
the one hand and a constant-Q transform based on non-stationary
time-frequency Gabor frames, [15, 16] on the other hand. We
briefly introduce the necessary notions next.
The frame elements of Gabor frame are given by time-frequency
shifted versions of a non-zero window function g ∈ H, i.e.
G(g, a, b) = {gn,k = TakMbng : k, n,∈ Z}. Here, Takg(t) =
g(t−ak) andMbng(t) = g(t)·e2πibn denote time- and frequency
shift, respectively.
For the non-stationary Gabor frame-based constant-Q transform,
the construction of Gabor frames is generalized as to allow for
windows with adaptive bandwidth. To this end, the frame ele-
ments are given by {gn,k = Tnakgk : k, n,∈ Z}. Thus, while
the time-shifts are carried out along a regular lattice as in the Ga-
bor case, the frequency shifts are replaced by choosing a separate

window for each desired frequency band. Accordingly, the time-
shift parameter ak can be chosen separately for each band. For
all details, in particular regarding the precise choice of parameters
for the constant-Q transform, we refer to [15, 16]. We note that
for both Gabor frames and and non-stationary Gabor frames, care-
ful choice of windows and sampling parameters a, b leads to the
situation of painless non-orthogonal expansions, [17], for which
straight-forward inversion is possible.
Implementations along with excellent documentation for both Ga-
bor frames and the constant-Q transform can be found in the LTFAT-
toolbox, [18, 19] and [16].

4.2. Experimental setup

In this section we describe the setup for the subsequent numerical
experiments. All mentioned MATLAB routines are found on the
website [5]. We want to find the best fitting multiplier of the in-
verse problem (5) using different regularization terms introduced
in Theorem 3.1. To do so, we use an input and an output signal
with sufficient similarity. In the following two experiments we
use the sound of a flute and a violin of the VSL [20] playing the
same fundamental frequency and vowels sang by a man [21] and a
woman [22], also using the same fundamental frequency for suffi-
cient similarity. The sound files are sampled with a rate of 44100
Hertz. To make the sound files the same length, we use the MAT-
LAB code samesize_power2.m which fades out the signals
with exponential decrease. Moreover, to display the spectrogram
of our sounds we use a logarithmic scale, cp. [6, p.24].
In order to show that different classes of frames can be used, we
will consider Gabor frames and non-stationary Gabor frames as
introduced in Section 4.1, within the numerical examples. The
MATLAB code diagaprox.m is used to do the numerical cal-
culations with Gabor frames by using the closed-form solutions
stated in Theorem 3.1 and the code diagaprox_cq.m does this
by using a constant-Q transform, based on non-stationary Gabor
frames. Note that in the finite discrete case underlying the numer-
ical implementationsH = CL.
The algorithm basically uses the following steps:
• Input: s (source signal), z (target signal) of the same length

(here 1 second) due to samesize_power2.m, a preferred
norm and λ.

• Tranformation done with:

– Gabor transform [dgt.m] of s→ S and z → Z with
a Hann-window and the parameters a = 256,M =
L
b

= 1024.

– Constant-Q transform [cqt.m] of s → S and z →
Z with frequency region [100Hz; 22050Hz], 64 bin
per octave and 1000 time channels per second.

• Obtain the mask m as in Theorem 3.1 corresponding to the
respective norm used for regularization.

• Inverse transform [idgt.m] or [icqt.m], respectively, of
m ∗ S to obtain a z̃, the target signal.

• Output: m and z̃.

4.3. Sound morphing

4.3.1. Using musical instruments

For the first experiment we use the sound of a flute and a violin
from the VSL [20]. Since sufficient similarity is required, we con-
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sider the same fundamental fequency of the instruments for each
morphing procedure. Morphed sounds can be obtained by varying
λ in Formula (5). A high value of λ puts heavy weight on the reg-
ularization term r(m), hence forces the mask to be close to one,
i.e. "no transformation" and the signal reconstructed from m̃ ∗ S
is similar to the source/input signal. A small λ does not take the
regularization term that much into account. This leads to a mask
which yield a reconstructed signal close to the target signal.
The choice of these two instruments is due to their different tim-
bres and harmonics. The violins sound is rich in overtones, whereas
the flute has less overtones.
The following experiment is done with constant-Q transform. Sim-
ilar results can be achieved using the Gabor transform, cp. [5].
In Figure 1 we show stepwise morphing, i.e. using different λ
(= 10−2, 10−6) starting from the original flute sound as source
going to the violin as target. This case is very interesting, because
it is more difficult for the mask to ’generate’ overtones, since the
violin has more overtones than the flute, than suppressing them,
as it would be the other way round. As common fundamental fre-
quency we use B5; the original sounds and sounds resulting from
morphing steps can be found online [5].
In Figure 1 one can see how the noise, coming from the violin in-
creases from step to step. For λ = 10−2 the sound is a mixture
of flute and violin, but for λ = 10−6 we can verify the sound as a
violin.

4.3.2. Using spoken vowels

The second experiment considers German vowels, sung by a pro-
fessional singer. We use a female [22] as well as a male [21] voice.
Both have the fundamental frequency E4. This morphing task is
interesting because vowels build different formants, i.e. acous-
tic resonance of the human vocal tract, where certain harmonics
are stronger than others. Within this experiment it is visible that
similar vowels, like the german spoken "e" and "i" which sound
very similar, also morph with comparably bigger λ into each other.
Several tables summarizing which λ has to be used to get recon-
struction of the target signal can be found in [5]. In Figure 2, we
perform again a morphing procedure using constant-Q transform.
The morphing is performed stepwise starting from the vowel "a",
with steps in between with λ = 10−4 and λ = 10−8, reaching
target vowel "i". The noise level goes down in the range between
[600Hz, 2000Hz]. Hence the harmonics are better visible and fo-
cus on 300Hz which is the characteristic formant for the vowel "i"
[23].
Another thing that can be observed, concerning the mask of the
morphing steps are spurious oscillations which are mentioned in
Remark 3.2 a). Since the observation is almost only visible us-
ing the Gabor transform, we use this transformation to generate
Figure 3. Nevertheless there was no audible difference within the
morphing experiments. The morphing is, as mentioned above, per-
formed going from vowel "a" to "i" and to show the oscillations,
we take the mask corresponding to λ = 10−2. In Figure 3 the up-
per image shows the mask obtained with the regularization term
r(m) = ‖m− 1‖22. Here oscillations are visible between 3000Hz
and 4000Hz. The lower image neglects the phase by using the
modulus of the mask, i.e. r(m) = ‖ |m| − 1‖22, hence no oscilla-
tions are visible.

Figure 1: Stepwise morphing from flute to violin, with steps in
between at λ = 10−2 and λ = 10−6.
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Figure 2: Stepwise morphing from vowel "a" to "i", with steps in
between at λ = 10−4 and λ = 10−8.

Figure 3: Spurious oscillations for λ = 10−2, obtained by morph-
ing vowel "a" into "i".
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5. CONCLUSION AND PERSPECTIVES

In this paper a morphing procedure was proposed, using frame
multipliers in order to morph one audio sound into another. A di-
agonal approximation was performed in order to get a closed form
solution of a regularized inverse problem.
Comparing the solution of the diagonal approximation with the so-
lution computed by iterative shrinkage threshold algorithms (ISTA)
yield only a marginal difference. For the monotone fast ISTA the
solution was better audible. Here it would be interesting to figure
out, why this is the case. Nevertheless the computational effort
increases strongly. The obtained solutions were used in the ex-
perimental chapter, to show that this approximation also leads to
satisfactory perceptive quality. The general concept of frames al-
lowed to state different examples. We focused on the usage of
Gabor frames and non-stationary Gabor frame based constant-Q
transform.
Extensions of the presented work will include the usage of other
frames, for example wavelet frames in the context of image morph-
ing and other non-stationary time-frequency frames. Furthermore,
the class of coefficient priors will be extended to mixed-norm and
neighborhood-based priors, [24, 25], which will lead to a structure-
based signal modification.
Another strand of research will investigate, why spurious oscilla-
tions, mentioned in Remark 3.2 and rather prominent if the mor-
phing is based on Gabor frames, are barely visible for constant-Q
transform, while the perceptual difference seems marginal. To this
end, we will set up an evaluation framework based on perceptual
criteria, cp. [26], since comprehensive listening experiments are
costly. In parallel, we will isolate the oscillations and use sub-
sequent synthesis to understand their behaviour and consequence
on perceptual outcome. Finally, the variety of sounds obtained by
con- trolled morphing can be used for data augmentation, [27],
within machine learning tasks for audio signals.
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7. APPENDIX

Proof of Theorem 3.1. To find a minimum of (7), we have to find
zeros of its first derivative. We first rewrite ‖Z −m · S‖22 as the
sum of its entries squared

Φ(m) =
∑
`∈Λ

Φ`(m`)

=
∑
`∈Λ

(
|Z` −m`S`|2 + λr(m`)

)
=
∑
`∈Λ

(
(Z` −m`S`)(Z` −m`S`) + λr(m`)

)
.

Writing the complex vectorm asm = mr+imi,wheremr,mi ∈
RL we obtain

=
∑
`∈Λ

(
(Z` − S`(mr + imi))(Z` − S`(mr + imi)) + λr(m`)

)
.

The derivative of Φ can now be understood as a derivative in two
variables. Using the formula

∂Φ(m)

∂m
=

1

2

(
∂Φ(mr,mi)

∂mr
− i∂Φ(mr,mi)

∂mi

)
(8)

we obtain the derivative for holomorphic functions [28]. Next we
fix one ` since, if we take the derivative component-wise, the other
components will vanish. The derivative with respect to the first
variable mr

` is

∂Φ`(mr
` ,m

i
`)

∂mr
`

=− S`(Z` − S`(mr + imi))

+ (Z` − S`(mr + imi))(−S`) + λ
∂r(m`)

∂mr
`

.

Using z+z
2

= Re(z) we get

= −2Re
(
S`Z`

)
+ 2 |S`|2 mr

` + λ
∂r(m`)

∂mr
`

.

Similarly we compute the derivative with respect to mi
`

∂Φ`(mr
` ,m

i
`)

∂mi
`

= 2 · Im
(
S`Z`

)
+ 2 |S`|2 mi

` + λ
∂r(m`)

∂mi
`

.

Using Equation (8) we obtain

∂Φ`(m`)

∂m`
=

1

2

(
− 2Re

(
S`Z`

)
+ 2 |S`|2 mr

` + λ
∂r(m`)

∂mr
`

− 2iIm
(
S`Z`

)
− 2i |S`|2 mi

` − iλ
∂r(m`)

∂mi
`

)
.

To obtain a minimum, we have to set the following equation to
zero:

∂Φ`(m`)

∂m`
= −S`Z`+|S`|2 m`+

λ

2

(∂r(m`)

∂mr
`

− i∂r(m`)

∂mi
`

)
︸ ︷︷ ︸

ρ(m`)

= 0.

(9)
Now we have to distinguish according to the different regulariza-
tion terms.
a) Considering r(m) = ‖m−1‖22 as the first regularization term,

we have

ρ(m`) =
λ

2
(2mr

` − 2− 2imi
`) = λm` − λ.

Thus, solving Equation (9) with respect to m` and taking the
conjugate, we obtain for every `

m̃` =
S`Z` + λ

|S`|2 + λ
.

b) For the regularization term r(m) = ‖ |m| − 1‖22 we have

ρ(m`) =
λ

2

(
2λmr

`−2
λmr

`

|m`|
−2λmi

`+2
λmi

`

|m`|

)
= λm`−

λm`

|m`|

If we plug this term into Formula (9), we obtain

m`

(
|S`|2 + λ− λ

|m`|
)

= S`Z`. (10)

Since there is a term containing |m`| in the brackets of this
solution, we multiply m` with its conjugate and obtain

m`m` = |m`|2 =
|Z`S`|2(

|S`|2 + λ− λ
|m`|

)2 .
Solving this equation with respect to the modulus of m` and
using the formula z = |z| ei arg(z), the phase is only given by
S`Z` in Equation (10), because the term in the brackets is real.
The solution of our functional for every ` is

m̃` =
|Z`S`|+ λ

|S`|2 + λ
· ei arg(S`Z`).
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c) For the regularization term r(m) = ‖m − 1‖1 we apply a
substitution m− 1 = µ, hence

ρ(µ`) =
λ

2

(
µr`
|µ`|
− i µ

i
`

|µ`|

)
=
λ

2

µ`
|µ`|

.

Again we have to multiply with the conjugate in a similar man-
ner as in case b) and we again use the formula µ = |µ| ei arg(µ).
Undoing the substitution and applying a threshold argument
obtained due to |µ`| > 0, we get

m̃` =

∣∣S`∣∣ |Z` − S`| − λ
2

|S`|2
· ei arg(S`(Z`−S`)) + 1 (11)

as long as

|S`| |T` − S`| >
λ

2
.

d) For r(m) = ‖ |m| − 1‖1 we have to make a distinction in two
cases |m`| > 1 and |m`| < 1, from which

ρ(m`) =
λ

2

(
± mr

`

|m`|
∓ mi

`

|m`|

)
= ±λ

2

m`

|m`|

is obtained.
Using |m`|2 = m` ·m` and z = |z| ei arg(z) we obtain

m̃` =


|Z`S`|−λ2
|S`|2

ei arg(S`Z`) if |Z`S`|
|S`|2

> 1 + λ
2|S`|2

|Z`S`|+λ
2

|S`|2
ei arg(S`Z`) if |Z`S`|

|S`|2
< 1− λ

2|S`|2

1 else.
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ABSTRACT

A method to measure the response of a linear time-variant (LTV)
audio system is presented. The proposed method uses a series of
short chirps generated as the impulse response of several cascaded
allpass filters. This test signal can measure the characteristics of an
LTV system as a function of time. Results obtained from testing
of this method on a guitar phaser pedal are presented. A proof of
concept gray-box model of the measured system is produced based
on partial knowledge about the internal structure of the pedal and
on the spectral analysis of the measured responses. The temporal
behavior of the digital model is shown to be very similar to that of
the measured device. This demonstrates that it is possible to mea-
sure LTV analog audio systems and produce approximate virtual
analog models based on these results.

1. INTRODUCTION

Historically, guitar effect pedals have been designed and imple-
mented using analog circuitry. Nowadays, digital effects have be-
come more common and widely accepted, as they are more ver-
satile and their costs can be reduced. Yet many of the old, analog
devices have cult-like following, due to their alleged distinctive
sound or their association with famous musicians [1]. Vintage ana-
log pedals are rare and can reach high prices in secondary markets
[2]. Therefore, to cater to consumers who are after particular ef-
fects, virtual analog modeling of these classic devices is needed.
Some research on modeling different distortion, fuzz, reverb, and
delay units can be found in literature [1, 3]. One particular effect,
the phaser, is an interesting topic of study due to its time-varying
nature. In this paper, an overview on the internal workings of a
phaser is given. Then, a method to measure time-varying linear
effects is introduced, along with results obtained from measuring
a phaser pedal. These results are then used to develop a digital
model of the phaser effect.

Two opposite system modeling approaches are ‘black-box’ and
‘white-box’ models [1]. Black-box models are such that the mod-
eling is entirely based on input-output measurements of the system
and there is no knowledge of the inner workings of the system.
An example of black-box modeling of effect units can be found
in [4]. On the other hand, white-box models are based on circuit
analysis or other form of knowledge of how the system works.
A white-box model of a phaser pedal was presented by Eichas et
al. [2]. The technique followed in this study falls under the cat-
egory of ‘gray-box’ modeling, which is defined as an approach
where some knowledge of the internal characteristics of the sys-
tem is used when modeling it based on measurements [1].

∗ The work of F. Esqueda is funded by the Aalto ELEC Doctoral School.

This paper is organized as follows. Section 2 discusses phas-
ing using allpass filters. In Section 3, the steps necessary to mea-
sure the time-varying response of a phaser are presented. Section
4 presents the measured responses of an analog phaser pedal. Sec-
tion 5 shows how the measured response is modeled in the digital
domain. Finally, concluding remarks are given in Section 6.

2. BASICS OF PHASING

The phasing effect introduces time-varying notches in the spec-
trum of the input signal, creating a characteristic swooshing sound.
Historically-famous phaser pedals, such as the MXR series and the
Uni-Vibe, work by feeding a copy of the input signal into a chain
of identical first-order allpass filters and mixing the output of this
chain with the original signal [2, 3]. In this design, the location of
the notches is determined by the break frequencies of the filters,
which are modulated by a low frequency oscillator (LFO).

The block diagram for a basic digital phaser is shown in Fig. 1.
By adjusting the wetness of the phaser, i.e. the ratio between origi-
nal and filtered signals, using gain parameters G and W , the depth
of the notches and the overall intensity of the effect can be con-
trolled. To keep the output signal bounded, G and W are usually
coupled so that G = 1−W . The deepest possible notches are ob-
tained when W = G. In this architecture, the number of notches
introduced is determined by the number of the first-order allpass
filters used, so that forN allpass filters (assumingN is even),N/2
notches are produced on positive frequencies. Usually the number
of allpass filters in phasers in phasers is even.

The transfer function of a first-order digital allpass filter is

A(z) =
a1 + z−1

1 + a1z−1
, (1)

where coefficient a1, which also determines the pole, is defined in

Figure 1: Block diagram of a digital phaser with a feedback loop
via a unit delay. In most common phasers, there is no feedback
loop, meaning that their Fb = 0.
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Figure 2: Phase response of a first-order allpass filter with break
frequencies 250 Hz (a1 = −0.967), 1000 Hz (a1 = −0.869), and
5000 Hz (a1 = −0.346).

terms of ωb, the break frequency of the filter in rad/s, as

a1 = −1− tan(ωbT/2)

1 + tan(ωbT/2)
≈ −1− ωbT/2

1 + ωbT/2
≈ −1 + ωbT, (2)

where T is the sampling period of the system. For stability, the
condition |a1| < 1 is required [5]. The phase response of the
allpass filter (1) as a function of angular frequency ω is given by

Θ(ω) = −ω + 2 arctan

(
a1 sinω

1 + a1 cosω

)
. (3)

During phasing, the allpass filter chain itself does not change
the magnitude spectrum of the signal; it causes phase shifting [6].
From (3), we observe that each first-order allpass filter causes a
frequency shift of −π radians at half the sampling frequency (i.e.
at ω = π). At the break frequency the filter will introduce a phase
shift of exactly −π/2 rad/s [7, 8]. Fig. 2 shows example phase
responses of the first-order allpass filter with three different break
frequencies. The sample rate fs = 1/T in these and all other
examples in this paper is 44.1 kHz.

When several allpass filters are cascaded, their combined phase
response is the sum of the individual phase responses. So, when
N first-order allpass filters are cascaded, their combined phase re-
sponse will introduce a maximum phase shift of −Nπ radians. In
this case, we assume N to be a positive even integer. Adding the
filtered and original signals will cause notches at the frequencies at
which the phase shift is an exact odd integer multiple of −π rad/s,
or −kπ with k = 1, 3, 5, ..., N − 1 [3, 6, 7, 9]. Fig. 3 shows the
phase response of two, four, and six cascaded allpass filters, high-
lighting the frequencies where notches will appear in a phasing
scenario.

The position of the spectral notches in a phaser is changed
over time by modulating the break frequencies of the filters using
an LFO. The LFO usually has a frequency in the range from 0.1
to 10 Hz, and its waveform is typically triangular or sinusoidal. In
analog phasers, the LFO changes the physical values of compo-
nents in the allpass filters. In digital implementations, the LFO
controls the coefficients of the allpass filters [3, 6, 8].

A limitation of using first-order allpass filters to implement
phasers is that the width of the notches cannot be modified inde-
pendently. Both the notch width and depth are controlled using
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Figure 3: Phase response of two, four, and six cascaded first-order
allpass filters with break frequency at 250 Hz (a1 = −0.967). The
squares indicate the resulting notch frequencies in each case, when
used in a phaser.

the wetness parameter W , which changes both of them simultane-
ously. Additionally, controlling the location of the notches is not
trivial. Both of these issues can be addressed by using second-
order allpass filters instead, as they allow a more independent con-
trol of the notch characteristics [9].

Instead of using allpass filters, phasers can also be implemented
by using cascaded notch filters [3, 10]. Notch filters allow better
control of notch locations and depth than allpass filters. However,
phasers implemented in this manner are more complex and ex-
pensive than their allpass counterparts [3, 10]. In analog phasers,
more complexity means more physical components, higher costs,
and bigger pedals. On the other hand, in a digital implementation
the complexity may not represent such a big problem, but should
still be considered [3].

Some phasers incorporate a feedback loop in their structure,
feeding the output of the allpass chain back into its input. This ar-
chitecture is illustrated in Fig. 1. A unit delay was inserted to this
feedback path to avoid having a delay-free loop [8]. The summing
of the output of the allpass chain with the input signal causes a
similar effect as the summing of the output with the original sig-
nal, as again the two added signals have the phase difference of
−π, −3π, −5π, etc. at certain frequencies. In practice, the feed-
back loop causes drastic changes in the magnitude response of the
phaser, since resonances are introduced and the frequencies be-
tween the notches are boosted. This changes the overall shape of
the magnitude response, as shown in Fig. 4 [7, 8].

3. MEASURING A TIME-VARIANT SYSTEM

Linear time-invariant (LTI) systems are typically analyzed by mea-
suring their impulse response using a sine sweep, white noise, or
another test signal of long duration. The time-varying nature of
phasers means that these methods are unreliable, as the response
of the system changes over time. To counter this, the measure-
ment signal used must be short and should be played repeatedly
through the system in order to observe the response of the system
at different moments in time.

In this work, we assume the system under study to be linear
and time-variant (LTV), i.e. it varies over time but does not intro-
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Figure 4: Magnitude response of a phaser having ten first-order
allpass filters and a feedback loop (Fb = 0.4, G = 0.5, W =
0.5). Four of the allpass filters use the coefficient value −0.9490
and six use −0.8991.

duce harmonic distortion. This condition is mostly true for filter-
based non-saturating effects, such as the phaser, when the input
signal level is not very high. The following subsections describe
the measurement process used to evaluate the frequency response
of an LTV system.

3.1. Measurement signal

To measure the response of an LTV system at an arbitrary moment
in time, we must first design a short test signal. This signal should
be short enough to guarantee the system being measured will re-
main fairly static during the measurement process. Arnardottir et
al. used an impulse train to measure the behavior of a time-varying
tape delay effect [11]. Alternatively, a very short chirp can be
used for this purpose, since it yields an improved signal-to-noise
ratio (SNR). Such a signal is described in [5] and [12]. Repeatedly
evaluating the instantaneous response of the system over a period
of time will allow us to observe its time-varying response.

Following the work of [5] and [12], we can synthesize a chirp
using the impulse response of a cascade of first-order allpass fil-
ters. The idea is that even though allpass filters do not alter the
frequency content of a signal, when dozens of them are cascaded,
the result is a system that introduces significantly different delays
for different frequencies. These differences cause frequencies to
be played at different times, similar to a sine sweep. The advan-
tage of synthesizing a chirp in this manner is that extremely short
signals, e.g. 10 or 50 ms long, can be produced with relative ease
[5, 12]. In sine sweep measurements, the minimum length of the
signal is limited by the low frequencies [12]. The lower the fre-
quencies that need to be measured, the longer the sine sweep must
be.

As indicated by (3), the pole a1 of the first-order allpass filter
determines the overall phase response of the filter. Since the phase-
shift and group delay are closely related, this pole also changes the
group delay of the filter. The group delay of a single first-order
allpass filter can be calculated with the following formula:

τg(ω) =
1− a21

1 + 2a1 cos(ω) + a21
, (4)

Figure 5: Group delay of a first-order digital allpass filter with
different coefficient values.

where ω is angular frequency. Fig. 5 illustrates the group delay of a
first-order allpass filter for different poles values. As can be noted,
the group delays are very small even for large pole values, less than
20 samples. However, when several allpass filters are cascaded,
their group delays are added, so with ten filters in cascade the total
group delay at low frequencies is almost 200 samples [5].

The group delay curves show that the resulting chirp-like im-
pulse response first plays the high frequencies and then sweeps
downwards to the lowest frequency. A chirp constructed using 64
allpass filters by setting a1 = −0.9 is shown in Fig. 6. We can see
that the chirp is only about 1500 samples long (approx. 30 ms), yet
it still covers all the frequencies of interest [5].

In addition to meeting the requirement of being short, this
chirp can be easily repeated periodically, which makes it a suitable
test signal for LTV devices. Additionally, the way in which this
signal is generated has one significant advantage; since the chirp
is generated by feeding an impulse into an allpass filter chain, this
impulse can be reconstructed by processing the chirp backwards
through the same filter chain. In fact, this operation implements the
deconvolution, which is needed to retrieve the impulse response of
a system. This makes measuring LTV systems with a signal con-
taining multiple chirps simple, as the measured signal can then be
processed backwards through the allpass filter chain. The result-
ing multiple responses can be analyzed, generating a picture of
how the magnitude response of the system changes over time [12].

The fact that the unprocessed chirp can be reverted back into
an impulse means that several chirps can be superimposed (added)
within a short time period. In fact, they may overlap in time. The
only restriction for the spacing of the chirps is that when the signal
is reverted back through the allpass chain, the resulting impulse
responses should not overlap. If they do, the analysis cannot be
performed so easily. A measurement signal with a duration of ap-
prox. 1 s, synthesized using chirps generated by 64 allpass filters
with coefficient a1 = −0.9 (see Fig. 6), spaced at 30 ms intervals
is shown in Fig. 7. This figure illustrates the test signal in the time
domain, containing a total of 33 chirps in 1 s.

3.2. Measurement analysis

The aim of this work is to measure a real phaser pedal and observe
all the interesting aspects about its behavior. For a basic phaser
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Figure 6: Time-domain waveform of a single chirp synthesized us-
ing 64 first-order allpass filters with pole parameter a1 = −0.9.

Figure 7: Time-domain waveform of an example measurement sig-
nal synthesized using 33 overlapping chirps (see Fig. 6).

pedal with only a speed knob, this can be achieved by measur-
ing the pedal at different speed settings. From the obtained mea-
surements we wish to observe the behavior and shape of the LFO,
along with the number and position of the notches over time.

The notches caused by a phaser can be identified by finding
the minima of the magnitude responses. To do so, the following
procedure was followed. First, the global minimum of the mag-
nitude spectrum was found. Once the location of the global mini-
mum was known, the adjacent local maxima were found, and the
area between these two local maxima was zeroed out. After the
original global minimum of the spectrum was removed, the next
one was found by repeating these steps. This process was repeated
until all the minima were found.

In this study, when converting the magnitude values to dB-
scale, a reference value of 1.7325 was used. This is the maximum
value of the spectrum of the first chirp used on the first measure-
ment. This value was chosen so that for all measurements, spectra,
and other values can easily be compared with each other.

An interesting aspect about the proposed measurement method
is how it reacts to changes in the length of the chirps forming the
measurement signal. If the chirps are too long, the minima will
appear to be ‘out of sync’. Due to the nature of the chirp, high

Figure 8: Distorted minima locations measured with a chirp gen-
erated with 2,048 allpass filters, which is too long.

frequencies are played before low frequencies. When high fre-
quencies are processed, the minima will be at a given location;
later, when the low frequencies pass through the system, the min-
ima locations will have already moved. This was tested by play-
ing signals with different chirp lengths through a phaser pedal and
observing how the resulting data changed. The chirp length was
adjusted by increasing the amount of cascaded allpass filters used
to generate it. The chirp was generated with 2,048 allpass filters
in cascade, with coefficient a1 = −0.9, which resulted in a chirp
that is roughly 40,000 samples long. The total test signal lasted
for 240,000 samples, with the chirps overlapping. The measured
results are shown in Fig. 8, where it can be clearly observed that
the minima do not occur at the same time. This can be corrected
by using shorter chirps. With these tests it was also noticed that
increasing the chirp length increases the SNR of the measured sig-
nal.

As expected, when the chirp length is very short, the SNR of
the measurement becomes low and the measured magnitude spec-
trum has clear artefacts. Therefore, it is desirable to find an op-
timal chirp length with which the spectral minima appear to be
synchronized at the same time with a good SNR. In this work, the
measurements were conducted with a chirp generated using a cas-
cade of 64 first-order allpass filters with a1 = −0.9, which was
repeated every 0.03 s.

4. MEASUREMENT RESULTS

The phaser pedal chosen for this study is the Fame Sweet Tone
Phaser PH-10. The similarities between the general appearance of
this pedal and the MXR Phase 100 suggest that the measured pedal
is a clone of the Phase 100.

The measured pedal has a single ‘speed’ potentiometer and
two switches. These switches are grouped and labeled simply as
‘Intensity’. Based on the observed behavior, we named the switch
on the right-hand side the ‘LFO switch’ and the one on the left the
‘feedback switch’. Both switches have two modes (‘on’ and ‘off’)
so overall there are four working modes.

The pedal was measured at different LFO speed settings for
all switch combinations. Seven steps were used: 0%, 17%, 34%,
50%, 67%, 84%, and 100% of the speed range. These steps were
chosen because the knob of the speed potentiometer was seven-
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Figure 9: Magnitude response of the measured pedal at different
times.

Figure 10: Estimated notches of the phaser pedal over time (LFO
speed at approx. 50%, LFO and feedback switches both ‘off’).

sided and the pedal did not have any marks printed on it. Then
the angles of the knob made it easy to see when the speed had
increased by 1/7th of its range. All measurements were conducted
at a 48-kHz sampling rate.

4.1. Measurements with both switches OFF

The Fame pedal was measured with both switches in the ‘off’ po-
sition using a 25-s test signal synthesized using non-overlapping
chirps placed at 30 ms intervals. Fig. 9 shows the measured mag-
nitude response at three different times. In this figure, we can
observe that the pedal introduces five notches, with the fifth one
lying well above 20 kHz. This means the phaser most likely op-
erates around a 10-stage filter network, another indication that the
studied pedal is a clone of the MXR Phase 100.

Fig. 10 shows the estimated notch trajectories during a 15-
second period. These data were generated using the method de-
scribed in the previous section. This figure reveals the existence
of five notches, with the fifth one lying mostly outside the audi-
ble range. It can also be noticed that the first notch has a range
of about a quarter of an octave, the second one has roughly one
octave, and the third one has about three octaves. Additionally, the
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Figure 11: Measured LFO frequency with seven different speed
settings and an exponential fit.

Figure 12: Estimated notches of the measured phaser over time
with the LFO switch ‘on’ and speed at approx. 50%.

notch trajectories seem to resemble a full-wave rectified sinewave.
This suggests that the LFO has this waveform in the ‘off’ mode,
rather than the typical triangular or sinusoidal shapes.

Moving on with the measurements, Fig. 11 shows the effect
of the speed potentiometer, which is approximately exponential.
The LFO range can be observed to be from about 0.1 Hz to 3.7 Hz.
These frequencies were estimated from the time differences be-
tween the lowest notch locations. For instance, in Fig. 10 the
time difference between the lowest notch locations is approx. 1.6 s,
which corresponds to the LFO frequency of about 0.6 Hz.

4.2. Effect of the LFO switch

The pedal was measured again with the LFO switch in the ‘on’
position. The overall appearance of the resulting magnitude re-
sponses were observed to be similar to the case of both switches
turned ‘off’. The LFO speed measurements also remained un-
changed. The main observed difference was the behavior of the
notches over time. This can be seen in Fig. 12, where it can be
noticed that the notch trajectories resemble triangular waves now.
Secondly, all five notches are now visible in the spectrum. In the
previous measurements only three notches were within the audi-
ble band during an entire cycle; the fourth notch was only partially
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Figure 13: Magnitude responses of the measured phaser at differ-
ent times with the feedback switch in the ‘on’ position (LFO speed
50%).

visible and the fifth notch was above 20 kHz throughout the mea-
surements. Therefore, it can be deduced that the right switch of
the pedal modifies the waveshape and range of the LFO, causing
the effect to be perceived as more ‘intense’, hence the label on the
pedal’s enclosure.

4.3. Effect of the feedback switch

From the measurements of the pedal with the feedback switch ‘on’
it was observed that the minima and speed behavior remained iden-
tical to the ‘off’ case. However, differences were observed in the
magnitude response of the pedal. These changes are quite drastic,
as the gain between the notches is boosted, the notch depths vary
considerably with time, and the overall shape of the magnitude re-
sponses at any given time is considerably different. This behavior
is shown in Fig. 13. It can be assumed that the left switch activates
a feedback path to the allpass filter chain, as the changes in the
response are similar to those seen in Fig. 4.

As a final note on the measured data, when both switches were
in the ‘on’ position, the resulting responses were a combination of
both effects: The notch behavior was similar to that of Fig. 12, and
the magnitude response behaved as in Fig. 13.

5. MODELING OF THE MEASURED PHASER

A gray-box digital model of the measured phaser was implemented
based on the collected data. Several design choices were made
based on basic knowledge of the internal workings of phaser ped-
als, hence the term gray-box. First, it was decided to use first-order
allpass filters only, as these are the building blocks of standard ana-
log phaser pedals [2, 9]. This design makes it impossible to control
the width of the notches independently, but is faithful to the orig-
inal analog design. Since measurements showed that the phaser
introduces five notches, the designed called for a network of ten
first-order allpass filters paired in groups of two. Then, with the
help of a simplified study of the circuit [13], it was observed that
the first and last pairs of filters were not being modulated. This can
be written as

A1 = A2 = A9 = A10 (5)

A3 = A4 = A5 = A6 = A7 = A8 (6)
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Figure 14: Estimated values of allpass filter coefficients c1 and c2
for a single LFO cycle, when the LFO switch is (a) ‘on’ and (b)
‘off’.

where Am is the transfer function of the mth allpass filter. This
means that only two coefficients are needed to model the phaser.

The location of the notches over a single LFO cycle for both
positions of the LFO switch were readily available from the mea-
surements shown in Figs. 10 and 12. An algorithm was devised
to find the pair of coefficients that best fit the measured data. This
was done by iterating over a large set of coefficient combinations
and evaluating the phase response of the allpass network at the
target frequencies analytically and computing the mean absolute
error. This optimization was performed using a standard sampling
rate of 44.1 kHz.

After some initial tests, it was observed that the pair of coeffi-
cients that gave the smallest error performed rather poorly at low
frequencies. This was attributed to the inaccurate nature of analog
systems. Even when the filters used in the original analog pedal
are supposed to be identical, the high tolerance levels of the com-
ponents make this condition impossible. To minimize this effect,
we decided to neglect the fourth and fifth notches for the case of
the LFO switch ‘off’ and the fifth notch for the case of the LFO
switch ‘on’ during the optimization process.

Several coefficient evaluations demonstrated the initial assump-
tion that the first and last pair of allpass filters are static. Based on
testing, coefficient c1, i.e. the coefficient for filters A1, A2, A9,
and A10 was assigned a fixed value of −0.89. Fig. 14(a) shows
the estimated value for coefficient c2, i.e. the coefficient for filters
A3...A8, for a single cycle when the LFO switch is ‘on’. As in-
ferred from the measurements, this coefficient can be modulated
using a triangular LFO. The range of this LFO must be between
[−0.84,−0.39]. Fig. 14(b) shows the estimated values for c2 when
the LFO switch is in the ‘off’ position. This LFO can be modeled
using a rectified sinewave ranging between [−0.49, 0.77].

The LFO speed control was modeled with a weighted least
squares fit of an exponential function to the data shown in Fig. 11:

flfo = 0.069e0.040s, (7)

where 0 ≥ s ≥ 100 is the LFO speed parameter and flfo is the
fundamental frequency of the LFO.

To validate the model, a test signal was phasered with the
model using coefficients estimated previously. A second-order IIR
filter was used to simulate the DC blocker observed in the measure-
ments. A DC blocking filter is common in analog audio electronics
and is used to remove hum [14] or to assure that the waveform is
symmetric before it enters a distortion unit. The transfer function
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Figure 15: Magnitude response of the modeled phaser compared
to the measured response with the LFO switch ‘off’. Parameters
G = 0.5 and W = 0.5 were used.

Figure 16: Magnitude response of the modeled phaser compared to
the measured response with the LFO switch ‘on’ (G = W = 0.5).

of the second-order DC blocker is

HDC =
1 + p

2

1− z−2

1− pz−2
, (8)

where p = 0.992 determines the pole location, which is an octave
lower than in the corresponding first-order design [14].

The phasered test signal was then analyzed using the same
method as the pedal measurements, and the magnitude responses
and notch frequencies at each time were found. A comparison of
the model’s magnitude response to that of the measured pedal in
Fig. 15 and Fig. 16 shows a close resemblance, but it can also be
seen that the notch frequencies are matched much better at low
than at high frequencies. Perceptually, the model accuracy in the
highest octave is not highly important, however.

When comparing the behavior of notches in the model, shown
in Fig. 17 and Fig. 18, and in the measured pedal (see Fig. 10 and
Fig. 12), it can be noticed that they are very similar. The measured
and the modeled notches have nearly the same the period, wave-
form, and frequency range. This can easily be seen in Fig. 19 in
which the notches of both the measured and the modeled phaser
are synchronized in time and are plotted for roughly two periods

Figure 17: Estimated notch frequencies of the digital phaser model
emulating the case when the LFO switch is ‘off’ (full-wave recti-
fied sine LFO), the feedback switch is ‘off’, and the speed is set at
54%. Cf. Fig. 10.

Figure 18: Estimated notch frequencies of the digital phaser
model emulating the case when the LFO switch is ‘on’ (triangular
LFO), the feedback switch is ‘off’, and the speed is set at 54%.
Cf. Fig. 12.

with zoomed in frequency axis to better see the differences. One
reason for the minor deviation is the LFO waveshape, which was
modeled as strictly triangular in this case. However, an analog
LFO of a phaser does not produce a perfect triangular waveform,
but there is some degree of curvature in the waveform.

Furthermore, modeling of the phaser with the feedback was
tested, but it was noticed that the model used could not produce a
response identical to the measured one with the feedback switch
‘on’. An example of the model’s response with feedback is shown
in Fig. 4. It can be compared to the response of the measured
system in Fig. 13. In the model, the notch locations are again
correct, but the resonances between the notches cannot be matched
with those of the measured system.

Sound examples and Matlab code related to this work are avail-
able online [15].

DAFX-37



Proceedings of the 19th International Conference on Digital Audio Effects (DAFx-16), Brno, Czech Republic, September 5–9, 2016

Figure 19: Comparison of three notches of the measured and mod-
eled phaser as a function of time (LFO switch ‘on’; triangular
LFO).

6. CONCLUSIONS

A method to measure time-varying audio effects was proposed. It
uses a sequence of very short chirps to measure the impulse re-
sponse of the system under measurement multiple times, and from
them a characterization of the system can be produced. In the
case of phasers, the spectral notches at different times are extracted
from the measurements. The behavior of the magnitude response
and notch locations in time reveals the operating principle of the
measured phaser.

The method was tested by measuring a phaser pedal, and the
results were analyzed. For example, the LFO frequency for dif-
ferent speed settings was measured and an exponential mapping
was observed. The effect of the two switches of the pedal were
analyzed based on the measurements, with one changing the LFO
signal’s waveshape and range while the other adding a feedback
around the allpass filter loop. A gray-box virtual analog model of
the phaser was calibrated based on the measurements.

In the gray-box model the idea was to emulate the measure-
ments, making it easier through some knowledge of the pedal.
Overall the resulting model behaved similarly as the data after
which it was modeled. However, the modeling of the feedback
feature was not accurate in details. It could be improved in the fu-
ture by using a modeling technique which does not need a fictitious
unit delay in the feedback loop [16, 17].
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ABSTRACT

This paper describes black-box modeling of distortion circuits.
The analyzed distortion circuits all originate from guitar effect
pedals, which are widely used to enrich the sound of an electric
guitar with harmonics. The proposed method employs a block-
oriented model which consists of a linear block (filter) and a non-
linear block. In this study the nonlinear block is represented by
an extended parametric input/output mapping function. Three dis-
tortion circuits with different nonlinear elements are analyzed and
modeled. The linear and nonlinear parts of the circuit are analyzed
and modeled separately. The Levenberg–Marquardt algorithm is
used for iterative optimization of the nonlinear parts of the cir-
cuits. Some circuits could not be modeled with high accuracy, but
the proposed model has shown to be a versatile and flexible tool
when modeling distortion circuits.

1. INTRODUCTION

Virtual analog modeling has widely been done before. The fo-
cus in virtual analog modeling of electric guitar equipment lies
on recreating an analog reference device as close as possible. In
[1–7] this has been done with great success by analyzing the ana-
log reference circuit and transferring the circuit into a mathemat-
ical model, which is able to recreate the original’s characteristics.
This circuit-based approach achieves very convincing results and
the digital model is mostly indistinguishable from the analog refer-
ence device for the human ear. But this precise approach also has
drawbacks. To create the digital model the circuit diagram has to
be known, as well as the characteristic curves of every nonlinear
circuit element, e.g. diodes, transistors, transformers or vacuum
tubes. If no circuit diagram is obtainable, time-consuming reverse
engineering of the circuit has to be performed, as described in e.g.
[8].

Another drawback of this method is the computational effort
which arises due to nonlinear circuit elements. For every nonlinear
circuit element at least one nonlinear equation has to be solved per
time step. Depending on the nonlinear solver and the initial param-
eter set, this can drastically influence the computational load of the
digital model. Although Holmes et al. described a method for im-
proving the nonlinear solver in [9], the computational effort is still
high, especially for complex circuits with multiple nonlinearities.

Alternative approaches for modeling of distortion circuits are
found in [10] and [11]. Block-oriented models are used to repre-
sent the distortion circuit. A block-oriented model generally con-
sists of linear blocks and static nonlinear blocks. Some common
topologies have conventional names, like Hammerstein model (static
nonlinearity followed by a filter in series), Wiener model (lin-
ear filter followed by a static nonlinearity in series) or Wiener–

Hammerstein model (filter followed by static nonlinearity followed
by filter). In [10] a parallel, generalized polynomial Hammerstein
model is used. Each parallel branch represents the different har-
monic components of the reference system. In [11] principal com-
ponent analysis is used to reduce the complexity of the model pre-
sented in [10].

In [12] a completely parametric Wiener–Hammerstein model
is used to automatically identify distortion guitar effect pedals.
The structure of the used Wiener–Hammerstein model is the series
connection of a parametric filter followed by a nonlinear block,
which is also used in this work, followed by another parametric
filter. The filters are identified by iterative parameter optimization,
using low-level noise as input signal. To find the initial parame-
ter set for the nonlinear part of the model, a time-consuming grid
search is performed.

As in [12] the basic idea behind this work is to analyze and
model nonlinear distortion circuits, without knowledge of the cir-
cuit itself. Only input/output measurements are performed to ad-
just the parameters of a block-oriented, nonlinear model to recre-
ate the characteristics of the analog reference device. In this work,
only parts of distortion circuits should be modeled, which use dif-
ferent electronic components to create distortion. In this work the
Wiener–Hammerstein model from [12] could be reduced to an ex-
tended Wiener model (filter followed by nonlinear block), because
all chosen circuit parts did not have any filter at the output. The
aim of this work is to analyze how well such a simple model can
recreate the behavior of the circuits with an automated optimiza-
tion procedure.

Section 2 describes the analyzed distortion circuits and Sec. 3
explains the topology of the extended Wiener model. Sections 4
and 5 describe the modeling process. Section 6 compares the iden-
tified models to the reference circuits and Sec. 7 concludes the pa-
per.

2. HARDWARE

Three different distortion circuits were analyzed in this work. The
first one was a simple diode clipper with pre-amplification of the
input signal, the second one a BJT distortion stage of an Electro
Harmonix - Big Muff Pi

TM
and the operational amplifier based

distortion stage of an Ibanez - Tube Screamer
TM

. All circuits were
simulated with a spice circuit simulator, LTSpice [13].

2.1. Diode Clipper

The circuit of the diode clipper can be seen in Fig. 1. It is an ex-
tension of the diode clipper circuit from [14] with an additional
non-inverting amplifier.
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Vin Vout

R1

R2

R3

C1 D1 D2

R1 90 kΩ C1 10 nF
R2 10 kΩ D1 1N4148
R3 2.2 kΩ D2 1N4148

Figure 1: Circuit of the diode clipper with pre-amplification.

The input signal is amplified by the non inverting amplifier
with a factor of 1 + R1/R2 = 10 and the resulting amplified sig-
nal passes through a low-pass RC circuit with cut-off frequency
fc = 1/(2πR3C1) ≈ 7.23 kHz and finally through the anti-
parallel 1N4148 diodes. The supply voltage of the operational
amplifier was set to a relatively high value of±30 V to avoid addi-
tional clipping. The simulated operational amplifier was a TL072.

2.2. Big Muff Distortion Stage

The distortion stage of the Big Muff can be seen as an extended
BJT transimpedance gain stage as described in [15]. It was also
modeled in [7], using wave digital filters.

Vin

Vout

R1

R2 R3

R4

R5

C1

C2

C3
D1

D2

V+

Q1

R1 10 kΩ C1 100 nF
R2 100 kΩ C2 560 pF
R3 150 Ω C3 1µF
R4 470 kΩ D1 1N914
R5 10 kΩ D2 1N914
Q1 RC4558

Figure 2: Circuit of a Big Muff transimpedance gain stage.

Fig. 2 shows the circuit around the NPN transistor. In addition
to the feedback from collector to base via R4 and C2, there are
two anti-parallel diodesD1,D2 as well as the capacitorC3. These
diodes introduce further clipping in addition to the clipping of the
BJT circuit itself. The supply voltage was set to V+ = 9 V.

2.3. Tube Screamer Distortion Stage

The Tube Screamer is based on an operational amplifier gain stage,
also described in [15–18]. The input signal is amplified and addi-

tionally distorted by two anti-parallel diodes in the feedback path
from output to negative input of the op-amp.

Vin Vout

R1

R2

R3

C1

C2C3

D1

D2

Vbias

R1 10 kΩ C1 1µF
R2 551 kΩ C2 51 pF
R3 4.7 kΩ C3 47 nF
D1 1N4001 D2 1N4001

Figure 3: Circuit of a Tube Screamer
operational amplifier gain stage.

Fig. 3 shows the circuit with resistor R2 which is a poten-
tiometer in the Tube Screamer circuit. It takes values fromR2,min ≈
51 kΩ to R2,max = 551 kΩ. In this work the potentiometer was al-
ways set toR2,max to maximize the amplification of the operational
amplifier and thus the distortion of the output signal. The bias volt-
age was set to Vbias = 4.5 V, which is half the supply voltage of
the operational amplifier. The used op-amp was a general-purpose
amplifier RC4558 by Texas Instruments.

3. MODEL TOPOLOGY

The digital model which was chosen to represent these distortion
circuits is an extended Wiener model. It consists of a linear time
invariant block followed by a nonlinear block. Fig. 4 shows the
block diagram of the extended Wiener model. In this work the LTI

xin(n) xout(n)
LTI

Filter
NL

Mapping Function

Figure 4: Block diagram of a Wiener model.

block is represented by a FIR filter, but it could be easily modified
to include any other LTI system e.g. state-space systems or IIR fil-
ters. The nonlinear block consists mainly of a mapping function,
mapping input amplitude to output amplitude. Figure 5 illustrates
the function principle of a static, memory-less mapping function.
Each input sample is processed by the nonlinear equation, creating
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Input Signal
Output Signal
Mapping Function

Input
Amplitude

Output Amplitude

time

tim
e

Figure 5: Function principle of a static mapping curve.

a distorted output signal. Some extensions have been made to the
mapping function (see Sec. 5.2). Especially the side-chain with
low-pass filter leads to a nonlinear block which is not memory-
less anymore. So the model is not a Wiener model in the classical
sense, it is an extended Wiener model with distortion-circuit spe-
cific refinements.

4. MODELING: LINEAR PART

The linear part of all circuits was measured with exponential sine
sweeps, as described in [19]. The sweep is described in terms of
start frequency ω1 = 2πfstart/fs, stop frequency ω2 = 2πfstop/fs
and amplitude A,

xsw(n) = A · sin
(
ω1 · (L− 1)

log (ω2/ω1)
·
(
e(

n
L−1

log(ω2/ω1)) − 1
))

,

(1)
where L is the total length of the sweep in samples. An inverse-
filter signal to the sweep can be created which fulfills the condition

xsw(n) ∗ xinv(n) ≈ c · δ(n− n0). (2)

This means that the sweep convolved with the inverse filter yields
a Dirac delta function which is only shifted in time and scaled by
some factor c. Due to the assumption that very low signal levels
will pass through the linear region of the distortion circuits, the
maximum amplitude of the sweep was set to A = 0.01 V, to en-
sure that no nonlinear distortion occurs while measuring the output
signal. The output sweep ysw(n) is recorded and convolved with
the inverse filter

xinv(n) = xsw(L− 1− n) · (ω2/ω1)
−n
L−1 (3)

to get the impulse response of the system

h(n) =
1

c
· xinv(n) ∗ ysw(n). (4)

When using this technique h(n) does not only contain the linear
response of the system. It also contains the impulse responses for

higher order harmonics, as described in [10]. Therefore the im-
pulse response has to be segmented in time-domain and is nor-
malized to a maximum magnitude of 0 dB in frequency-domain.
Afterwards it is saved and directly used as FIR filter coefficients in
the digital model.

This methods performs better than the iterative parameter op-
timization approach based on white noise, described in [12]. The
small-signal impulse response is directly measured and used in the
model, instead of iteratively adapting several filters to approximate
the frequency response of the circuit.

5. MODELING: NONLINEAR PART

Modeling of the nonlinear part is done by creating a reference sig-
nal, in this case the output voltage of each circuit to a specific
(known) input signal. Afterwards it is compared to the output of
the digital model to compute the error between both signals ac-
cording to a cost function. This cost function has to be minimized
to find the optimal set of parameters for the given reference signal.

5.1. Input Signal

When designing the input signal it is important to consider the
influence of the parameters on the output. The nonlinear block
in the extended Wiener model is frequency independent, which
means that it is not necessary for the input signal to excite more
than one frequency. But it is most important to excite all possible
amplitudes of the input signal, so their modification by the refer-
ence system can be observed. A single frequency sine wave with
logarithmically rising amplitude was used as the input signal,

xnl(n) = a(n) · sin
(

2πf0n

fs

)
. (5)

The fundamental frequency was set to f0 = 1000 Hz. The am-
plitude scaling function a(n) is logarithmically increasing from a
start value of a(1) = 1 · 10−5 to the largest value a(N) = 1, with
N as the total amount of samples.

5.2. Parametric Nonlinear Block

The parametric nonlinear block is based on a mapping function,
described in Sec. 3. It was already used in [12] to model distortion
pedals. Figure 6 shows the nonlinear block. Its main component is

x(n) y(n)

gpre

gbias

gdry

gwet gpost

Mapping
Function

|x| LPF

m(x)

Figure 6: Nonlinear mapping function with extensions.

the mapping function, which is a combination of three hyperbolic
tangent functions. The combination of the three functions, with
the amplitude of the signal x as input, is shown by (6).
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m(x) =


tanh(kp)−

[
tanh(kp)2−1

gp
tanh(gpx− kp)

]
if x > kp

tanh(x) if − kn ≤ x ≤ kp
−tanh(kn)−

[
tanh(kn)2−1

gn
tanh(gnx+ kn)

]
if x < −kn

(6)
The additional terms for x > kp and x < −kn are needed to en-
sure thatm(x) has a continuous derivative at the connection points
kn and kp. Besides the mapping function, the nonlinear block has
a pre-gain gpre to scale the input signal and a post-gain gpost to
scale the output. The side-chain envelope detector, consisting of
absolute value calculation and low-pass filtering with a cut-off fre-
quency of fc,LP = 5 Hz, and a dry/wet mixing stage. Note that the
dry gain parameter is calculated automatically by gdry = 1− gwet.
The envelope subtraction from the direct signal is used to emu-
late the signal-dependent bias-point shift which occurs for vacuum
tubes or transistors. It is an adapted version of the so called ‘tube
stage’ from [20], but to avoid feedback, it is constructed in a feed-
forward loop. Please note that this extension prevents the nonlin-
ear block from being memoryless, because the output is dependent
on the previous values of the input signal. This leads to a total
amount of eight parameters, four gains and four parameters for the
mapping function, which are combined in the parameter vector

p =
(

gpre gbias kp kn gp gn gwet gpost

)T
. (7)

With gwet = 1− gdry.

5.3. Parameter Optimization

The nonlinear block is initialized with a parameter set that only
introduces a slight distortion for high signal levels. To improve
the robustness of convergence during optimization, the parameters
are optimized in three different steps. The used algorithm is the
gradient-based Levenberg–Marquardt optimization procedure [21,
22].

5.3.1. Levenberg–Marquardt

Consider a reference system which produces output ysys(n) (after
A/D conversion) and the corresponding digital model which pro-
duces output ymod(n,p), depending not only on the input signal
x(n), but also on the parameter vector p. The residual

res(n,p) = ysys(n)− ymod(n,p) (8)

describes the difference of reference system and digital model.
The Levenberg–Marquardt algorithm is a combination of the

gradient-descent and the Gauss–Newton methods. The parameter
vector p is updated by,

∆p =
(
JTJ + λ · diag(JTJ)

)−1

· grad(p) . (9)

J is the Jacobi matrix, where each column represents the derivative
of the residual with respect to the parameter vector p,

J =



∂res(1,p)
∂p1

· · · ∂res(1,p)
∂pM

∂res(2,p)
∂p1

· · · ∂res(2,p)
∂pM

...
. . .

...

∂res(N,p)
∂p1

· · · ∂res(N,p)
∂pM


(10)

withM as the total number of parameters andN as the total length
of the residual. The gradient

grad(p) = JT ·
[
res(1,p) · · · res(N,p)

]T (11)

describes in which direction of each entry in the parameter vec-
tor we have to descend to minimize the error between reference
system and digital model.

For large values of λ the algorithm behaves more like gradient-
descent, while for small values of λ the algorithm behaves more
like Gauss–Newton [23]. Although Gauss-Newton is an efficient
method there exist cases where the algorithm needs a long time to
converge into the minimum, or does not converge at all. If λ is
initially set to a relatively small value and the cost function does
not decrease, e.g.

C(p) < C(p + ∆p),

λ is increased to get quicker convergence with the gradient-descent
method.

If the current step was successful, e.g.

C(p) > C(p + ∆p),

the parameter vector for each iteration k is updated,

pk+1 = pk + ∆pk,

and λ is decreased to make use of the advantageous properties of
the Gauss–Newton algorithm near the solution.

5.3.2. Cost Function

The choice of the cost function is crucial for the robustness of the
optimization process. The straight-forward approach would be to
simply calculate the difference of digital model output and analog
reference output in time-domain, as shown by (8). But if the phase
characteristic of reference and model is not matched perfectly, the
time-domain error is quite high, which does not necessarily repre-
sent the human perception of the difference between the two sig-
nals. To neglect any phase shift between reference system and
digital model the cost function is designed to match the envelopes
of both systems. The envelopes are calculated for positive and
negative signal amplitudes separately, because the nonlinear map-
ping function, described in Sec. 5.2 is able to shape positive and
negative amplitudes independently. To calculate the envelope the
signals are half-wave rectified and low-pass filtered by a second
order IIR low-pass with a cut-off frequency of fc = 5 Hz. To
calculate the envelope for negative amplitudes the signals are mul-
tiplied with −1 before half-wave rectification.

Since the Levenberg Marquardt algorithm is gradient-based,
convergence into a local minimum is possible when the initial set
of parameters is too far from the global minimum of the cost func-
tion. This is why the main optimization procedure is divided into
three parts.

1. Optimize parameters for positive amplitudes (while ignor-
ing parameters which change negative amplitude)

2. Optimize ignored parameters from step 1. for negative am-
plitudes

3. Refine all parameters for positive and negative amplitudes
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Another benefit of matching the signals’ envelopes is a robust iden-
tification. The output of the digital model depends on fewer param-
eters in step one and two than in step three. In step one, for exam-
ple, the parameters kn and gn can be ignored, because they only
influence negative amplitudes. If the initial parameter set leads to a
slightly nonlinear mapping function, the Levenberg–Marquardt al-
gorithm always matches the envelopes satisfactorily. If this is done
for positive and negative amplitudes, the parameter vector will be
close to the optimal solution when starting the refinement in step
three.

6. RESULTS

In this section the results of the modeling process are presented
and each digital model is compared to the corresponding reference
system.

6.1. Metrics Definition

To rate the result of the optimization, a recorded guitar track was
played back through both systems and the percentage of error en-
ergy or ‘error to signal ratio’ (ESR) was calculated. It is defined as
the ratio of error energy to the energy of the reference output,

ESR =
Eres

Esys
=

∞∑
n=−∞

|ysys(n)− ymod(n,p)|2

∞∑
n=−∞

|ysys(n)|2
. (12)

Another way to calculate the difference is via the correlation co-
efficient, which describes the linear dependence of two random
variables. The computation of the correlation coefficient is shown
by

ρ(A,B) =
cov(A,B)

σAσB
, (13)

where A = ysys(n) and B = ymod(n,p) are the random variables
(in our case reference and model output), cov(A,B) is the covari-
ance of A and B and σA,B is the standard deviation of the random
variables.

6.2. Modeling Results

The results of the modeling process are shown in Table 1. The
diode clipper obtained the best results with an error to signal ratio
of only ESR = 5.78% and a correlation coefficient of ρ = 0.9983.
The informal listening test proved that there is no noticeable differ-
ence between the output of the circuit and the digital model. The

Circuit ESR ρ(A,B)

Diode Clipper 0.0578 0.9983

Big Muff 0.0901 0.9578

Tube Screamer 0.1832 0.9062

Table 1: Results of the modeling process.

results for the other circuits are not as good. The Big Muff BJT
gain stage has an ESR = 9.01% and a correlation coefficient of
ρ = 0.9578, which already leads to a slightly perceivable differ-
ence between the signals. This can be explained by the feedback

path from the collector of the NPN transistor to its base (see Fig. 2).
This feedback path is not modeled in the extended Wiener model,
so the result of the modeling process is only an approximation of
the real circuit.

The Tube Screamer has an ESR= 18.32% and a correlation
coefficient of ρ = 0.9062, which also leads to a small notice-
able difference between digital model and circuit output. This dif-
ference can also be explained by the simplicity of the extended
Wiener model. In the original circuit, there is a feedback path
from operational amplifier output to its negative input. This could
be modeled by a parallel path to the mapping function with a filter,
whose frequency response is unknown, because only the global
frequency response can be measured, without detailed measure-
ments of the analog circuit.

Figure 7 shows the mapping function of the digital model af-
ter the optimization procedure is finished. It can be seen that the
diode clipper circuit has no dry signal at the output of the nonlinear
block, because the slope of the mapping function at x(n) = −1
and x(n) = 1 is zero.
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(c) Tube Screamer

Figure 7: Nonlinear mapping functions m(x) after optimization.

The Big Muff circuit has a little dry signal mixed together with
the wet signal, which can be explained as a ‘compensation’ of the
missing feedback path in the model. The Tube Screamer has a lot
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of dry signal mixed together with the distorted wet signal, which
confirms the assumption that the circuit can be modeled with a
parallel dry signal, which can be mixed with the distorted signal.

All mapping functions look symmetrical, which is due to us-
ing the same model for the two diodes in each Spice simulation,
leading to the same shape for positive and negative amplitudes.
Only in the Tube Screamer circuit there is a slight difference be-
tween the shape of positive amplitudes and negative amplitudes,
which is also visible in the mapping function, Fig. 7 (c), because
the transition from steep middle part of the mapping function to
higher amplitudes is a little softer for negative amplitudes.

The time-domain signals for each reference circuit and their
comparison to the corresponding model are shown in Fig. 8. The
input signal was a self-recorded riff played on a stratocaster-type
electric guitar using the humbucker bridge-pickup. The guitar was
directly connected to an RME - Fireface 800 audio interface. For
the diode clipper, the digital model waveform is very close to the
waveform of the reference signal, which leads to no perceivable
difference between the two signals. With a rising ESR value for
Big Muff and Tube Screamer the waveform of the digital model
differs more and more from the reference output. Generally, it can
be observed that the difference in the waveforms is proportional to
the input amplitude, because for the first 500 samples of the test
signal, all models are close to the reference signal, while for higher
input amplitudes (sample 600 to 2000) the model is not accurate
enough to recreate the more complex reference circuits.

In addition to these scores, an informal listening test was con-
ducted. The participants of the test were five experienced researchers
in virtual analog modeling, who should test if they are able to hear
a difference between digital model and reference signal. In case
of the diode clipper none of the participants was able to hear a
difference between simulation and reference. For Big Muff and
Tube Screamer, the results were not as convincing, since every test
subject was able to hear a difference. Nevertheless all of the par-
ticipants confirmed that the overall characteristic of the reference
device could be captured by the corresponding digital version.

6.3. Listening Examples

To give the reader an impression of the model and compare it to the
reference system some listening examples were created. The input
signal consists of single notes, played by an electric guitar and
decaying guitar chords as well as decaying single notes, played
by an electric bass-guitar. No effect has been used to alter the
signals before or after processing them with the digital model or
the reference circuit simulation. The listening examples can be
found on-line at [24].

7. CONCLUSION

Three distortion circuits have been modeled by an extended Wiener
model, consisting only of one linear time-invariant block (filter)
and an extended nonlinear mapping block, which maps input am-
plitudes to output amplitudes. The modeling was very successful
for the diode clipper circuit, because it matches the model topol-
ogy. Although the model is not able to emulate more complex
circuits perfectly, it is able to recreate the reference circuit to a
satisfying degree, given its simplicity. To really capture all the
characteristics of a distortion circuit, especially for bigger, more
complex circuits, the model needs to be expanded. A serial ap-
proach, concatenating several simple models, to refine the results
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Figure 8: Time-domain response to a recorded guitar input for all
three circuits.

would be conceivable. Another expansion could be a feedback
path with a unit delay, which allows more possibilities of shaping
the waveform.
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ABSTRACT
In this work we explore optimising parameters of a physical cir-
cuit model relative to input/output measurements, using the Dal-
las Rangemaster Treble Booster as a case study. A hybrid meta-
heuristic/gradient descent algorithm is implemented, where the ini-
tial parameter sets for the optimisation are informed by nominal
values from schematics and datasheets. Sensitivity analysis is used
to screen parameters, which informs a study of the optimisation
algorithm against model complexity by fixing parameters. The re-
sults of the optimisation show a significant increase in the accuracy
of model behaviour, but also highlight several key issues regarding
the recovery of parameters.

1. INTRODUCTION

Accurate simulation of vintage audio circuits by physical mod-
elling invariably requires the determination of component param-
eters. In principle, parameters can be obtained through measure-
ment of individual components. This can present a practical
dilemma though as it requires isolation and therefore deconstruc-
tion of the circuit, which particularly for vintage circuits carries
hazards such as component damage. A possible way around this
problem is to estimate the parameters solely from input/output
(I/O) measurements, which can be taken without disassembly. Only
requiring the most basic interface with a system, I/O measure-
ments can provide significant information regarding its behaviour
with relatively little effort.

The literature provides several techniques that use I/O mea-
surements to calibrate black-box models, which have the advan-
tage that knowledge of the actual physical component parameters
is not required, and are generally designed to allow a relatively
straight-forward model parameter estimation. For nonlinear sys-
tems a method of using a swept-sine to excite a system and apply-
ing an inverse filter to the output, described as ‘nonlinear convo-
lution’, was proposed by Farina [1, 2]. This method was initially
used for acoustic systems but was further applied to nonlinear au-
dio circuitry in the form of Chebyshev [3] and generalised poly-
nomial Hammerstein models [4]. Accurate modelling of the phase
response is not guaranteed using this method, requiring synchro-
nisation between input and output measurements [4, 5]. Addition-
ally, a single set of kernels only accurately models the system at
a single input level. As nonlinear systems can vary based upon
amplitude it is necessary to model a continuous range of input am-
plitudes, which has been achieved using interpolation between sets
of kernels [6].

Alleviation of these issues can be achieved using a priori knowl-
edge of a system. For example, a block-oriented parametric Wiener-

Analogue
Audio Effect

Objective
Function

Evaluation

Physical Model

Vin

θ

Vout F (θ)

V̂out

Figure 1: Diagram illustrating the evaluation of a parameter set θ
by comparison of a physical model with said parameters and the
desired analogue audio effect.

Hammerstein model designed specifically for distortion circuitry
[7] can be said to use partial system knowledge. The partial knowl-
edge, in this case the form of the nonlinear behaviour, constrains
the identification procedure to aid in the capture of the effect’s be-
haviour.

Going a step further, physical models are based on the pre-
sumption of total knowledge of the system’s behaviour. As well
as accurately modelling a system’s phase response and response to
input amplitude (dependent upon accurate modelling of the gov-
erning physical laws), physical models can additionally capture
parametric behaviour exhibited in audio effects by potentiometers,
which change the behaviour of the audio effects. The two most
popular physical modelling techniques, Wave Digital Filters [8]
and state-space models [9], both have methods of working with
parametric behaviour, with particular focus on efficiency given for
state-space models [10]. However, this gain in functionality comes
with a large increase in model and computational complexity. Fur-
thermore, unlike models derived from system measurements, pa-
rameters for these models are typically extracted from nominal in-
formation available in datasheets and schematics which may not
be representative of a real circuit. An exception to this strategy
is when complex component models are tabulated using measure-
ments [11]), but this requires isolation of the component.

In this paper we explore the utilisation of I/O measurements to
improve the accuracy of physical models relative to specific real-
world circuits. Figure 1 illustrates the evaluation of an objective
function F (θ) as a measure of the fit of a physical model to a
specific audio effect based upon a comparison between the circuit
output voltage Vout and the model output voltage V̂out. The cen-
tral challenge then becomes finding a parameter set that minimises
the objective function for a sufficiently general excitation signal,
which can be done using iterative optimisation methods. Such
an approach evidently relies on the ability of the chosen physi-
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cal model to capture the circuit’s behaviour. An immediate fur-
ther question that arises is whether a parameter set that has a low
objective function value but nevertheless deviates in one or more
parameters (the search space proves to typically contain many of
such local minima) should be considered successful. While ideally
one aims to recover the parameter set that lies closest to a physical
target set, in practice (i.e. when optimising on measured results)
such a target reference is not available, and the only workable cri-
terion is the objective function. Given this lack of a direct measure
of the parameter accuracy, it is proposed here that the optimisation
is deemed successful if (a) the parameters lie within a physically
feasible range and (b) the optimised set results in accurate model
output over the relevant range of input signals and circuit poten-
tiometer settings. The first criterion implies that the optimisation
should be constrained, and the second criterion motivates perform-
ing a post-optimisation validation of the optimised parameter set
using a map of driving signals of different amplitudes and frequen-
cies within the expected input ranges.

The chosen case study for this paper is the Dallas Rangemas-
ter Treble Booster pedal, the schematic of which is shown in Fig-
ure 2. The circuit creates a high-pass filter effect and distortion
caused by the nonlinear behaviour of the germanium transistor,
a Mullard OC44. The Rangemaster is a suitable initial test case
for exploration of parameter optimisation of nonlinear audio ef-
fects units because despite the relative simplicity of the circuit its
study fully exposes the same key challenges that can be expected
in more complex systems. Three individual I/O data sets are taken
of the circuit, one simulated from a stochastic parameter set, and
two measured from the circuit using different transistors.

The rest of this paper is structured as follows: Section 2 dis-
cusses the selected model, details the approach used to optimise
the model based on measurements, and also describes the mea-
surement procedure. Section 3 details the application of sensitiv-
ity analysis to the model to screen the parameter set, informing
a study of the performance of the optimisation algorithm with re-
spect to increasing complexity in the model. Section 4 presents the
results of the optimisation upon the I/O data sets and analyses the
results using a validation data set. Sound examples are available
on the first author’s website1.

2. OPTIMISATION METHOD

2.1. Circuit Description

2.1.1. Time Domain Model

A circuit can be characterised by its topology and component’s be-
haviour. While the behaviour of two-pin linear components such
as resistors and capacitors can typically be characterised with suffi-
cient accuracy using simple laws involving a single parameter (e.g.
Ohm’s Law), nonlinear components such as transistors or vacuum
tubes are usually modelled with several parameters. The Nodal
DK-method provides a structure for automated derivation of mod-
els from this information in the form of a netlist [12], and for this
reason was chosen to create the models used for the optimisation
procedure. This enables direct optimisation of the parameters of
the circuit as opposed to e.g. state-space matrices.

The Nodal DK-method creates a discrete-time state-space model
of the form

x[n] = Ax[n− 1] +Bu[n] +Cf(vn[n]) (1)

1http://bholmesqub.github.io/DAFx16/

Vcc

Vin

C1

R2

R1

V R1

R3 C2

C3

VoutR4

Figure 2: Schematic of the modelled Dallas Rangemaster Treble
Booster. The potentiometer V R1, named ‘Set’ on the original
pedal, controls the output gain or volume of the circuit.

y[n] = Dx[n− 1] +Eu[n] + Ff(vn[n]) (2)
vn[n] = Gx[n− 1] +Hu[n] +Kf(vn[n]) (3)

wherex,u and y represent the state, input and output respectively,
and the matrices A−H and K specify the linear combinations
that are used to update the model. The behaviour of nonlinear com-
ponents is modelled by the function f(vn), where vn represents
the voltages across the nonlinear components. This function is
specific to the model, e.g. a model for diodes might use the Shock-
ley diode equation. A comprehensive description of the modelling
technique used can be found in [10], with the adaptation to po-
tentiometers described in [13]. Relating this model to the Dallas
Rangemaster circuit, u is the vector of the voltages [Vin Vcc]

T

applied to the circuit, and y is the modelled output voltage V̂out.
It is important to note that the Dallas Rangemaster is paramet-

ric, but that the potentiometer is near equivalent to a linear scaling
in output voltage. This can be inspected by testing two different
models: the first with the potentiometer wiper set to 20% towards
full volume, the second with the potentiometer wiper set to 100%
and the output voltage scaled by 0.2. A chirp test signal between
20 Hz-3 kHz with a peak voltage of 0.2 V was processed by both
models, the comparison revealing a mean squared error of 6 µV.
For this reason, one measurement of the circuit with the poten-
tiometer set at 100% is sufficiently accurate, removing the need to
model the parametric behaviour.

An additional simplification is the removal of the power sup-
ply bypass capacitor, originally placed across Vcc. The capacitor
creates a low-pass filter with the internal resistance of the power
supply, which serves to smooth changes in the supplied voltage.
As the focus of this paper is the usage of I/O measurements of the
signal path, the supply voltage is presumed to be constant, there-
fore making the capacitor obsolete.

2.1.2. Bipolar Junction Transistor

To model the nonlinear behaviour of the BJT, the Ebers-Moll equa-
tions are used. This model has been widely used within the field of
VA modelling [14, 10] due to its computational efficiency in com-
parison with more complex BJT models. The Ebers-Moll model is
represented by two currents with the third being calculated using
Kirchhoff’s current law. Here, the base and collector currents were
selected:

IB =
IS
βF

(
e

VEB
NVT − 1

)
+
IS
βR

(
e

VEB−VEC
NVT − 1

)
(4)
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IC = IS

(
e

VEB
NVT − 1

)
− IS

βR + 1

βR

(
e

VEB−VEC
NVT − 1

)
. (5)

The currents are controlled by the voltages of the emitter-base
junction VEB and the emitter-collector junction VEC. The param-
eters are: IS, the saturation current, βF and βR, the forward and
reverse current gains, andN , the ideality factor. The ideality factor
is not used in the original Ebers-Moll model [15], but is commonly
included in SPICE models, and has been included in the model so
that the model can match a larger range of behaviour. Temperature
was not measured for this study, so the parameter N also serves to
correct the value of VT = 25.85 mV, which presumes a tempera-
ture of 300 K.

2.2. Excitation Signal

Here the term excitation signal refers to the input voltage applied
to the system. To expose the model to a range of frequencies, a
multi-sine signal was selected, consisting of a sum of sinusoids
between two frequency boundaries. This can be represented by

Vin[n] =

mu∑
m=ml

Amsin(2πmf0nT + φm) (6)

where f0 = fs/Ns and T is the sampling period 1/fs. The lower
and upper boundaries ml and mu provide a method of bandlimit-
ing the signal, by selecting values closest to the desired lower and
upper frequency boundaries. Bandlimiting is a desirable property
as it enables a convenient method of focusing the measurements,
for example on the expected frequency range of a guitar.

The phase terms φm are generated using Schroeder phases
[16]

φm = −2π

m−1∑
l=1

(m− l)Am, m = ml,ml + 1, ...,mu. (7)

This selection of phases distributes the sinusoids such that the peak
to peak voltage is minimised, creating a flat amplitude envelope.

To determine the amplitude termsAm, it is helpful to consider
the circuit with the BJT linearised using the Hybrid Pi model [17].
The amplitude response of the linearised circuit illustrated in Fig-
ure 3 shows a significant boost to high frequencies which could
prevent low frequencies from being represented in the output sig-
nal. One method of alleviating this issue is to filter the input signal
using the inverse transfer function, i.e.

Am = |H(jωm)|−1, ωm = 2πmf0 (8)

where |H(jωm)| is the magnitude of the transfer function of the
linearised circuit. The value of Am is infinite at DC, but as the
multi-sine signal can be band-limited, this can be managed by ex-
cluding frequencies close to DC.

Finally, to ensure that the range of voltages is sufficient, a
Hann window is applied, and the signal is scaled so that the peak
voltage is at 2 V. The excitation signal applied to the system has a
length of 200 ms, containing frequencies between 50 Hz− 2 kHz,
as illustrated in Figure 4.

2.3. Optimisation Algorithm

Initial experiments in optimising the parameter set using a gradient
descent method revealed many local minima in the search space.

101 102 103 104

Frequency (Hz)

-40

-20

0

20

40

G
ai

n 
(d

B
)

Figure 3: Amplitude response of the linearised Dallas Rangemas-
ter circuit.
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Figure 4: Time and frequency domain representations of the ex-
citation signal used for the I/O measurements. The ripple in the
amplitude response is caused by the Hann window.

To overcome local minima, a hybrid metaheuristic/descent method
was implemented, using a Genetic Algorithm (GA) as a technique
to provide a more exhaustive search. The MATLAB function ga
provides a versatile implementation that allows the usage of float-
ing point values as opposed to bit strings which were used in the
original design of GA.

The basis of GA is to mimic principles observed in genetics
and natural selection. The following description is of the MAT-
LAB specific implementation; for a comprehensive introduction
to GA see e.g. [18]. An individual refers to an instance of the set
of parameters that characterise the model, θ = [θ1, ..., θk]T where
k is the number of parameters in the set. The fitness of the in-
dividual is defined by an objective function chosen here to be of
least-squares design:

F (θ) =
1

Ns

Ns∑
n=1

(Vout[n]− V̂out[θ, n])2, θ ∈ Ω ⊂ Rk (9)

where Vout is the measured output signal, V̂out is the modelled
output, and Ω is the search space for the parameter set.

To initiate the algorithm, a population of individuals is ran-
domly generated using a uniform distribution within a range of
parameter values, further discussed in Section 3. The fitness value
of each individual is then evaluated. A population size of 1000 in-
dividuals was chosen by increasing the size of the population until
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the difference in successive generation’s fitness values was negli-
gible. Upon determining the fitness of the population, parents are
selected to create the next generation. The most fit individuals are
selected as elites, which are passed to the next generation without
change. The remaining children are created from either crossover
or mutation. Crossover children are created from two parents, with
individual parameters selected from both parents, combined to cre-
ate children. Mutation children are created from a single parent
by stochastically changing parameter values. Parents are selected
using a stochastic selection which helps to maintain a diverse pop-
ulation (i.e. a high variance of parameter values).

The implemented algorithm creates the next generation using
5% of the past population as elites, and of the remaining popu-
lation 70% are generated from crossover, and 30% are generated
from mutation. This process is then repeated, with the best per-
forming parameter sets being retained while new parameter sets
are generated using crossover and mutation. The main termination
criterion of the algorithm is a limit of 100 generations.

A critical issue encountered when stochastically selecting pa-
rameter sets for the Dallas Rangemaster is that the simulation can
fail. This happens when the nonlinear solver does not converge to
the root of the equation [19]. To counteract this, failing parameter
sets are regenerated using the stochastic technique used to gener-
ate the initial population. This is repeated until the simulation is
successful. In addition to this, the least fit 10% of individuals are
re-generated each generation to improve population diversity.

The GA algorithm is combined with the interior point method
[20] which uses the top 1% of the population as starting points.
This ensures that local minima are found which is not guaranteed
using GA on its own. Individuals optimised with the interior point
method will have a much lower fitness value than non-optimised
individuals, which will cause them to be repeatedly in the top 1%
of the population. As further use of the interior point method on
these individuals will cause no change, they are excluded from
the set which are optimised using the interior point method, and
instead replaced with the next most fit individuals.

2.4. Measurement of the I/O Data Sets

Three I/O measurement data sets are used in this paper: one from a
simulation using random parameters, and two measured from the
Dallas Rangemaster circuit using different BJTs. The two BJTs
selected for the optimisation procedure are a silicon BC557 and a
germanium OC44. The OC44 is the transistor used in the original
Dallas Rangemaster circuit. The BC557 is a general purpose tran-
sistor with no history of use within guitar pedals, and was selected
solely for the purpose of comparison with the OC44, providing a
frame of reference for the modelling of the BJT.

Measured I/O data sets used for the optimisation and sensitiv-
ity analysis were experimentally obtained from the Dallas Range-
master circuit assembled on a breadboard. This was interfaced
with MATLAB via a National Instruments ELVIS II DAQ. For the
data used in the optimisation, measurements were taken at a sam-
ple rate of 100 kHz, with 100 measurements averaged to reduce
noise.

A simulated I/O data set was generated to use as a comparison
against the measured data. In this case there is no possibility of
unmodelled behaviour, thus ensuring that the optimisation can in
principle recover the parameters. This then provides a tool to as-
sess the optimisation problem separate from problems that may be
encountered with the measurements.

Table 1: Parameters used in the modelling of the Dallas Range-
master.

Parameter Value
Nominal Measured Stochastic Sample

R1 470 kΩ 473.250 kΩ 508.209 kΩ
R2 68 kΩ 68.596 kΩ 70.262 kΩ
R3 3.9 kΩ 3.8965 kΩ 3.5416 kΩ
R4 1 MΩ 0.997 MΩ 0.901 MΩ
V R1 10 kΩ 9.999 kΩ 10.56 kΩ
C1 4.7 nF 4.92 nF 4.44 nF
C2 47 µF 46.95 µF 47.54 µF
C3 10 nF 11.57 nF 9.31 nF
βF (BC557) 340 - -
βF (OC44) 90 46− 175 123.95
βR (BC557) 15 - -
βR (OC44) 7 2− 12 5.16
IS 0.1 pA - 0.06 pA
N 1.6 - 1.22

3. PARAMETER ANALYSIS

3.1. Determination of Parameter Values and Ranges

The first column of Table 1 shows the nominal parameters of the
Dallas Rangemaster. Values for the linear parameters were ex-
tracted from the schematic. The selected optimisation algorithm
allows for constraints to be placed on the range of parameters,
which enables the exploitation of the tolerances specified by com-
ponent manufacturers. Each value of the resistors belongs to the
E12 standard which is specified at ±10%, suggesting a sensible
range with which to constrain the value of each linear component
parameter. Due to the idealised component laws used in the design
of the physical model, there is a possibility that the model will not
capture the full behaviour of the circuit. Because of this, the lin-
ear component parameters were constrained to a range of ±20%
to allow for compensation of the possible unmodelled behaviour.
A more effective method would be to increase the complexity of
the component models to capture this behaviour, but the increase
in computational complexity is difficult to justify prior to observa-
tion of unmodelled behaviour. A uniform distribution was chosen
for the linear component parameter set as real distributions depend
on manufacturing techniques.

The BC557 values for βF and βR are based upon values taken
from Linear Technology’s LTspiceIV2. Datasheets and SPICE mod-
els could not be found for the OC44, so the gain parameters were
measured from a small set of the BJT. The measurements were per-
formed by applying a base current while measuring the collector
current when biased in the forward-active region, and the emitter
current when biased in the reverse-active region. This gives values
for βF and βR using the approximate relations

βF ≈ IC/IB, βR ≈ IE/IB.

Although this technique provides only a coarse approximation, it
was only required to inform the range of values to be expected.
The nominal values for IS and N were set to the same value for
both BJTs. The saturation current of different BJTs is often in

2www.linear.com/designtools/software/#LTspice
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the same range, and is difficult to measure accurately. The ideal-
ity factor can vary widely between BJTs, particularly for vintage
transistors as early manufacturing techniques provided less consis-
tency.

Measurements of the OC44 BJT showed the range of βF to
be between 46 and 175, and the range of βR to be between 2 and
14. Because of the wide range of these parameters, and the uncer-
tainty of values of the parameters IS and N , the BJT parameters
were constrained to ±100% of their nominal value. A uniform
distribution was again selected.

The third column of Table 1 shows the values of parameters
used in the simulated data set, using BJT parameters based upon
the nominal OC44 values. These were stochastically generated us-
ing the discussed uniform distributions across the parameter ranges.

3.2. Sensitivity Analysis

Global sensitivity analysis refers to the study of attributing uncer-
tainty in a model’s output to uncertainty in a model’s parameters
and input. The prefix ‘global’ specifies that the analysis is upon
the whole search space as opposed to local operating points. To
provide useful analysis for the optimisation, the fitness function is
analysed to rank the effects of each parameter, and compare this
between each I/O data set. The implemented method, the Morris
method [21] generates trajectories through the search space using
a one-at-a-time strategy i.e. there is a change in only one parame-
ter between neighbouring sample points. An elementary effect of
a parameter can then be defined as

EEi =
F (θ1, ..., θi + ∆, ..., θk)− F (θ1, ..., θk)

∆
(10)

where θi is the parameter changed by the value ∆ for the elemen-
tary effect. The number of calculated elementary effects for each
parameter is given by the number of trajectories, r. To prevent
incorrect analysis of the sensitivity of each parameter, it is essen-
tial to select a large enough value of r. The elementary effects are
processed to create two sensitivity measures, µ∗ and σ expressed
by

µ∗
i =

1

r

r∑
j=1

|EEj
i |, σi =

(
1

r − 1

r∑
j=1

(EEj
i − µi)

2

) 1
2

. (11)

The estimated absolute mean µ∗ reflects the overall influence of
the parameter on the fitness, and differs from the mean µ by using
absolute values of the elementary effects, preventing type II errors
which are caused by negative values [22]. The estimated standard
deviation σ groups both the nonlinearity of the parameter and the
dependence on other parameters relative to the change in the fit-
ness function. Intuitively, this can be understood by considering
a change in the value of the elementary effects: the change must
either be caused by a nonlinear parameter i.e. the effect changes
across the range of parameter values, or by a change in another
parameter due to sampling at other locations in the space.

Analysis was performed using SAFE, a MATLAB toolbox
for Global Sensitivity Analysis [23]. To help prevent any non-
convergent simulations which would create unusable results, the
linear component and BJT parameters were restricted to ±10%
and±40% of their nominal value respectively. A value of 300 was
selected for r to ensure the search space was sufficiently analysed,
although lower values or r also correctly identified the parameters
with the largest and least effect on the fitness function. Figure 5

Parameter Rank
Simulated BC557 OC44

R1 4 3 4
R2 3 2 5
R3 8 5 8
R4 10 11 10
V R1 5 4 6
C1 6 8 3
C2 9 9 9
C3 11 12 11
IS 7 6 7
N 1 1 2
βF 2 7 1
βR 12 10 12

Table 2: Ranking of the circuit parameters by sensitivity value S.

shows the results of the analysis upon the fit of the model to out-
put measurements for the simulated, BC557, and OC44 I/O data
sets. It is worth noting the near-linear relationship between µ∗ and
σ, indicating the parameters that have the largest effect on the fit-
ness function are more nonlinear or heavily influenced by other
parameters (i.e. parameters with high µ∗ values of also have high
σ values).

A metric for ranking parameters by their influence on the op-
timisation procedure was designed as S =

√
µ∗2 + σ2. The rank

of each parameter for each data set is shown in Table 2. Several
similarities can be seen between the data sets: each fitness func-
tion is very sensitive to the parameterN and quite sensitive to both
R1 and R2. The fitness function’s low sensitivity to many of the
parameters in combination with the large range of measured sen-
sitivities indicates that the search space will contain many points
with a similar fitness value; it is likely that this partly reflects a
level of parameter redundancy. As a result, the optimisation may
struggle to find physically meaningful parameter values.

3.3. Limitations of the Optimisation

Using the ranking of parameters of the simulated I/O data set it
is possible to test the optimisation algorithm’s ability to recover
the values of the parameters. The performance of the algorithm
can be tested against model complexity by optimising on only the
Np most sensitive parameters. Figure 6 displays the results of 10
optimisations performed per case for increasing values ofNp. The
parameter error εp is calculated as

εp =
1

Np

Np∑
i=0

(
θ̂i − θ∗i
θ∗i

)2

(12)

where θ∗ is the accurate parameter value (shown in the third col-
umn of Table 1) and θ̂ is the parameter value after optimisation.
As the number of optimised parameters increases, the ability of
the algorithm to accurately retrieve the values decreases. For the
full model, the error is over 15 orders of magnitude higher than
when optimising for just 2 parameters. The transition from accu-
rately recovering parameters to failing to recover them occurs at
the inclusion of the 6th parameter, C1. After this transition the
effect of the increasing quantity of parameters is negligible due to
the constraints of the parameters. Given the nominal values of the
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Figure 5: Results of sensitivity analysis showing Morris measures µ∗ and σ for the (a) simulated, (b) BC557, and (c) OC44 data. Confidence
bounds are indicated by the black lines placed on each marker.
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Figure 6: Box plots displaying the logarithmic scaled error of the
parameter set after optimisation on increasing numbers of opti-
mised parameters. Red crosses indicate outliers, dashed line indi-
cates maximum error possible with parameter constraints.

simulated data set, the maximum parameter error is 1.0433, indi-
cated by the dashed line on Figure 6. Results with parameter error
of this order indicate that the parameters have not been recovered.
The bottom plot of Figure 6 shows the log scale fitness of the re-
sultant parameter sets from the optimisations. Although there is
strong correlation with the parameter error, there is no constraint
upon fitness values so this correlation cannot imply the same con-
clusion as with the parameter error. Fitness values of this order still
provide a good fit between model and system over a wide range of
operation, which can be demonstrated with the use of validation
data (see Section 4).

4. RESULTS AND VALIDATION

4.1. Optimisation on the Full Parameter Set

A map of sinusoidal signals was created as a validation data set.
The map covers a range of 30 peak voltages between
[0.1 V, ..., 3 V], and 30 frequencies between [20 Hz, ..., 3000 Hz],
selected logarithmically. This map was processed by both the sim-
ulation and circuit with a sample rate of 400 kHz to ensure that
the nonlinear solver would converge. Ten measurements from the
circuits were averaged to reduce noise.

Figure 7 shows the error of the model against the measure-
ments of the validation data set. Validation error εV values were
calculated using

εV = 10log10

( Ns∑
n=1

(Vout[n]− V̂out[θ̂, n])2
)

(13)

where θ̂ is the optimised parameter set. As the optimisation algo-
rithm is stochastic, it was repeated 15 times for each I/O data set.
Representative plots were selected by producing an average data
map using each result, and selecting the map that closest matched
this map.

The top row of the contour plots in Figure 7 shows how ac-
curately the I/O data sets are modelled using the nominal values
from Table 1. The bottom row of plots shows how accurately the
I/O data sets are modelled after optimising the model parameters.
The results of the simulated I/O data set illustrated in Figure 7 (a)
and (d) show the results of an ideal optimisation, where there is no
noise from the measurements, and the model is guaranteed to be
able to represent the I/O data set. As the contour plot (d) shows,
the model using the optimised parameters does accurately model
the behaviour of the simulated I/O data set, but not equally well
across the presented range of amplitudes and frequencies, with the
most significant increase in error at higher amplitudes.

A similar increase in error is observed in Figure 7 (e) and (f),
illustrating the model fit to the measured data sets of the BC557
and OC44 BJTs. Generally, the error is larger than that of the
simulated data set, but significantly lower than the error of nominal
parameter plots (b) and (c). This shows that despite not modelling
the circuit behaviour to high accuracy, the fit is significantly better
than with nominal parameters.
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Figure 7: Contour plots of validation error εV against amplitude (peak voltage) and frequency. White space in (a) and (d) indicates
unsuccessful simulations due to nonconvergence.

4.2. Optimisation Using Fixed Linear Component Values

To further investigate the error of the model, a second optimisation
process was performed with fixed values for the linear component
parameters, using the measured values shown in Table 1. This
places the focus of the optimisation on the four BJT parameters
used in the Ebers-Moll model. As two different BJTs were used
in the measurement of the I/O data, the second optimisation aimed
to investigate the performance of the Ebers-Moll model’s ability to
capture the behaviour of both the BC557 and OC44 BJTs. Figure
8 shows an excerpt from the output of the optimised models and
the measured data they are attempting to fit. Figure 8(a) shows sig-
nificantly more error than Figure 8(b), including an obvious phase
difference between the model and the measurements. This points
to the Ebers-Moll model not accurately capturing the behaviour of
the OC44 transistor, indicating unmodelled behaviour that could
be caused by e.g. junction capacitances, terminal resistances, par-
asitic effects etc.

5. CONCLUSION

A preliminary study on fitting a physical model of a guitar effects
pedal to measured I/O data using a brute-force parameter optimi-
sation approach has been presented. In Section 3.3 true recovery
of the parameters from simulated I/O data was shown to work only
for reduced sets of parameters. The results of the sensitivity anal-
ysis in Section 3.2 indicate that this could be (at least partly) due
to the objective function’s insensitivity to some of the parameters.
It is therefore of particular interest in future research to consider
alternative objective functions, alongside exploring different, even
more exhaustive methods for searching the parameter space. An-
other possible route towards improved results regarding recovery
of parameters is to consider other ways of driving the circuit and

collecting the output data; potentially this includes attempts to link
the physical model parameters directly to those typically used in
black-box representations, (e.g. Volterra series kernel coefficients).

Although recovering the actual physical parameters proved
very challenging, the results presented in Section 4 show that the
accuracy of the physical model can be significantly improved us-
ing optimised instead of nominal parameters. While changes in
the measurement method, objective function and optimisation (as
mentioned above) can potentially further reduce the remaining er-
rors, the results plotted in Figure 8 imply that attention must also
be given to the physical model formulation. More specifically, the
significantly better fit of the model to the BC557 transistor I/O data
is a strong indication that the Ebers-Moll model is too simplistic
to capture the behaviour of the OC44 transistor. Hence additional
transistor modelling elements are required to accurately simulate
the Rangemaster and other audio effects pedals and amplifiers fea-
turing germanium BJTs. To address this, a more rigorous study
of such vintage components is required, including high-accuracy
measurement and subsequent comparison with more sophisticated
formulations such as the Gummel-Poon model [24].

A key question to address in the longer term is to what ex-
tent models of more complex, larger circuits could be calibrated
through optimisation on I/O measurement data; for systems with
many more parameters than the Rangemaster it is likely that order
reduction will play an even greater role, which is potentially aided
by parameter screening techniques such as that employed in the
present study.
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ABSTRACT

The sound of a vacuum tube guitar amplifier may be significantly
influenced by the non-linear behavior of its output transformer,
which therefore should also be considered in digital simulations.
In this work, we develop a model for inductors and transformers
with the magnetization following the model of Jiles and Atherton.
For this purpose, the original magnetization model is rewritten to
a differential equation with respect to time which can then easily
be integrated into a previously developed circuit simulation frame-
work. The model thus derived is then exercised in the simulation
of three simple circuits where it shows the expected behavior.

1. INTRODUCTION

Non-linear behavior of its output transformer may have a signif-
icant influence on the sound produced by a vacuum tube guitar
amplifier. It is therefore desirable to include this non-linearity
in digital simulations. A commonly used method to do so is the
application of the gyrator-capacitor model, which maps magnetic
quantities to electric ones [1, and references therein]. This allows
complex magnetic topologies to be modeled by mapping them to
corresponding electric circuits. Non-linear effects are then rep-
resented by non-linear resistors and capacitors. While the Jiles-
Atherton model [2, 3] provides a good model of the non-linear
magnetization effects, it is often deemed too complex and replaced
by simpler heuristics.

In this work, we propose an inductor/transformer model that
does apply the Jiles-Atherton magnetization model, but forgoes
the gyrator-capacitor approach. It will hence be restricted to sim-
ple topologies where the magnetic field of all windings is com-
pletely contained by one and the same core and is furthermore
uniform within the core. This holds for toroidal inductors/trans-
formers where the core is thin compared to its diameter. We hope,
however, that it sufficiently approximates other topologies found
in guitar equipment. In [4] and [5], specific circuits (a series LC
oscillator and a tube guitar amplifier) were simulated based on the
Jiles-Atherton model in a similar fashion and very good agreement
to measurements could be observed.

While in [4] and [5] the circuits were approached holistically
using ad-hoc methods, this paper instead aims to develop an induc-
tor/transformer model that can be used in various circuits using a
systematic analysis technique. In particular, the model will be de-
veloped such that it is usable with the methodology developed in
[6].

2. PREVIOUS WORK

In this section, the Jiles-Atherton model of magnetization to be
used in the following will be briefly introduced and the most im-
portant aspects of the employed circuit modeling framework will
be repeated, while a detailed discussion is left to [2] and [6], re-
spectively.

2.1. Jiles-Atherton Model

The Jiles-Atherton model relates magnetic field H and magneti-
zation M via a differential equation. It was originally developed
in [2], but the slightly modified form of the results given in [3] will
be used as a basis here. The magnetization is decomposed as

M = Mrev +Mirr, (1)

where Mrev and Mirr denote the reversible and irreversible mag-
netization component, respectively, both of which depend on the
anhysteretic magnetization Man.

In particular, the reversible magnetization is given by

Mrev = c · (Man −Mirr), (2)

where c is the ratio of normal and anhysteretic initial susceptibili-
ties, while Mirr is implicitly defined with the differential equation

dM

dH
= (1− c) · Man −Mirr

δk − α(Man −Mirr)
+ c · dMan

dH
, (3)

where

δ =

{
1 if H is increasing
−1 if H is decreasing

(4)

denotes the direction of change of H . Furthermore, k, and α are
parameters, where k is a measure of the width of the hysteresis
loop, and α is a mean field parameter, representing inter-domain
coupling [4]. The first term in equation (3) describing the irre-
versible magnetization process has to be set to zero if M −Man

and δ have opposite signs.
The anhysteretic magnetization Man is a function of the effec-

tive field He = H + αM and is responsible for the saturating
behavior. While various mathematical functions could serve as a
model, in [2] the Langevin function

L(x) = coth(x)− 1

x
(5)

with the continuous extension L(0) = 0 (see Figure 1) has been
employed as

Man = Ms · L
(
H + αM

a

)
(6)
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Figure 1: The Langevin function L(x).

with good success, where Ms is the saturation magnetization and
a characterizes the shape of the anhysteretic magnetization.

In [4], further details were modified. First, from equations (1)
and (2), one can find that

Man −Mirr =
1

1− c (Man −M), (7)

which can be substituted in equation (3). Second, the first term of
equation (3) is explicitly multiplied with

δM =

{
1 if δ and Man −M have the same sign
0 otherwise,

(8)

so that

dM

dH
=

(1− c) · δM · (Man −M)

(1− c) · δ · k − α(Man −M)
+ c · dMan

dH
(9)

will be the magnetization model used in this work.

2.2. Circuit Modeling Framework

The circuit modeling framework of [6] allows for a very general
specification of circuit element behavior. While the reader is re-
ferred to [6] for details on how a non-linear state-space model is
derived from these specifications together with a circuit topology,
the form an element model needs to be in shall be briefly repeated
here.

Circuit elements need to enforce a relationship between volt-
ages v and currents i, measured between pairs of their terminals,
and (if needed) states x and their derivatives ẋ with respect to
time. There is some freedom in the choice of terminal pairs to de-
fine v and i. For the transformer model, the obvious choice is to
pair those terminals connected to the same winding. Likewise, the
states x can be defined as is most suitable for the model. For e.g. a
capacitor, either having voltage or charge as state would both work
equally well. As will be detailed in Sec. 3, for the non-linear in-
ductor/transformer model, the state vector will comprise magnetic
field and magnetization.

To facilitate faster simulations, linear and non-linear equations
are strictly separated in [6]. For the element description, all non-
linear equations have to be formulated in terms of an auxiliary vec-
tor q which in turn is coupled with v, i, x, and ẋ by linear equa-
tions. Once more, the element model has all freedom in choosing
a suitable q. In the model to be developed, it will hold magnetic
field and magnetization along with their derivatives.

All linear equations are collected in one system

Mvv + Mii + Mxx + Mẋẋ + Mqq = u, (10)

where the matrices Mv, Mi, Mx, Mẋ, and Mq, and the vector u
have to be provided by the element model to obtain the desired
behavior. These, together with an implicit non-linear equation

f(q) = 0, (11)

constitute the element model. The matrices and the function f(q)
for the non-linear inductor/transformer will be derived in Sec. 3.

3. MODEL DEVELOPMENT

In this section, the magnetization model of equation (9) will be
rewritten and the magnetic quantities will be related to electric
quantities to yield an element model suitable for the circuit mod-
eling technique of [6]. In particular, the differential equation of
equation (9) has to be rewritten such that only derivatives with
respect to time occur, as the method of [6] cannot handle other
derivatives.

In the first step, dMan
dH

shall be replaced by applying the chain
rule of differentiation, giving

dMan

dH
=
Ms

a

(
1 + α

dM

dH

)
L′
(
H + αM

a

)
, (12)

where
L′(x) =

d

dx
L(x) =

1

x2
− coth2(x) + 1 (13)

with the continuous extension L′(0) = 1
3

is the first derivative of
the Langevin function. Substituting equation (12) in equation (9)
yields

dM

dH
=

(1− c) · δM · (Man −M)

(1− c) · δ · k − α (Man −M)

+ c · Ms

a

(
1 + α

dM

dH

)
L′
(
H + αM

a

)
. (14)

Observing that
dM

dt
=
dM

dH

dH

dt
, (15)

the differential equation can thus be transformed into one where
all derivatives are with respect to time by multiplying with dH

dt
,

giving

dM

dt
=

(1− c) · δM · (Man −M)

(1− c) · δ · k − α (Man −M)

dH

dt

+ c · Ms

a

(
dH

dt
+ α

dM

dt

)
L′
(
H + αM

a

)
. (16)

Note also that δ = sign
(
dH
dt

)
.

In equation (16), the derivatives of H and M are required,
which therefore constitute the state vector

x =

(
H
M

)
(17)

of the model being developed. And while M is needed as such, H
only appears as H+αM

a
, so the auxiliary vector linking linear and
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non-linear equations can be chosen as

q =


H+αM

a

M
dH
dt
dM
dt

 =


x1+αx2

a

x2

ẋ1

ẋ2

 . (18)

By subtracting dM
dt

= q4, equation (16) can then be rewritten in
the required form as

f(q) =
(1− c) · δM · (Man − q2)

(1− c) · δ · k − α (Man − q2)
q3

+ c · Ms

a
(q3 + αq4)L′ (q1)− q4 = 0 (19)

with

Man = Ms · L(q1) (20)
δ = sign(q3) (21)

δM =

{
1 if δ and Man − q2 have the same sign
0 otherwise,

(22)

which now only depends on constant parameters and entries of the
auxiliary vector q.

Next, the magnetic quantities have to be related to the elec-
tric quantities. For simplicity, we only consider a toroidal induc-
tor which is thin compared to its diameter so that the magnetic
field is uniform inside the core. Assuming K individual wires
having n1, . . . , nK turns around the core and carrying currents
i1, . . . , iK , the magnetic field is given as

H =
1

πD

K∑
k=1

nkik (23)

by Ampère’s law, where D is the torus’ diameter. From the flux
Φ = µ0A · (H + M), where A is the cross-sectional area of the
core, the voltages v1, . . . , vK are given by Faraday’s law as

vk = nk ·
d

dt
Φ = µ0Ank ·

(
dH

dt
+
dM

dt

)
. (24)

Letting v =
(
v1 . . . vK

)T and i =
(
i1 . . . iK

)T and
collecting equations (24), (23) and (18) in a single equation sys-
tem of the form of equation (10), the model matrices can thus be
determined as

Mv =



1 · · · 0
...

. . .
...

0 · · · 1
0 · · · 0
0 · · · 0
0 · · · 0
0 · · · 0
0 · · · 0


, Mi =



0 · · · 0
...

. . .
...

0 · · · 0
n1 · · · nK
0 · · · 0
0 · · · 0
0 · · · 0
0 · · · 0


, (25)

Mx =



0 0
...

...
0 0
−πD 0
− 1
a

−α
a

0 −1
0 0
0 0


, Mẋ =



−µ1An1 −µ1An1

...
...

−µ0AnK −µ0AnK
0 0
0 0
0 0
−1 0
0 −1


,

(26)

Mq =



0 0 0 0
...

...
...

...
0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


and u =



0
...
0
0
0
0
0
0


, (27)

(28)

where Mv and Mi have K columns and all matrices have K + 5
rows. The upper K rows correspond to equation (24) for k =
1, . . . ,K, the row below to equation (23) multiplied with πD, and
the lower four rows to equation (18).

4. NUMERICAL CONSIDERATIONS

For a successful implementation of the developed model, some
numerical considerations are in order that will be detailed in the
following.

First, the definition of the Langevin function and its derivatives
as stated above are very susceptible to rounding errors for values
close to zero. For numerical evaluation, they are better replaced
with a truncated Taylor series around zero as

L(x) =

{
coth(x)− 1

x
for |x| > 10−4

x
3

otherwise,
(29)

L′(x) =

{
1
x2
− coth2(x) + 1 for |x| > 10−4

1
3

otherwise,
(30)

L′′(x) =

{
2 coth(x) ·

(
coth2(x)− 1

)
− 2

x3
for |x| > 10−3

− 2
15
x otherwise,

(31)

where the second derivative L′′(x) = d2

dx2
L(x) will be used mo-

mentarily. Furthermore, to avoid a division-by-zero problem when
q = 0, we let δ = 1 if q3 = dH

dt
= 0, noting that the only term it

occurs in is multiplied by q3 anyway.
For numerical solution of systems containing equation (19),

the Jacobian

Jf (q) =
(
df(q)
dq1

df(q)
dq2

df(q)
dq3

df(q)
dq4

)
(32)

of f(q) will typically be needed, which can be determined as

df(q)

dq1
=

(1− c)2δMδkMsL
′(q1)(

(1− c)δk − α(Man − q2
)2 q3

+
cMs

a
(q3 + αq4)L′′(q1) (33)

DAFX-57



Proceedings of the 19th International Conference on Digital Audio Effects (DAFx-16), Brno, Czech Republic, September 5–9, 2016

1 function transformer(::Type{Val{:JA}}; D=2.4e-2, A=4.54e-5, ns=[],
2 a=14.1, α=5e-5, c=0.55, k=17.8, Ms=2.75e5)
3 const µ0 = 1.2566370614e-6
4 nonlinear_eq = quote
5 coth_q1 = coth(q[1])
6 a_q1 = abs(q[1])
7 L_q1 = a_q1 < 1e-4 ? q[1]/3 : coth_q1 - 1/q[1]
8 Ld_q1 = a_q1 < 1e-4 ? 1/3 : 1/q[1]^2 - coth_q1^2 + 1
9 Ld2_q1 = a_q1 < 1e-3 ? -2/15*q[1] : 2*coth_q1*(coth_q1^2 - 1) - 2/q[1]^3

10 δ = q[3] > 0 ? 1.0 : -1.0
11
12 Man = $(Ms)*L_q1
13 δM = sign(q[3]) == sign(Man - q[2]) ? 1.0 : 0.0
14
15 den = δ*$(k*(1-c))-$(α)*(Man-q[2])
16 res[1] = $(1e-4/Ms) * ($(1-c) * δM*(Man-q[2])/den * q[3]
17 + $(c*Ms/a)*(q[3]+$(α)*q[4])*Ld_q1 - q[4])
18 J[1,1] = $(1e-4/Ms) * ($((1-c)^2*k*Ms) * δM*Ld_q1*δ/den^2 * q[3]
19 + $(c*Ms/a)*(q[3]+$(α)*q[4])*Ld2_q1)
20 J[1,2] = $(1e-4/Ms) * -$((1-c)^2*k) * δM*δ/den^2 * q[3]
21 J[1,3] = $(1e-4/Ms) * ($(1-c) * δM*(Man-q[2])/den + $(c*Ms/a)*Ld_q1)
22 J[1,4] = $(1e-4/Ms) * ($(c * Ms/a * α)*Ld_q1 - 1)
23 end
24 Element(mv=[speye(length(ns)); spzeros(5, length(ns))],
25 mi=[spzeros(length(ns), length(ns)); ns.’; spzeros(4, length(ns))],
26 mx=[spzeros(length(ns), 2); -π*D 0; -1/a -α/a; 0 -1; 0 0; 0 0],
27 mxd=[-µ0*A*ns -µ0*ns*A; 0 0; 0 0; 0 0; -1 0; 0 -1],
28 mq=[zeros(length(ns)+1,4); eye(4)], nonlinear_eq = nonlinear_eq)
29 end

Figure 2: Julia/ACME source code of the developed inductor/transformer model.

df(q)

dq2
= − (1− c)2δMδk(

(1− c)δk − α(Man − q2)
)2 q3 (34)

df(q)

dq3
=

(1− c)δM · (Man − q2)

(1− c)δk − α (Man − q2)
+
cMs

a
L′(q1) (35)

df(q)

dq4
=
cMsα

a
L′(q1)− 1, (36)

where the discontinuities in δ and δM have been ignored.
Finally, note that q4 can assume rather large values, therefore,

small relative errors may still yield values for the residual f(q)
several orders of magnitude larger than, say, small relative errors
in a diode current if that is used to define a diode’s non-linear
equation. If several different non-linear components are used in
the same circuit, it would therefore be necessary to have different
convergence criteria for the individual residuals of the combined
non-linear equation. Alternatively, one can scale f(q) (and hence
Jf (q)), which was done in the implementation used here to eval-
uate the derived model.

5. IMPLEMENTATION AND RESULTS

The proposed model has been implemented as part of the ACME1

project, a circuit simulation package for the Julia programming
language2. Julia is a relatively young programming language, still
evolving rapidly. It is intended to be used in technical comput-
ing, providing a high level of abstraction with convenient syntax
combined with the ability to generate highly efficient code [7, 8].
ACME is an implementation of the method of [6], providing a cir-
cuit simulation framework and a testbed for further developments,

1https://github.com/HSU-ANT/ACME.jl
2http://julialang.org/

especially additional and improved element models and automated
optimization techniques for faster simulations. ACME is imple-
mented in Julia mainly due to two language features, namely good
support for matrix operations and linear algebra (similar to e.g.
MATLAB) and the ability to work with Julia expressions in the
language itself, combined with the efficiency of the code being
generated. Good matrix support is important as [6] makes heavy
use of matrices. Being able to manipulate Julia expressions from
within the language allows to generate a single function represent-
ing the non-linear equation of a whole circuit with multiple non-
linear elements on the fly.

The code corresponding to the proposed model given by equa-
tions (19) to (22) and (25) to (36) is shown in Figure 2. While a
general introduction into Julia and ACME are beyond the scope of
this paper, the main features of Figure 2 shall be explained in the
following. The first two lines start the definition of the function
transformer (ended in line 29), where the parameters of the
Jiles-Atherton model and the core geometry occur as function ar-
guments with default values taken from [4]. The number of turns
of the individual windings are passed as a vector to the argument
ns, defaulting to the empty vector, i.e. a transformer without any
windings. In lines 4 to 23, the non-linear equation is defined as
a Julia expression: The code inside the quote ... end block
is parsed but not executed, rather, its abstract syntax tree is stored
in nonlinear_eq. While parsing, values can be spliced in us-
ing the $(...) syntax, inserting the model parameters as con-
stants in the expression. To evaluate the non-linear equation, first
the Langevin function and its derivatives are computed in lines 5
to 9, then δ, Man and δM are determined in lines 10 to 13. Be-
fore computing the residual and the Jacobian in lines 16 to 22, the
common denominator den occurring in them is pre-computed in
line 15. Here, a scaling as mentioned above with 10−4/Ms is ap-
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i = H · 1 m

(a)

v = 100 mV

(b)

v = 5 V · sin(2πft)

R1 = 10 Ω

R2 = 10 Ω

(c)

Figure 3: Simulated circuits: (a) inductor driven by a current
source ramped up and down to obtain hysteresis loops; (b) induc-
tor driven by constant voltage; (c) simplified output transformer
stage driven by sinusoidal voltage.

Table 1: Model parameters used in the simulations, taken from
[2] and [4]. Note that the definition of c is different in [2]; there
c = 0.2, which is converted to 0.2/(1 + 0.2) ≈ 0.17 here.

parameter value in [2] value in [4]

Ms 1.6× 106 A/m 2.75× 105 A/m
a 1.1× 103 A/m 1.41× 101 A/m
α 1.6× 10−3 5.00× 10−5

k 4.0× 102 1.78× 101

c 1.7× 10−1 5.50× 10−1

D — 2.40× 10−1 m
A — 4.54× 10−5 m2

n — 230

plied. Note that the residual res and the Jacobian J are assumed
to be a vector and a matrix, respectively, so the assignment of the
results is to specific entries of them. The ACME framework will
take care that the resulting expression is used in a context where
res and J of appropriate size as well as the auxiliary vector q
are defined. Finally, in lines 24 to 28, the non-linear equation is
combined with the matrices of equations (25) to (27) to yield the
desired model description. The syntax for matrix definition is very
similar to MATLAB; speye and spzeros create sparse identity
and all-zero matrices, respectively.

To verify model and implementation, the three simple circuits
shown in Figure 3 are simulated using ACME version 0.1.1. The
circuit of Figure 3a is used to obtain magnetic hysteresis loops,
while the circuit of Figure 3b shall exemplify the behavioral dif-
ference between a linear and a non-linear inductor. Finally, the
circuit of Figure 3c is a simplified model output transformer stage,
demonstrating the model in a likely application.

For the circuit in Figure 3a, the core parameters from [2] (see
Table 1) are used and the geometry chosen as D = 1

π
m, A =

1 m2, n = 1, so that current and magnetic field have the same
numeric value. The sourced current is ramped up and down to
increasing values and the magnetization is recorded. As can be
seen in Figure 4, the resulting magnetic hysteresis loops are in
good agreement with the results of [2].

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

H in kA/m

0.5

−0.5

M/Ms

Figure 4: Comparison of magnetic hysteresis loops from [2,
Fig. 12] (black) with the ones obtained with the implemented
model of Figure 2 (overlaid in gray) using the same parameters
(given in Table 1).

0 10 20 30
t in ms

0

10

20

30

i in mA

Figure 5: Inductor current i over time t for constant-voltage exci-
tation with 100 mV using the inductor parameters from [4] given
in Table 1.

In the second experiment, corresponding to the circuit of Fig-
ure 3b, the parameters determined for a real inductor in [4] are
employed. A constant voltage of 100 mV is applied and the cur-
rent is recorded. For a linear inductor, the current would increase
linearly, being proportional to the integrated voltage. For a non-
linear inductor where the core saturates, the effective inductance
is decreased, leading to a faster current increase. This is exactly
the behavior that can be observed in Figure 5: At the beginning,
the current grows linearly, matching the linear behavior. For larger
currents, however, the core reaches saturation, and accordingly the
current grows ever faster.

Finally, a transformer circuit vaguely reminiscent of a tube
amplifier’s output transformer stage as shown in Figure 3c is ex-
amined. Here R1 = R2 = 10 Ω model the tube stage output
impedance and load impedance, respectively. Core parameters and
geometry are as in [4] again, with n1 = 230 turns on the primary
side and n2 = 23 turns on the secondary side. Note that the in-
ductor would be grossly undersized for a real amplifier. The code
setting up the corresponding model in ACME is shown in Figure 6.
In lines 1 to 4, the transformer model is instantiated by calling the
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1 l = transformer(Val{:JA}, Ms=2.75e5, a=14.1,
2 α=5e-5, k=17.8, c=0.55,
3 D=2.4e-2, A=4.54e-5,
4 ns=[230, 23])
5 vsrc = voltagesource()
6 r1 = resistor(10)
7 r2 = resistor(10)
8 vprobe = voltageprobe()
9 circ = Circuit()

10 connect!(circ, vsrc[:+], r1[1])
11 connect!(circ, r1[2], l[1])
12 connect!(circ, l[2], vsrc[:-])
13 connect!(circ, r2[1], l[3], vprobe[:+])
14 connect!(circ, r2[2], l[4], vprobe[:-])
15 fs=44100
16 model = DiscreteModel(circ, 1/fs)
17 u=5*sin(2pi*1000/fs*(0:fs-1)).’
18 y=run!(model, u)

Figure 6: Julia/ACME code for the circuit of Figure 3c.

function of Figure 2. Similarly, in lines 5 to 8, the driving voltage
source, the two resistors, and a voltage probe to obtain the output
voltage are created. The Circuit object created in line 9 holds
the circuit description and is populated in lines 10 to 14 by spec-
ifying how the circuit elements are connected. For example, the
positive terminal of the voltage source is connected to terminal 1
of resistor R1. The circuit description is converted to a runnable
model for a sampling rate of 44.1 kHz in lines 15 and 16 which
is then executed in line 18. The circuit is driven with a sinusoidal
voltage with an amplitude of 5 V, set up in line 17. For high fre-
quencies f , as shown in Figure 7a for f = 1 kHz, the circuit al-
most perfectly achieves the voltage scaling by n2/n1 = 1/10. On
the contrary, for lower frequencies like f = 100 Hz shown in Fig-
ure 7b, the saturation of the core yields a very non-linear behavior,
similar in shape to e.g. the results in [1].

6. CONCLUSIONS

We have presented an inductor/transformer model based on the
Jiles-Atherton model of magnetization. It foregoes the commonly
found gyrator-capacitor translation step to map magnetic to elec-
tric quantities. Instead, it exploits the possibilities of the employed
framework of [6] to have the magnetic field and the magnetization
as state variables. An implementation as part of the ACME pack-
age allows flexible use of the developed model for various circuits.
Simulations conducted with simple circuits prove that the model
exhibits the expected behavior. In the future, it will be interest-
ing to model a real output transformer and combine it with a tube
model to simulate a real guitar amplifier’s power stage.
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ABSTRACT

Recently, i-vector features have entered the field of Music Infor-
mation Retrieval (MIR), exhibiting highly promising performance
in important tasks such as music artist recognition or music simi-
larity estimation. The i-vector modelling approach relies on a com-
plex processing chain that limits by the use of engineered features
such as MFCCs.

The goal of the present paper is to make an important step to-
wards a trulyend-to-endmodelling system inspired by the i-vector
pipeline, to exploit the power of Deep Neural Networks1 (DNNs)
to learn optimized feature spaces and transformations. Several
authors have already tried to combine the power of DNNs with
i-vector features, where DNNs were used for feature extraction,
scoring or classification. In this paper, we try to use neural net-
works for the important step of i-vector post-processing and clas-
sification for the task of music artist recognition.

Specifically, we propose a novel neural network for i-vector
features with a cosine-distance loss function, optimized with
stochastic gradient decent (SGD). We first show that current net-
works do not perform well with unprocessed i-vector features,
and that post-processing methods such as Within-Class Covari-
ance Normalization (WCCN) and Linear Discriminant Analysis
(LDA) are crucially important to improve the i-vector representa-
tion. We further demonstrate that these linear projections (WCCN
and LDA) can not be learned using general objective functions
usually used in neural networks.

We examine our network on a 50-class music artist recognition
dataset using i-vectors extracted from frame-level timbre features.
Our experiments suggest that using our network with fully unpro-
cessed i-vectors, we can achieve the performance of the i-vector
pipeline which uses i-vector post processing methods such as LDA
and WCCN.

1. INTRODUCTION

In the area of MIR, music artist modelling can have different ap-
plications including in recommender systems, playlist generation
and music similarity estimation. Each artist can be recognized by a
combination of multiple factors such as musical instruments, genre
and voice of the singer(s).

I-vector features first were proposed in the field of speaker ver-
ification [1] and after their revolutionary success, they were used

1The term Deep Neural Networks in this paper refers toMulti-
Layer Artificial Neural Networks which use recent techniques from
Deep Learning such asbatch-normalization, drop-out and stochastic
gradient descent.

in other areas such as emotion recognition [2], language recog-
nition [3] and audio scene classification [4]. Recently, they were
imported into the MIR domain, for singing language identifica-
tion [5], music artist recognition [6] and music similarity [7].

I-vector features have shown to be a promising song-level rep-
resentation for artists. These features project songs into a fixed-
length and low-dimensional space, which is built from frame-level
features such as Mel-Frequency Cepstrum Coefficients (MFCCs)
using Factor Analysis (FA).

First by using a Universal Background Model (UBM) trained
on a sufficient number of songs, similarities among all the songs
of different artists are captured, then via FA these similarities are
discarded and songs are projected into a new space calledTotal
Variability Space (TVS) which contains the remaining factors
that are in a stronger correlation with artist variability. Further, an
estimation of these factors in each song is calculated which con-
tains rich information about the artist. These estimated factors are
called identity vectors or in short,i-vectors. The use of Neural
Networks (NNs) in different areas is increasing every day and re-
cent advances in this area, enabled researchers to tackle problems
which were previously solved by a variety of different approaches
in machine learning, now by only using NNs. The outcome is the
appearance of different NN layers and architectures specialized for
different tasks.

I-vector based systems usually follow a specific pipeline
which contains a chain of different processing steps with specific
goals. Multiple efforts are done by different researchers to come
up with a solution that replaces each of those blocks with NNs.
The reason is that once all of these blocks are replaced with a NN,
they all can be connected through a deep network and optimized
together using the back-propagation algorithm.

The frame-level feature extraction – a part of the i-vector ex-
traction procedure – and scoring and classification of i-vectors are
examples of the steps that have been replaced with NNs. Yet, a so-
lution for post-processing the raw i-vectors2 using neural networks
is not provided in classification tasks. We seek for a NN-based so-
lution to post-process and classify i-vectors without any help from
the i-vector pipeline. We hope that our efforts makes us one step
closer to anend-to-endmusic artist recognition system inspired by
the i-vector pipeline, using neural networks.

In this paper, we extract i-vectors from frame-level timbre fea-
tures and use them as input to NNs. By defining a cosine-distance
loss function, we lead the network to learn a cosine metric which
works the best with i-vector features. Our results suggest that us-

2In this paper, i-vectors that are not encountered with linear projections
such as LDA and WCCN are calledraw i-vectors. In contrast, i-vectors that
are projected with linear projections such as LDA and WCCN arecalled
processed i-vectors.
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ing our network, we can achieve the performance of the i-vector
pipeline which is the state-of-the-art in music artist recognition.

The remainder of this paper is organized as follows. In Sec-
tion 2, the related work is provided. In Section 3, the i-vector fea-
tures are described. In Section 4, we explain our proposed neural
network. In Section 5 the details of the experiments are explained
and the results are reported. And finally, Section 6 concludes the
paper.

2. RELATED WORK

For the task of Music Artist Recognition (MAR) in MIR, multi-
ple approaches have been followed. Frame-level features [8], en-
semble [9] and coding approaches [10] are some of the most used
methods.

NNs are also known to perform well in MAR. In [11, 12, 13],
Deep Belief Networks (DBNs) are used MAR using spectrograms
and timbral features.

I-vector features have proven to be a promising song-level fea-
ture for MAR. In [6], i-vector features extracted from MFCCs and
spectral features are used for MAR. Also, in [14] i-vectors have
shown a significant performance for MAR in noisy environments.

Even though i-vector features are not used with DNNs for
artist recognition, they are combined with deep learning tech-
niques in many different ways. In [15, 16] speech recognition
DNNs are used to produce statistical vectors needed for i-vector
extraction. In [17], a DNN is used to extract a low-dimensional
representation similar to i-vectors. Also, to extract bottleneck
features used for i-vector extraction, DNNs are utilized in [18].
And in [19], DNNs are employed to manipulate post-processed
i-vectors for speaker recognition.

In [20] DBNs are used with raw3 i-vector features to model
discriminatively the target and impostor i-vectors in a speaker ver-
ification scenario and in [21], DBNs and DNNs are combined to-
gether for single and multi-session speaker recognition.

The methods mentioned above that use raw i-vectors with
DNNs, pursue adaptation purposes or have used DBNs which are
trained in an unsupervised manner. Others, use the processed i-
vectors as an input.

3. I-VECTOR FEATURES

3.1. Theoretical background

An i-vector refers to vectors in a low-dimensional space called To-
tal Variability Space (TVS). The TVS models variabilities encoun-
tered with both the artist and song [7] where, the song variability
defines as the variability exhibited by a given artist from one song
to another.

TVS is created using a matrixT known asTVS matrix. This
matrix is obtained by applying Factor Analysis (FA) on the adapted
means of a Gaussian Mixture Model (GMM) known as Universal
Background Model (UBM). This UBM is trained on the acoustic
features of a sufficient amount of data. The means of UBM are
then adapted to each song and then are used for the FA procedure
explained in [1].

In the TVS, a given song is represented by ani-vector which
indicates the directions that best separate different artists.

3I-vectors that are not encountered with post-processing methods such
as LDA or WCCN.

A GMM mean supervectorM adapted to a song from artistα
can be decomposed as follows:

M = m+Ty (1)

wherem is the GMM mean supervector andTy is an offset.y
is a latent variable with the standard normal prior. The i-vector is
defined as the MAP estimate ofyM is assumed to be normally dis-
tributed with mean vectorm. The obtained i-vector is an artist and
song dependent vector. The matrixT is used to extract i-vectors
from statistical supervectors (known asNs andFs) of songs which
are computed using UBM.

We calculate statistical supervectors for a specific songs using
UBM. These supervectors areNs andFs of songs:

Ns

c =

L∑

t=1

γt(c), Fs

c =

L∑

t=1

γt(c)Yt (2)

whereγt(c) is the posterior probability of Gaussian componentc

of UBM for framet andYt is the MFCC feature vector at framet.
After calculatingNs andFs, using the statistical supervectors

of songs in training set we learn theT matrix via an Expectation
Maximization (EM) algorithm as follows: E-step, computes the
probability of P (w|X) whereX is the given song andw is its
i-vector. M-step, optimizesT by updating the following equation:

w = (I+T
t
Σ

−1
N(s)T)−1

T
t
Σ

−1
F(s) (3)

whereN(s) andF(s) are diagonal matrices withNs

cI andFs

cI

on diameter. I is the identity matrix andΣ is the diagonal co-
variance matrix. The actual computation of an i-vectorw for a
given songs can be done using (3) after trainingT. The curious
reader is referred to [1, 22] for more information about the training
procedure ofT.

3.2. I-vector post-processing and scoring

As explained before, i-vectors contain both artist and song vari-
ability. The song variability can be reduced by applying post-
processing techniques such as LDA [23] and WCCN [24]. These
techniques project i-vectors into a space which minimizes the
song variability and maximizes the artist variability. In this sec-
tion, we describe three techniques (LDA, WCCN and Length Nor-
malization) that are frequently used in i-vector pipeline for post-
processing. Also we describe a scoring method for classifying the
i-vectors.

WCCN: provides a linear projection with an effective com-
pensation. WCCN scales the i-vector space in the opposite di-
rection of its inter-class covariance matrix, so that directions of
intra-artist variability are improved for i-vector scoring.

LDA : yields a linear projection that tries to find a orthogonal
basis with a better discrimination between different classes. LDA
projection maximizes the between-class and minimize the within-
class covariance of the data.

Length Normalization: Length (amplitude) of i-vectors are
in correlation with negative effects such as song variability. For
this reason, an iterative length-normalization for i-vectors is pro-
posed in [25] where suggest to divide each i-vector by its length
(norm). It is suggested to apply length-normalization before each
post processing, also before feeding to the classifier/scoring step.

Cosine Scoring (CS): In the TVS, a simple cosine scoring
has been successfully used to compare two i-vectors, as described
in [26]. To predict the artist label for an i-vector, the artist with
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the highest cosine score is chosen as the label where the score is
defined as the cosine score of the given i-vector and class-averaged
i-vectors4.

3.3. I-vector pipeline

In Figure 1 (top), a diagram of an i-vector based system is shown.
As you can see, first the frame-level features are extracted and then
the i-vector models (such as UBM andT matrix) are trained and
then i-vectors are computed. Further, these raw i-vectors are en-
countered with post-processing methods. First LDA is applied and
the resulting i-vectors are projected using WCCN. Finally, LDA-
WCCN projected i-vectors are used for scoring via Cosine Scor-
ing.

4. THE PROPOSED NETWORK

In this section, we introduce our proposed NN for music artist
recognition using i-vector features. As we show in Figure 1 (bot-
tom), instead of using post-processing methods such as LDA and
WCCN, and scoring methods such as cosine-scoring, our network
is able to use raw i-vectors directly as an input.

Our experiments show that linear projections such as LDA
and WCCN play a significant role in the performance of i-vector
pipeline. Hence, we would like to replace such linear projections
with a NN. We use linear activation function (LIN) in our NN. The
reason to choose LIN is that other layer activation functions such
as rectify units discard all the negative values by replacing them
with zero Because i-vectors have a mean value close to zero, by
using a rectified activation function [27], the layer’s output activa-
tions that still have negative values, might be forced to throw away
the information related to negative values of i-vector features.

Instead of the common loss functions used with NNs such
as Mean Squared Error (MSE) and Categorical Cross-Entropy
(CCE), we introduce a novel Cosine-distance based loss function
for multi-class classification tasks using i-vector features. Our
Cosine-Distance Based Neural Network (CDB-Net) is described
in details in the following.

Architecture : Our CDB-Net consists of 4 layers with 1 hid-
den layer. The first hidden layer is a dense (fully connected)
layer with linear activation function. It is followed by a batch-
normalization layer [28] then a drop-out layer [29] and finally
a dense output layer with linear activation function. Using the
drop-out, prevents the network from over-fitting and let each fea-
ture to be learned, without relying on other dimensions. During
training a NN the parameters of a layer change, and consequently
the distribution of each layer’s outputs changes as well. Batch-
normalization layer normalizes each layer output for each training
mini-batch. This allows us to use higher learning rates and be less
careful about initialization. The aim of the first hidden layer is
to learn a linear projection that improves the i-vector representa-
tion. We expect that since the i-vector pipeline benefits from LDA
and WCCN linear projections, our CDB-Net also should be able
to learn a projection with similar characteristics. Our first hidden
layer has 400 hidden neurons (the same as the i-vectors dimension-
ality).

The output activations of this layer and one-hot encoding of
the correct class are used to calculate a cosine loss. In the output

4class-averaged i-vectors are defined as the average of i-vectors in each
class, in training set.

layer, we use the same number of hidden neurons as our classes to
produce a score for each class given an i-vector.

Cosine loss function: For the loss optimization, we use a
novel Cosine-distance based loss. This loss is the cosine distance
of the activations of the output layer with one-hot encoding of the
correct class. The calculation of our proposed loss is as follows.

For aC classes problem, a one-hot encoding of classi (i =
1, . . . , C) is one at the indexi and zero otherwise. The cosine loss
of the network for a batch size ofb is defined as follows:

losscos = 1−
1

b

b∑

n=1

cos(outn, ln) (4)

whereoutn is the output activation of the output layer andln is
the one-hot encoding for the correct class. Also,cos is a standard
cosine similarity [26]. Then maximum of the cosine loss is equal
to 1. Also, each one-hot encoding is orthogonal to the others. So
the labels have the maximum distance from each other. Hence,
minimizing the cosine loss of the output activations to the correct
one-hot encoding, will increase the discrimination power of the
network. The network tries to minimize this loss by using stochas-
tic gradient descent. Then it back-propagates the error through the
previous layers to update the weight of the layers.

This is not the first time that cosine-distance is used as loss
in a NN. In [30], a NN optimized with a similar cosine distance-
based loss function is used for the task of signature verification.
Although the cosine loss function in [30] is used to process both
imposter and target signature features. Some of the differences be-
tween our CDB-Net loss and loss used in [30] can be explained
as: 1) the loss definitions are different. The loss in [30] is de-
fined for a special NN called “Siamese” containing two identical
sub-networks with a special training procedure. This network is
designed to compare two signatures for signature verification. The
loss defined in our CDB-Net can be used in any multi-class clas-
sification task. 2) The Siamese network training tries to minimize
the cosine distance of two output activations from two different
signatures. CDB-Net minimizes the cosine distance of the output
activations of a given i-vector with its correct one-hot encoding
label in a discriminative manner.

Network distance metric: The proposed network is forced
to use the cosine distance metric in its optimization because of
two reasons: 1) the input raw i-vectors are length-normalized. So
the network can not distinguish between different classes using a
distance metric such as Euclidean distance that relies on the am-
plitude of the output activations. 2) The loss function is a cosine
distance between output layer activation and their respective one-
hot encoding class label. So the network’s objective function is
defined by a cosine metric.

5. EXPERIMENTS

5.1. Data

Similar to the data used in [12] for music artist recognition, we
used a subset of Million Song Dataset [31] (MSD) in the artist
recognition experiments. We follow a similar procedure as used
in [12]. We first removed the duplications from MSD by using the
official duplication list provided in MSD website which reduced
the number of songs from one million to around 900,000. Then
we selected all the artists with more than 100 songs. From these
artists, we selected top 50 artists with more songs and further se-
lected 100 random songs from each artist (in sum, 5,000 songs)
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Figure 1: The block-diagram of i-vector based artist recognition system. On the top, classic state-of-the-art i-vector pipeline. On the
bottom, the proposed artist recognition method using a deep network.IL: input layer. DL: dense layer.BN: batch-normalization layer.
DO: dropout layer.OL: output layer.

as our dataset for the experiments in this paper. 80% of the songs
are used for training and the rest are used for validation (10%) and
testing (10%). We trained our models on training set, optimized
using validation set and reported the results on the testing set.

The results reported in [12] (35.74% accuracy) can not be
compared with the performance of our network because of two
reasons:

1) in [12] both timbre and chroma features are used together.
and 2) the performance reported in [12] is in a bar level (which is
smaller than a song), but i-vectors are song-level features and our
performance is reported in the song level.

5.2. Features

Using the features available through The Echo Nest API5, we ex-
tracted i-vectors from Echo Nest Analyzer’s timbre feature. Each
Echo Nest Analyzer’s timbre feature consists of a vector that in-
cludes 12 unbounded values roughly centered around 0. Those val-
ues are high level abstractions of the spectral surface, ordered by
degree of importance such as the average loudness of the segment,
brightness, the flatness of a sound and attack [32]. As meta-data,
we used the artist ids provided in MSD in our artist recognition ex-
periments. To extract i-vectors, all the Echo Nest timbre features
for each song are used.

5.3. Setup

I-vector extraction: For i-vector extraction, a 1024 components
GMM is trained as UBM on Echo Nest timbre features. Then,
T matrix with 400 dimensions is learned using the statistics com-
puted from Echo Nest timbre features and UBM. The training set
is used to train UBM andT. Further i-vectors are extracted using
UBM andT for both training and testing sets. All the i-vectors are
length normalized.

The T matrix is trained using matlab MSR identity tool-
box [33].

CDB-Net: We used 400 neurons in our hidden layer and 50
neurons in the output layer with 50. The hidden layer is followed
by batch normalization and 50% droup-out.

We apply learning-rate schedule during training and decrease
the learning rate by its half after each 10 epochs. The initial learn-
ing rate is 1.0 the learning-rate starts to decrease at the100th epoch
out of 200 epochs used for training.

5http://the.echonest.com/

A stochastic gradient descent (SGD) with back-propagation
algorithm and a momentom of 0.9 is used with the batch size of
500 samples. The one-hot coding of the labels are computed to be
used in the cosine-loss calculation.

For all of our experiments with NNs, the open-source python
library Lasagne[34] is used. Our network is implemented in
Python usingTheano[35].

We used a PC running on Linux with a NVIDIA Titan X GPU
card, an Intel Core i7 CPU and 16 GB of RAM for our experi-
ments. All the NN experiments are optimized on GPU.

We use the averaged F-measure to compare the performance
of different methods. This measurement is calculated by averaging
the F-measures of all the classes in each experiment.

Baselines: Four baseline methods are used in this work. We
use the i-vector pipeline method and three NNs similar to our
CDB-Net as baselines. The difference between our CDB-Net and
other NN baselines is the loss function and the activation functions
of the hidden layer. Our first baseline is the Cosine Scoring (CS)
used in i-vector pipeline. CS first projects i-vectors using LDA and
then by WCCN. Further, it uses the cosine distance to calculate a
score for each given testing i-vector and class-averaged i-vectors
from training set. Finally, it classifies testing i-vectors by mini-
mizing the cosine score. Similar to the architecture of CDB-Net,
our second baseline (CCE-REC-Net) is a 4 layers feed-forward
network with 1 hidden layer of 400 neurons which uses recti-
fied activation function. The hidden layer is followed by batch-
normalization layer and a drop-out layer with 50% drop outs. At
the output layer, CCE-REC-Net uses a soft-max activation func-
tion. CCE-REC-Net is optimized using a CCE loss function.

Our third baseline (CCE-TAN-Net) is a a 4 layers feed-
forward network with 1 hidden layer of 400 neurons. CCE-TAN-
Net has exactly the same architecture as CCE-REC-Net, only uses
tanh activation function instead of rectified activation function.
Our fourth baseline (CCE-LIN-Net) is also a a 4 layers feed-
forward network with 1 hidden layer of 400 neurons. CCE-LIN-
Net has exactly the same architecture as CCE-REC-Net, only uses
linear activation function instead of rectified activation function.

Experiment design: We examine the performance of our
CDB-Net in three different experiments: 1) dealing with LDA-
WCCN projected i-vectors, 2) dealing with raw i-vectors and 3)
The effect of weight initialization in NNs.

In our first experiment, we compare the performance of
CDB-Net and our baselines on processed i-vectors. Since the i-
vector pipeline uses LDA and then WCCN projections for post-
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processing, we use the LDA, then WCCN projected i-vectors in
our first experiment. Our first experiment reveals how different
networks–as well as the i-vector pipeline–deal with processed i-
vectors. The results of this experiment are provided in Table 1

Our second experiment compares the CDB-Net with the base-
lines encountering raw i-vectors. This experiment is the core of
this paper and shows how our CDB-Net performs compared to all
the other baselines.

Finally, in our third experiment, we study the effect of weight
initialization in the hidden layer of the baseline NNs as well as our
CDB-Net. In [36] the importance of layer’s weight initialization
in feed-forward NNs is discussed in details. In the experiments
1 and 2, we initialize the weight of our hidden layer from a uniform
distribution as explained in [36]. In experiment 3, we would like
to compare this initialization with an initialization using the LDA-
WCCN projection matrix which is used in the i-vector pipeline for
i-vector post-processing.

Even though we are aware that initializing the hidden layer
with LDA-WCCN projection matrix is similar to use processed i-
vectors, we would like to provide proof that our CDB-Net is able
to find an optimum point that other NNs are unable to find using
SGD without a proper initialization. If we initialize the hidden
layer’s weight, or use processed i-vectors, other netowrks are able
to reach that optimum point.

Using a LDA-WCCN projection matrix, we initialize the hid-
den layer’s weight matrix in all of our baseline NNs as well as our
CDB-Net. Then we feed all the networks with raw i-vectors. The
LDA-WCCN projection matrix is computed by multiplying LDA
and WCCN projection matrices. In [26] a procedure is described
about how to combine LDA and WCCN projection matrix to be
used with i-vector features and cosine scoring in an efficient way.
We follow the same procedure to compute our LDA-WCCN pro-
jection matrix.

5.4. Results

The performance of NNs with LDA-WCCN projected i-vectors
can be found in Table 1. Also, the performance of the i-vector
pipeline can be found under (CS) name.

It can be seen that using LDA-WCCN projected i-vectors,
all the networks achieved similar performances to the i-vector
pipeline. Also, it can be observed that CCE-LIN-Net and CDB-
Net achieved better performances than CCE-REC-Net and CCE-
TAN-Net. It shows that rectified andtanh activation functions
were not useful, as expected.

As the main experiment of this paper, in Table 2 we com-
pare the CDB-Net with other baselines using raw i-vectors. As
can be seen, the performance of the i-vector pipeline is very poor
without LDA-WCCN projection step. This shows the importance
of the post-processing for i-vector features. Also, looking at the
other baseline NNs, it can be seen that all the other baseline net-
works also could not achieve a F-measure of more than 41.46%.
This show that similar to i-vector pipeline, post-processing is very
effective to process i-vector features using NNs optimized with
CCE loss function. The proposed CDB-Net could achieve the
performance of57.86% and outperformed all the baselines. The
good performance of CDB-Net reveals that even though no weight
initialization using LDA-WCCN projections were used, also i-
vectors were not processed with such linear projections, using
cosine loss function was very effective to optimize the network.
From the second experiment, we can observe that changing the

loss function from CCE to cosine, the NN’s behavior changes and
it can find much better optimum points which leads to achieving
much higher performances.

In our final complimentary experiment (exp. 3) we studied the
effect of weight initialization with LDA-WCCN projection matrix
in the hidden layer. In Table 3 it can be seen that as expected, by
initializing the weight of the hidden layer with the projection ma-
trices of LDA-WCCN, all the baseline methods and the proposed
method achieved similar performances to exp. 1 that processed i-
vectors were used.

By looking at 3 baselines used in experiment 3, it can be seen
that the networks which previously did not perform well with raw
i-vectors, now can perform much better if the hidden layer’s weight
matrix initializes with the LDA-WCCN projection matrix. Even
though the results are not surprising as we observed from the per-
formance of our baseline NNs in experiment 1, we learned that it
is not necessary to only use processed i-vectors to achieve good
performances with NNs. By a right initialization, the performance
of a CCE-optimized NN can be significantly improved.

Table 1: Experiment 1- Artist recognition F-measure usingpro-
cessed (LDA-WCCN projected) i-vector features and different
methods. The method marked with an asterisk (∗) is the i-vector
pipeline.

method in. dim. hid. neu. out. layer F1 (%)
*CS 49 – – 56.17

CCE-REC-Net 49 49 SM 54.12
CCE-TAN-Net 49 49 SM 57.45
CCE-LIN-Net 49 49 SM 59.77

CDB-Net 49 49 LIN 58.24

Table 2: Experiment 2- Artist recognition F-measure usingraw
i-vector features and different methods.

method in. dim. hid. neu. out. layer F1 (%)
CS 400 – – 26.99

CCE-REC-Net 400 400 SM 37.10
CCE-TAN-Net 400 400 SM 40.26
CCE-LIN-Net 400 400 SM 41.46

CDB-Net 400 400 LIN 57.86

Table 3: Experiment 3- Artist recognition F-measure usingraw
i-vector features with LDA-WCCN weight initialization for dif-
ferent methods.

method in. dim. hid. neu. out. layer F1 (%)
CCE-REC-Net 400 49 SM 53.33
CCE-TAN-Net 400 49 SM 57.14
CCE-LIN-Net 400 49 SM 58.41

CDB-Net 400 49 LIN 56.89

6. CONCLUSION

Our experiment results (exp. 1) suggest that feed-forward NNs can
be used as a classifier with processed i-vectors and achieve the per-
formance of i-vector pipeline. Also in exp. 2 we showed that the
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same NNs that performed well with processed i-vectors, are unable
to achieve good performances with raw i-vectors and the perfor-
mance of these NNs drops significantly when the post-processing
step is removed.

To tackle this problem, we introduced a NN with a cosine-
distance loss function and linear dense layers. We showed that this
network can achieve the performance of the NNs that used pro-
cessed i-vectors. It demonstrate that our network has the ability to
learn similar projections to LDA-WCCN which significantly im-
prove the i-vector representation for music artist recognition.

Our complimentary experiment results (exp. 3) suggest we can
improve the performance of the feed-forward NNs by initializing
their hidden layer’s weights using LDA-WCCN projection matrix.
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ABSTRACT

Outlier detection is the task of automatic identification of unknown
data not covered by training data (e.g. a new genre in genre recog-
nition). We explore outlier detection in the presence of hubs and
anti-hubs, i.e. data objects which appear to be either very close
or very far from most other data due to a problem of measur-
ing distances in high dimensions. We compare a classic distance
based method to two new approaches, which have been designed
to counter the negative effects of hubness, on two standard music
genre data sets. We demonstrate that anti-hubs are responsible for
many detection errors and that this can be improved by using a
hubness-aware approach.

1. INTRODUCTION

Outlier detection1 is the identification of new or unknown data that
a machine learning system is not aware of during training (see [18]
for a recent review and [29] for a survey on high-dimensional out-
lier detection). It is a fundamental requirement for every machine
learning system to automatically identify data from regions not
covered by the training data since in this case no reasonable de-
cision can be made. In the case of music information retrieval
(MIR), an application scenario is the rejection of songs from a
previously unseen genre in genre recognition. The same holds for
other classifications tasks (e.g. tag or mood), but also for retrieval
of similar songs in case a query song is too different from all other
songs in a data base. Another example is the automatic rejection
of songs from play-lists because they do not fit the overall flavor
of the majority of the list. Only little research on outlier detection
in MIR so far exists [6, 12, 26, 8].

Hubness is a general problem of learning in high-dimensional
spaces and has been recognized as a new aspect of the curse of di-
mensionality in machine learning literature [20, 23]. Hub objects
appear very close to many other data objects and anti-hubs very far
from most other data objects. It has been argued and demonstrated
that anti-hubs might act as ‘artificial’ outliers since they are far
away from many other data points [20]. A recent review on out-
lier detection in high dimensional data concluded that the “relation
of hubness and outlier degree appears to be remaining an open is-
sue” [29]. It has been demonstrated [10], that many MIR models
are inherently high-dimensional and highly prone to hubness. In
a first MIR study on outlier detection in high dimensions [8], we
were able to show that it is possible to improve outlier detection
by using a hubness reduction method as a preprocessing step.

∗ This work was supported by the Austrian Science Fund (FWF, grant
P27082).

1Please note that the terms outlier and novelty detection are closely re-
lated although not fully synonymous. We will use the term outlier through-
out the paper without further distinction for reasons of convenience.

In this paper we explore whether such improvements in high-
dimensional outlier detection are on account of the changed role of
hubs and anti-hubs due to the hubness reduction method. This is
done by analyzing the performance of hubs and anti-hubs in a clas-
sic distance based method and in two hubness-aware approaches,
all applied in a music genre recognition setting.

2. RELATED WORK

Outlier detection, also known as novelty detection, is the task of
automatically recognizing data that differ in some respect from the
data seen during training by a machine learning system. In case
new data differs substantially from training data, no sensible de-
cision can be made by a machine learning system. This should of
course be an integral part of any data analysis system and therefore
a vast literature concerning the topic exists. For this paper, we fol-
low the systematic of a very recent and comprehensive review [18],
which also contains a representative list of references concerning
the topic. According to this review, outlier detection can be distin-
guished into probabilistic, distance-based, reconstruction-based,
domain-based and information theoretic approaches. The methods
we will present in Section 4 are all distance-based, more specifi-
cally based on nearest neighbor information. They are also all un-
supervised, i.e. class labels are not needed for detection of outliers.
Of greater importance is a recent review that deals specifically with
outlier detection in high-dimensional data [29]. Although the au-
thors show how some classic outlier detection methods are affected
by the concentration of distances (see also next paragraph), hub-
ness is only reviewed as a remaining open issue.

The concept and term of hubness has been discovered and
first described in MIR [1], but then gained attention in a machine
learning context where it has been discussed as a new aspect of
the curse of dimensionality and a general problem of learning in
high-dimensional spaces [20, 23]. Hubness is related to the phe-
nomenon of concentration of distances, which is the fact that all
points are at almost the same distance to each other for dimension-
ality approaching infinity [11]. Radovanović et al. [20] presented
the argument that for any finite dimensionality, some points are ex-
pected to be closer to the center of all data than other points and are
at the same time closer, on average, to all other points. Such points
closer to the center have a high probability of being hubs, i.e. of
appearing in nearest neighbor lists of many other points. Points
which are further away from the center have a high probability of
being anti-hubs, i.e. points that never appear in any nearest neigh-
bor list. Hubness has been shown to have a negative impact on
many tasks including classification [20], nearest neighbor based
recommendation [10] and retrieval [24], clustering [27, 22] and
visualization [4]. Many of these reports are from the MIR com-
munity (e.g. [14, 2, 10, 4, 5]). It also affects data from diverse
domains including multimedia (text, music, images, speech), biol-
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ogy and general machine learning (see [20, 23, 3] for large scale
empirical studies).

In order to reduce hubness and its negative effects, we have
proposed two unsupervised methods to re-scale high-dimensional
distance spaces [23]: Local Scaling (LS) and Mutual Proximity
(MP). Both methods aim at repairing asymmetric nearest neighbor
relations. The asymmetric relations are a direct consequence of
the presence of hubs. A hub y is the nearest neighbor of x, but the
nearest neighbor of the hub y is another point a (a 6= x). This is
because hubs are by definition nearest neighbors to very many data
points but only one data point can be the nearest neighbor to a hub.
The principle of the scaling algorithms is to re-scale distances to
enhance symmetry of nearest neighbors. A small distance between
two objects should be returned only if their nearest neighbors con-
cur. Application of LS and MP resulted in a decrease of hubness
and an accuracy increase in k-nearest neighbor classification on
thirty real world datasets including text, image and music data.

Just recently we re-visited our own results [6] on outlier detec-
tion in MIR and tried to use mutual proximity (MP) for the task [8].
After all, MP rescales distances to probabilities of mutual proxim-
ity which allows for convenient thresholding to detect outlier data
due to its probabilistic interpretation. We were able to show that
outlier detection based on MP improves the ability to reject outlier
data when compared to a classic distance based method, again in a
genre classification context. A necessary next step is to investigate
whether the improvement achieved is on account of the changed
role of hubs and anti-hubs due to the application of mutual prox-
imity. It seems clear that anti-hubs, being far away from most
points, will probably always be rejected as outliers and that hub
objects, being close to many points, should be harder to reject. It
is therefore our hypothesis that in high-dimensional data, hub and
anti-hub points are responsible for many errors being made when
rejecting data.

Such a first analysis of the role of anti-hubs in outlier detection
has recently been presented [19]. More specifically, the authors
have analysed two variants of the ODIN method [13], k-NN out-
lier scoring [21] and three other methods concerning their relation
to anti-hubs. The two variants of the ODIN method use reverse
nearest neighbor counts, i.e. counts of how often every data object
appears among the k nearest neighbors of every other data object.
Per definition anti-hubs have very small or even zero reverse near-
est neighbor counts. The authors show that outlier scores based on
these counts are correlated to scores from other detection methods
but do provide some extra information. Outlier detection results
of the ODIN-based methods are however rather mixed when com-
pared to other methods applied to twelve real world data sets. It
also has to be said that these data sets are not really very high di-
mensional (from only 5 to at most 100) and therefore most of them
are probably not affected by hubness at all.

Concerning the dimensionality of data sets, it is important to
note that the degree of concentration and hubness is linked to the
intrinsic rather than extrinsic dimension of the data space. Whereas
the extrinsic dimension is the actual number of dimensions of a
data space, the intrinsic dimension is the, often much smaller,
number of degrees of freedom of the submanifold in which the
data space can be represented [11]. Our previous research [23] has
shown that real world data with extrinsic dimensionality as small
as 34 can already exhibit the negative effects of hubness, while
other data with extrinisc dimensionality of more than 10000 is still
not affected. It is also true that simple dimensionality reduction
does not reduce hubness. On the contrary it has been shown that

only projections to very few dimensions, well below the intrinsic
dimensionality of a data set, are able to reduce hubness, but at the
cost of a loss of distance information [20].

3. DATA

For our analysis, we chose to use a genre classification framework,
following the hypothesis that songs within a certain genre are more
similar to each other than songs from different genres. During
evaluation in Section 5, we will always reserve all songs belonging
to one of the genres as outlier songs to be detected against the rest
of the songs from all other genres. Songs from an unknown genre
therefore act as outliers.

For our experiments we used two standard music databases:
the “GTZAN” collection consisting of N = 1000 audio tracks
(each 30 s length) evenly spread over G = 10 music genres [28];
the “ISMIR2004” 2 collection containing N = 1458 tracks of
G = 6 genres, with full-length audio being available and exhibit-
ing a highly imbalanced genre distribution with classical music
comprising almost half of the tracks.

We decided to compute timbre information from the audio,
since this is an integral part of many MIR systems and at the same
time has already been shown to be susceptible to hubness [10]. Ev-
ery track is divided into overlapping frames for which 20 MFCCs
are being computed which are modeled via a single Gaussian with
full covariance matrix. To compute a distance value between two
Gaussians the symmetrized Kullback-Leibler (SKL) divergence is
used (see [17] for details on both MFCCs and SKL). This results
in N ×N distance matrices DG and DI for the GTZAN and IS-
MIR data sets. Therefore the data sets are represented as distance
spaces only, not vector spaces, and it is not possible to report their
extrinsic dimensionality. Their intrinsic dimensionality measured
via a maximum likelihood estimator [16] is 10.94 for GTZAN and
9.00 for ISMIR.

4. METHODS

We now describe all three methods we will use for outlier detec-
tion. All of them compute an outlier score (SkNN , SAH and
SMP ), which is bounded between 0 and 1 and is compared to a
threshold p to decide whether a data object is an outlier or not. A
data object is rejected if:

S > p. (1)

4.1. kNN-reject

The first method is a standard distance-based approach known as
k-NN outlier scoring [21]. The outlier score is the average distance
to the k nearest neighbors:

SkNN (x) =
1

k

k∑
i=1

Dx,NNi(x), (2)

with NNi(x) being the ith nearest neighbor of x. The distance
matricesDG andDI (see Section 3) are normalized to the interval
0 to 1 by subtracting the minimum distance and dividing through
the maximum distance. This also bounds the outlier score SkNN

between 0 and 1.
2http://ismir2004.ismir.net/genre_contest/

index.html
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4.2. AH-reject

The next method is based on previous work of using reverse near-
est neighbor counts for outlier detection [19]. In hubness research,
the reverse nearest neighbor count of a point x is usually called
n-occurrenceOn(x) [20]. It is the number of times x occurs in the
first n nearest neighbors of all other objects in the collection. The
proposed method simply uses On(x) as the outlier score. It has
been termed “Antihub” because anti-hubs have very small or even
zero n-occurrence and are therefore very likely to be rejected as
outliers. The same authors proposed a variant called “Antihub2”
which also includes information from the k nearest neighbors of
x:

SAH(x) = (1− α) 1

On(x) + 1
+ α

k∑
i=1

1

On(NNi(x)) + 1
. (3)

We set α = k/(k + 1), which basically gives the average across a
function of the n-occurrences of x itself and its k nearest neighbors
NNi(x). The outlier score SAH is also bounded between 0 and 1,
with SAH = 1 in case all involved n-occurrences On are equal
zero, and SAH = 1/N in case all involved On = N − 1. An
n-occurrence is equal N − 1 in case a data point appears in all
neighborhood lists of all other data points.

4.3. MP-reject

Mutual Proximity (MP) [23] rescales the original distance space so
that two objects sharing similar nearest neighbors are more closely
tied to each other, while two objects with dissimilar neighborhoods
are repelled from each other. MP has been devised to counter the
negative effects of hubness in high dimensional data spaces. For
MP-reject we exploit the fact that MP rescales distances to proba-
bilities which enables comparability and simple thresholding. MP
reinterprets the distance of two objects as a mutual proximity in
terms of their distribution of distances. To compute MP, we as-
sume that the distancesDx,i=1..N from an object x to all other ob-
jects in our data set follow a certain probability distribution P (X),
thus any distance Dx,y can be reinterpreted as the probability of y
being the nearest neighbor of x, given their distance Dx,y and the
probability distribution P (X):

P (X > Dx,y) = 1− P (X ≤ Dx,y) = 1−Fx(Dx,y), (4)

with F denoting the cumulative distribution function (cdf). MP is
then defined as the probability that y is the nearest neighbor of x
given P (X) and x is the nearest neighbor of y given P (Y ):

MP (Dx,y) = P (X > Dx,y ∩ Y > Dy,x). (5)
To compute MP in our experiments we assume that the distances
Dx,i=1..N follow a Gaussian distribution. We define the outlier
score as the average of the MP-distances to the k nearest neighbors
of x:

SMP (x) =
1

k

k∑
i=1

(1−MP (x,NNi(x))), (6)

with NNi(x) being the ith nearest neighbor of x. Please note that
we use the term (1 −MP ) because mutual proximity computes
similarities and we need distances for the rejection rule. Outlier
score SMP is bounded between 0 and 1 since it is based on MP
which computes a probability.

5. RESULTS

Before evaluating the outlier detection methods, we present an
analysis of the hubness of the data sets GTZAN and ISMIR in
Table 1. The table gives the number of data objects N , number of
genres G, the number of hubs #hub, anti-hubs #anti and nor-
mal #normal data objects. Anti-hubs are defined as data ob-
jects with an n-occurrence On (see Sec. 4.2) equal 0, hubs with
On > 5n, all based on numbers of nearest neighbors of n = 5.
Normal data objects are all non-hub and non-anti-hub objects, i.e.
0 < On ≤ 5n. Please note that the mean n-occurrence across all
objects in a data base is equal to n. Any n-occurrence significantly
bigger than n therefore indicates existence of a hub. As in previ-
ous work [23], we chose objects appearing more than five times the
expected value (5n = 25) as hub objects. As can be seen, consis-
tent with theory, in both data sets there are small numbers of hubs
(GTZAN 21, ISMIR 24) and large numbers of anti-hubs (GTZAN
186, ISMIR 276). The last column of Table 1 gives the hubness
Hn. It is the skewness of the distribution of n-occurrences, i.e.
the third moment of the distribution. A data set having high hub-
ness produces few hub objects with very high n-occurrence and
many anti-hubs with n-occurrence of zero. This makes the distri-
bution of n-occurrences skewed with positive skewness indicating
high hubness. The hubness values Hn of 3.29 for GTZAN and
3.94 for ISMIR show that there is a clear hubness effect in these
data sets. Previous work [23] has shown that values above 1.4 are
already problematic.

Table 1: Hubness analysis of data sets GTZAN and ISMIR, see
Sec. 5.

data set N G #hub #anti #normal Hn

GTZAN 1000 10 21 186 793 3.29
ISMIR 1458 6 24 276 1158 3.94

To evaluate the three outlier detection methods described in
Sec. 4 we use the following approach shown as MATLAB style
pseudo-code in Table 2. First we set aside all songs belonging to a
genre g as new songs ([new,data]=separate(alldata,
g)) which yields data sets new and data (all songs not belong-
ing to genre g). Then we do a C = 10-fold crossvalidation using
data and new: we randomly split data into train and test
fold ([train,test] = split(data,c)) with train al-
ways consisting of 90% and test of 10% of data. We com-
pute the percentage of new songs which are rejected as being out-
liers (outlier_reject(g,c) = outlier(new)) and do
the same for the test songs (test_reject(g,c) =
outlier(test)). Last we compute the classification accu-
racy on test data that has not been rejected as being outliers
(accuracy(g,c) = classify(test(not
test_reject))). As a classifier we use simple one-nearest
neighbor classification. The evaluation procedure gives G × C
(GTZAN 10×10, ISMIR 6×10) matrices of outlier_reject,
test_reject and accuracy for each parameterization of the
outlier detection approaches, i.e. for different values of k (see Sec.
4). In what follows we always report average numbers across these
G×C sized matrices of results, i.e. averages across crossvalidation
folds and genres.

The results for outlier detection are given in Figs. 5 and 6
as Receiver Operating Characteristic (ROC) curves. To obtain an
ROC curve, the fraction of false positives (object is not an outlier
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Table 2: Outline of evaluation procedure, see Sec. 5.

for g = 1 : G
[new,data] = separate(alldata,g)
for c = 1 : C

[train,test] = split(data,c)
outlier_reject(g,c) = outlier(new)
test_reject(g,c) = outlier(test)
accuracy(g,c) =
classify(test(not test_reject))

end
end

but it is rejected, in our case test_reject) is plotted versus the
fraction of true positives (object is an outlier and correctly rejected,
in our case outlier_reject) for varying threshold values p.
We vary the threshold values from p = 0 to p = 1 in steps of
.02. An ROC curve shows the trade off between how sensitive and
how specific a method is. Any increase in sensitivity will be ac-
companied by a decrease in specificity. If a method becomes more
sensitive towards outlier objects it will reject more of them but at
the same it will also become less specific and also falsely reject
more non-outlier objects. Consequently, the closer a curve follows
the left-hand border and then the top border of the ROC space, the
better the performance of the method is.

To summarize the information contained in ROC curves, we
also compute the Area Under the Curve (AUC), which gives the
percentage of the whole ROC space that lies underneath an ROC
curve. An AUC of 1 indicates perfect performance, while an AUC
of .5 indicates performance at chance level.

As a first analysis step, we tried to find optimal parameters k
(neighborhood size for algorithms kNN, AH, MP) by comparing
AUC results based on values of k = 1, 2, 3, 5, 10, 20, 30, 40, 50.
Results for GTZAN can be found in Figure 1, for ISMIR in Fig-
ure 2. Looking at the GTZAN results, the AUC values (y-axis)
for all three methods monotonically decrease with neighborhood
size increasing beyond k = 1. The only exception is a very small
gain in AUC for MP going from k = 1 to k = 2. Looking at the
results for ISMIR in Figure 2, the AUC values again monotoni-
cally decrease beyond k = 1 for methods kNN and MP. Only for
method AH, there is a small and slow rebound starting at about
k = 20. We therefore conclude that there is no gain in increasing
the neighborhood size k beyond 1 for any of the methods. All fol-
lowing results are therefore based on the choice of k = 1. We can
also see from Figures 1 and 2, that MP improves AUC results over
kNN across the whole range of k and for both data sets. It is also
already evident that AH is never able to improve performance of
kNN.

We now make a detailed AUC analysis separate for all data
as well as for hubs, anti-hubs and normal data as defined at the
beginning of this section (neighborhood size k = 1 for all outlier
detection methods). Looking at the results for GTZAN in Figure 3,
we can see that for all data together (left most group of bars in fig-
ure), MP increases performance to .81 compared to kNN which
achieves .70. Method AH actually decreases performance to .67.
Looking at hubs and anti-hubs separately for method kNN, it is
clear that anti-hub objects perform worst with an AUC of .59 ver-
sus .71 for hubs and .73 for the remaining normal data. We see
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Figure 1: AUC (y-axis) analysis for data set GTZAN and parame-
ter k ranging from 1,2,3,5,10,20,30,40 to 50 (x-axis), solid line for
kNN, dotted for AH, dashed for MP.
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Figure 2: AUC (y-axis) analysis for data set ISMIR and parameter
k ranging from 1,2,3,5,10,20,30,40 to 50 (x-axis), solid line for
kNN, dotted for AH, dashed for MP.

the same pattern of lowest AUC for anti-hubs for method AH also,
albeit at an even lower level. Method MP is able to increase AUC
compared to kNN for both anti-hubs (from .59 to .71) and nor-
mal data (from .73 to .86). There is a small decrease in AUC for
hubs (from .71 to .67). Looking at results for ISMIR in Figure 4,
we basically see the same pattern. Method kNN performs worst
for anti-hubs, normal and hub objects perform at about the same
level. Method AH repeats this pattern at a lower level. Method MP
is able to improve the performance for anti-hubs and normal ob-
jects but not for hubs. Gains in performance compared to kNN are
smaller than for GTZAN (e.g. from .78 to .83 for all data objects).

We now present the ROC plots that the above AUC results
are based on, again for all data as well as for hubs, anti-hubs and
normal data separately (neighborhood size k = 1 for all outlier
detection methods). Looking at the results for GTZAN in Fig-
ure 5, we can see that the ROC curve for method MP (dashed line)
is above those for kNN (solid line) and AH (dotted line) for al-
most the whole ROC space for all data together as well as for anti-
hubs and normal objects (sub-plots titled ‘ALL’, ‘ANTI-HUB’ and
‘NORMAL’). The ROC curves for hub objects are quite compara-
ble for all three methods. It is also interesting to see, that the ROC
curve for method AH and anti-hub objects (sub-plot titled ‘ANTI-
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Figure 3: AUC plot for data set GTZAN, black bars for kNN, grey
for AH, white for MP (neighborhood size k = 1).
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Figure 4: AUC plot for data set ISMIR, black bars for kNN, grey
for AH, white for MP (neighborhood size k = 1).

HUB’, dotted line) is very close to the main diagonal indicating
performance at chance level. This explains the very low AUC of
.59 for this curve, with .5 indicating chance level. This is due to
the fact, that method AH is based on n-occurrence counts (see Sec-
tion 4.2), basically detecting everything with a low n-occurrence
as outliers. It therefore rejects all anti-hubs as outliers, no mat-
ter whether they are true outliers or test data that should not be
rejected. Figure 6 gives the ROC plots for ISMIR, repeating the
same patterns of behavior we just described, albeit less clearly.
ROC curves for method MP more or less dominate those for kNN
and AH for all data together as well as anti-hubs and normal data.
Method AH performs even below chance level for anti-hubs with
an AUC of only .46.

Finally, we present results concerning one-nearest neighbor
classification accuracy gains due to the outlier rejection. While
steadily lowering threshold value p and rejecting more and more
test and outlier data, less and less data is being classified but usu-
ally with increased accuracy. The following results are averages
across test data not used for training of the classifier and not re-
jected by the respective outlier detection methods. In Tables 3 and
4 we present for data sets GTZAN and ISMIR the classification ac-
curacy without any outlier rejection (acc), the maximum achieved
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Figure 5: ROC plots for data set GTZAN, solid line for kNN, dotted
for AH, dashed for MP (neighborhood size k = 1).

Table 3: Accuracy analysis of data set GTZAN, see Sec. 5.

method acc acc_rej o_rej t_rej
kNN 77.54 98.90 99.82 85.94
AH 77.54 82.03 76.94 56.77
MP 82.06 94.69 91.02 39.69

Table 4: Accuracy analysis of data set ISMIR, see Sec. 5.

method acc acc_rej o_rej t_rej
kNN 87.11 100.00 100.00 62.76
AH 87.11 93.08 73.72 46.60
MP 91.11 98.04 87.77 28.10

accuracy after rejection (acc_rej), the percentage of rejected out-
lier data (o_rej) and the percentage of rejected test data (t_rej) at
the respective threshold level. The baseline accuracy acc of using
method kNN and not rejecting at all is 77.54% for GTZAN. Please
note that this baseline accuracy is already at 82.06% when using
distances rescaled via MP, again while not rejecting at all. With
outlier rejection this can be improved up to 98.90% with kNN and
94.69% with MP, but only 82.03% with AH. But to reach this
maximum accuracy, kNN does not only correctly reject 99.82%
of outliers, but also falsely rejects 85.94% of test data. Method
MP on the other hand reaches its maximum accuracy while cor-
rectly rejecting 91.02% of outliers but only 39.69% of test data.
Data set ISMIR shows the same pattern with accuracies improving
up to 100.00% and 98.04% for kNN and MP, with AH lagging
behind at 93.08%. Again kNN has to reject much more test data
than MP to reach these results (62.76% vs. only 28.10%).

6. DISCUSSION

In discussing our results obtained in Section 5, we like to recapit-
ulate our main findings.
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Figure 6: ROC plots for data set ISMIR, solid line for kNN, dotted
for AH, dashed for MP (neighborhood size k = 1).

Our first result is that classic distance-based outlier rejection
methods are negatively affected by hubness. As can be seen by
looking at the results for distance-based method kNN separately
for hubs, anti-hubs and normal data, especially anti-hubs present
problems for outlier detection as evident from their lower AUC
values. Since anti-hubs per definition are far away from most other
data points in a data base, it seems logical that they are being de-
tected as outliers even when they not really are. As for hub objects,
we would have expected that they are also responsible for more
detection errors than normal data, which is not really the case. In
our analysis we only looked at hub objects as being candidates
for outlier detection and there are maybe too few hub objects (21
in GTZAN and 24 in ISMIR) in the data sets to gain meaningful
statistics. But hub objects are per definition in nearest neighbor
lists of many other data objects and through these lists very likely
enter computation of outlier scores of many data objects in a data
set. It would definitely be very interesting to do another analysis
of outlier detection considering this fact.

Our second result is that reverse nearest neighbor information
cannot improve distance-based outlier detection that is affected
by hubness. On the contrary, our results for method AH show
that AUC values compared to kNN even deteriorate. Especially
AUC results for anti-hubs are sometimes even below chance level.
Given the fact that AH basically detects everything with a low re-
verse nearest neighbor count as an outlier, this is not surprising.
After all this means that anti-hubs, which already are a problem for
distance-based methods, are detected as outliers no matter whether
they really are or not.

Our third result is that our hubness-aware algorithm MP is able
to improve outlier detection and that this improvement is also due
to the changed role of anti-hubs. Looking at our results for using
MP, we can see that we gain overall improvements in AUC which
are especially pronounced for anti-hub and normal data. Mutual
proximity has been shown to decisively reduce the negative impact
of hubs and anti-hubs and produce distance spaces with much more
normal behavior [23]. Rescaling via MP is able to prevent anti-
hubs from being far away from most other data points, therefore

not acting as ‘artificial’ outliers anymore.

Given these three main results, it would now of course be very
interesting to analyse the behavior of other outlier detection meth-
ods when confronted with data affected by hubness. Of special
interest are methods that have already been designed for high-
dimensional outlier detection like e.g. “angle-based outlier detec-
tion” (ABOD) [15].

Our data analysis is based on a model of timbre similarity only,
since this is an important part of most MIR systems modeling mu-
sic similarity. Previous results have shown that many different
parametrizations of audio are susceptible to hubness [10], there-
fore our results are important for MIR models beyond timbre also.
But it also clear that there exist models of music similarity that
are not prone to hubness, e.g. certain combinations of timbre and
rhythm aspects [9]. And it is also clear that there exist other meth-
ods to reduce hubness in MIR models, e.g. the usage of Universal
Background Models [2], which is a method from speech analysis.

Concerning usage of data sets in our study, repetition with
larger data sets and other MIR problems (e.g. tag classification)
would of course be interesting. We are also aware of the criticism
concerning the GTZAN data set and its faults [25] like e.g. mis-
labeling. But these problems mainly concern classification results
and not so much outlier detection which after all is the main focus
of our work here.

Of greater importance is maybe the fact that we do not use
artist filters in our analysis. An artist filter [7] prevents songs from
the same artist to be both in the training and test set. This is im-
portant since songs from the same artist are often very similar and
not using an artist filter can lead to over optimistic results, e.g. in
terms of genre classification. But as we just said above, this is
not our main focus here and very likely this problem affects all
three of our methods (kNN, AH and MP) in the same way. But it
is also a wellknown effect that songs from the same artist domi-
nate the nearest neighbor lists in audio-based music similarity. We
can only speculate whether songs from the same artist are able to
even prevent hub songs from entering nearest neighbor lists. If this
were the case, usage of an artist filter would definitely change our
outlier detection results. Maybe the impact of hubness on outlier
detection is even greater if artist filters are being used. Such an
analysis is beyond the scope of this paper but definitely interesting
future work.

7. CONCLUSIONS

We have presented a first detailed study of the role of hubness in
outlier detection for music genre recognition. We found that clas-
sic distance-based methods for outlier rejection are negatively im-
pacted by hubness, where especially anti-hubs pose a problem. We
also showed that a recently proposed outlier method based on re-
verse nearest neighbor counts is not able to help in this respect. But
a hubness-aware method based on hubness reduction via compu-
tation of mutual proximity is able to improve outlier detection re-
sults. Improvements concerning the problematic role of anti-hubs
are part of the success. Since hubness is due to a general prob-
lem of measuring distances in high-dimensional spaces and since
many models in music information retrieval have been shown to
be affected, our results are of interest beyond the focus on genre
recognition in this paper.
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[19] Radovanović M., Nanopoulos A., Ivanović M.: Re-
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Hubs in space: Popular nearest neighbors in high-
dimensional data, Journal of Machine Learning Re-
search, 11:2487-2531, 2010.

[21] Ramaswamy S., Rastogi R., Shim K.: Efficient algo-
rithms for mining outliers from large data sets, Pro-
ceedings of the 2000 ACM SIGMOD international
conference on Management of data (SIGMOD ’00),
pp. 427-438, 2000.

[22] Schnitzer D., Flexer A.: The Unbalancing Effect of
Hubs on K-medoids Clustering in High-Dimensional
Spaces, Proceedings of the International Joint Confer-
ence on Neural Networks (IJCNN), 2015.

[23] Schnitzer D., Flexer A., Schedl M., Widmer G.: Lo-
cal and Global Scaling Reduce Hubs in Space, Journal
of Machine Learning Research, 13(Oct):2871-2902,
2012.

[24] Schnitzer D., Flexer A., Tomašev N.: A Case for Hub-
ness Removal in High-Dimensional Multimedia Re-
trieval, Proceedings of the 36th European Conference
on Information Retrieval (ECIR), 2014.

[25] Sturm, B: An analysis of the GTZAN music genre
dataset, Proceedings of the second international ACM
workshop on Music information retrieval with user-
centered and multimodal strategies, ACM, 2012.

[26] Sturm B.L.: Music genre recognition with risk and re-
jection, in Proceedings of International Conference on
Multimedia and Expo, 2013.

[27] Tomašev N., Radovanović M., Mladenić D., Ivanović
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ABSTRACT 

In this paper we present a working system for separating a piano 

recording into events representing individual piano notes. Each 

note is parameterized with a transient-plus-harmonics model that, 

should all the parameters be reliably estimated, would produce 

near perfect reconstruction for each note as well as for the whole 

recording. However, interference between overlapping notes 

makes it hard to estimate parameters from their combination. In 

this work we propose to assess the estimability of sinusoidal pa-

rameters via their apparent degree of interference, estimate the 

estimable ones using algorithms suitable for different interfer-

ence situations, and infer the hard-to-estimate parameters from 

the estimated ones. The outcome is a sequence of separate, pa-

rameterized piano notes that perceptually highly resemble, if are 

not identical to, the notes in the original recording. This allows 

for later analysis and processing stages using algorithms designed 

for separate notes. 

1. INTRODUCTION 

Musical note separation is the task of breaking audio-based mu-

sical content into separate pieces of audio, each corresponding to 

a musical note in the original content, as if recorded separately. 

By allowing access to individual notes, note separation has im-

mense potential in the production, maintenance and consumption 

of recorded music. Unfortunately, high-quality fully-automatic 

audio-based note separation remains hard. More feasible alterna-

tives have been proposed to address the task. For example, auto-

matic score-informed separation, e.g. [1][2], uses the musical 

score to guide the separation process. Supervised separation, e.g. 

[3][4], engages human power to provide more detailed and relia-

ble information that the separation module may benefit from.  

In this paper we propose another supervised note separator 

configured for real-world piano recording. Among musical in-

struments the piano is known to produce note sounds that are 

more predictable and less volatile therefore easier to describe and 

measure. Despite this we still have two points to consider before 

we can separate the complete set of notes from a recording. First, 

note separation implicitly includes music transcription, which is 

still an open problem itself; second, piano music is largely poly-

phonic, and it is common to have severe interference between 

concurrent notes, which makes clean separation difficult. 

 Our answer (or concession) to the first point is an interac-

tive, supervised process that relies on a human participant to 

make decisions and correct errors. For the second point we pro-

pose an automated method that makes measurements where inter-

ference is low, and guesses where interference is high. Since 

some parts of the notes are inferred rather than measured, the 

method does not qualify for signal separation in the strict sense. 

We call it a parametric imitation approach, as it imitates an origi-

nal note with incomplete measurements. By not measuring the 

hard-to-measure parts of the signal, this scheme minimizes the 

risk of unstable estimates from high-interference zones. This al-

lows resynthesis of notes that 1) resemble the original ones in 

loudness, pitch, timbre and dynamics, and 2) sound convincing 

by themselves.  

Our note separator works in four stages:  

1. transcription, for finding out what notes are in the music 

and decide their timing and component frequencies; 

2. interference classification, for finding high, mid and low 

interfering zones in the time-frequency (T-F) plane; 

3. stationary component estimation, for estimating note pa-

rameters in  low and mid interference zones and guess-

ing them in high interference zones; 

4. transient extraction and note reconstruction. 

Stage 1 is semi-automatic with limited human participation; the 

rest are fully automatic. 

The rest of this paper is arranged as follows. Section 2 de-

scribes the signal model we use to represent piano notes. Section 

3 describes the user interface in the transcription stage. Sections 

4, 5, 6 and 7 present the algorithms in the four stages above, re-

spectively. Section 8 includes experimental result that highlights 

our performance for interfering notes. Future improvements are 

discussed in section 9. 

2. MODEL AND ASSUMPTIONS 

For underlying signal model we use a transient-plus-harmonics 

model similar to [5]. The transient part models the attack of a 

note; the harmonic part models the pitched stationary resonance. 

We assume that piano notes have constant pitch after the initial 

attack, so the harmonics part x(t) of a note can be written as 





M

m

mmm tftatx
1

)2cos()()(    (1) 

where M is the number of component sinusoids (partials). a1(t), 

…, aM(t) are the amplitudes of the sinusoids and f 1, …, f M are 

their frequencies. Functions a1(t), …, aM(t) are constrained to 

vary slowly with t. In this paper we use superscripts for partial 

indices. To distinguish them from exponents, we write the latter 

with brackets on the base, like (m)2 or |X|2.  

Many pitched instruments have all partial frequencies deter-

mined by the fundamental frequency via a harmonicity (or equiv-

alently, “inharmonicity”) model: 

);F0,(  mff mm    (2) 

where m is the partial index, F0 is the fundamental frequency and 

  represents optional parameters. For the piano we choose the 

stiff string model in [6], plus to a small additional shift: 
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where B is a small positive number representing string stiffness, 

and εm covers inharmonicity due to other factors. In section 4 we 

estimate F0 and B by minimizing these εm’s. 

While the vibrating modes of an ideal wave-radiating string 

are characterized by exponentially decaying amplitudes, such is 

not suitable for modelling partial amplitudes in (1). This is be-

cause modern pianos use 2-string and 3-string notes, producing 

amplitude modulation typical of beating sinusoids. This prevents 

us from using parametric method like ESPRIT [7] for estimation. 

Fortunately, in the low to mid frequency range where most ener-

gy lies, this amplitude modulation is usually slow enough to be 

effectively captured with a uniformly-sampled sinusoidal repre-

sentation like [5]. Given the complexity of real-world recordings, 

we make no special assumption for measuring amplitude parame-

ters except that they vary slowly with time, and that they decay in 

the long term.  

In this paper we evaluate all parameters from the short-time 

Fourier transform (STFT) of the recording, computed using a 

Hann window 2048 points long applied to waveform data sam-

pled at 44.1kHz. Adjacent windows overlap by 50%, which 

makes the hop size 23.2 milliseconds. The parameter set for each 

note includes the position of starting frame (1), length in frames 

L (1), number of partials M (1), frequency of each partial (M), 

initial phase angle of each partial (M), amplitude of each partial 

at each frame (LM) and transient spectrum (2048).  

3. USER INTERACTION IN SUPERVISED 

TRANSCRIPTION AND FREQUENCY ESTIMATION 

The goal of the transcription stage (stage 1) is to find out what 

notes are in the recording, where they begin and end, and what 

their partial frequencies are. While note separation necessarily 

includes music transcription as subtask, this paper is not about 

automatic transcription. Instead, we follow the supervised path 

and involve a human user, the supervisor, who provides infor-

mation hard to retrieve reliably using present automatic tech-

niques. More specifically, in this paper the user’s job is to help 

the computer locate harmonic partials of each note in the T-F 

plane using the spectrogram. To reduce his workload it is rec-

ommended that an automatic transcription system like [8]-[11] 

be used as front end to provide initial guesses of existing notes 

and their whereabouts. The proposed workflow does not tell if 

the initial guess comes from a human user or an automatic tran-

scriber. Subsequent steps will require user participation to clean 

up any mistakes previously made.  

The workflow of our note separator is shown in Figure 1. 

The shaded blocks are automated modules and the clear ones 

need user attention. The block labelled “supervisor input” may 

also include an automatic transcription front end, if there is one. 

 

Figure 1 Note separation workflow 

The core module of stage 1 is an automatic harmonics tracker 

(section 4) that locates all harmonics of a note in the T-F plane. 

For each note, the tracker takes one or more seed points as input. 

A seed point comprises a time-frequency-partial_index triple (t, f, 

m), meaning that the mth partial of the note has frequency near f 

at time t. The initial seed point can be provided either by an au-

tomatic front end or by the human user. To supply the seed with-

out automatic transcription, a graphical user interface with an 

image of the spectrogram is presented to the user. The user iden-

tifies a note picking a partial index m then pointer-clicking on an 

unambiguous point of the mth partial in the image. The partial 

index and the coordinates of the pointer click make up the seed 

point, with which the automatic tracker is launched. The tracker 

tolerates no less than two bins of input frequency inaccuracy, so 

that the average user can supply seed points with comfort. 

The tracking result is fed back to the user on the same user 

interface, with note duration and partial frequencies plotted as 

frequency trails on the spectrogram, like in Figure 1. The hollow 

star in the figure marks the initial guess where the user has seed-

ed the harmonics tracker. The user can judge if the tracking has 

been successful by comparing the trails against the spectrogram. 

 

Figure 2 Selecting a note on the spectrogram 

Three types of mistakes may occur during automatic track-

ing: wrong partial frequency, wrong start position and wrong end 

position. Start and end position errors can be corrected by the 

user fixing them directly on the spectrogram. Frequency mistakes 

typically involve frequency estimates being associated with har-

monics from other notes. The user corrects them by adding one 

more seed point, which strengthens the harmonicity constraint 

and forces estimates off the wrong sinusoids. Our user interface 

allows the user to drag a frequency trail to another position using 

a pointer device, upon which the harmonics tracker is relaunched 

with an additional seed point at the new position. Each error cor-

rection requires one pointer clicking or dragging operation. In 

our experiment a prominent piano note takes no more than 2 op-

erations to mark (including the initial guess), while a heavily 

masked note usually takes 3 or 4. This track-and-correct proce-

dure is repeated for all notes we intend to separate, plus all their 

concurrent notes. The rest is left to the note separation module 

that does not need supervision. 

4. HARMONIC FREQUENCY TRACKING FOR 

CONSTANT PITCHES 

This section discusses the harmonic tracker in the supervised 

transcription stage (stage 1). Given one or more seed points that 

identify a note, its task is to automatically find out all partial fre-

quencies of the note, along with its start and end positions. 

supervisor 
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In standard sinusoidal modelling [12]-[14], the frequency of 

a sinusoid is measured independently from spectral peaks at indi-

vidual frames. Such measurement is easily corrupted by noise or 

interference from other sources. Luckily the constant-frequency 

and harmonicity constraints allow us to ignore data from areas in 

the T-F plane where such corruption is high, and use only the 

less corrupted parts for estimating frequencies. 

Our constant-pitch harmonics tracker uses plain spectrogram 

for audio input. From the spectrogram a collection of spectral 

atoms are obtained using standard peak picking. Given the pres-

ence of noise and interference neither constant-frequency tracks 

nor harmonic atom groups are guaranteed to emerge from these 

raw atoms. However, it is plausible to assume that at least some 

of the atoms are relatively less corrupted. These atoms should 

assume spectral shape typical to constant-frequency sinusoids; 

their frequency estimates should be accurate and satisfy constant-

frequency and harmonicity constraints. Our harmonics tracker 

uses peak shape and the frequency constraints to look for the 

“good” atoms and use them for frequency estimation. We call 

them the core atoms. 

4.1. Peak shape 

All spectral atoms identified by peak picking are located at spec-

tral peaks. Given an atom with frequency estimate f, in bins, we 

evaluate the peak shape by its cross-correlation with that of a 

pure sinusoid at f, i.e. 

    2/122/12

*

p

)(
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kk k

k k

fkWX

fkWX
   (4) 

in which Xk is the STFT of the signal x at bin k, and W(f) is the 

discrete-time Fourier transform of the window function used for 

spectrogram computation. The summations are done over a few 

bins near f. The value of |λp| lies on [0, 1] (Cauchy-Schwarz). The 

higher is |λp|, the closer the atom spectrum resembles that of a 

sinusoid. The harmonic tracker uses |λp| to screen spectral atoms 

as candidates for the core set: only those with |λp| value higher 

than a threshold (e.g. 0.9) may become a core atom. 

4.2. Constant-frequency constraint 

Given a set of L atoms detected from L different frames with fre-

quency estimates f0, …, fL-1, we measure how constant these es-

timates are by their average deviation from a presumed frequency 

f̂ : 
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where D is a distance function. Eq. (5) cannot be evaluated with-

out knowing f̂ . We select both D(·) and f̂  to fit into a harmon-

icity model so that the constant-frequency and harmonicity con-

straints are combined in one, as described below. 

4.3. Harmonicity constraint 

For the piano we choose the model given in [6] for stiff strings: 

 1)(1F0),F0,(ˆ 2  mBmBmf m .  (6) 

where B is a small positive number. Given a set of I atoms with 

frequency estimates f m
0, …, f m

I-1, mi being the assumed partial 

index of the ith atom, we measure their harmonic consistency by 

their deviation from the harmonicity model: 
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The smaller is λf, the more likely are the atoms to belong to the 

same note. Evaluating (7) requires knowing the values F0 and B, 

which we choose by minimizing λf, as follows. 

Eq. (6) is nonlinear regarding F0 and B. We linearized it by 

taking F=F02 and G=FB (also see [14]) as 

 GmmFmf m 1)()()()ˆ( 2222    (8) 

Eq. (8) is linear regarding F and G. We choose the distance func-

tion D(∙) as: 
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where the multiplier 1/m removes extra emphasis put onto high 

frequencies by the squaring. Substitute (8) and (9) in (7) we get 
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We find F and G that minimize λf with  
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Using these values we are able to evaluate λf by (10). Notice 

there is no constraint on time or partial index associated with 

each atom involved, except that they cannot all have the same 

partial index. If (10) is applied to multiple frames, λf measures 

frequency consistency both across time and across partials. 

The harmonics tracker does not use λf directly, but uses F and 

G instead for screening spectral atoms as candidates for the core 

set, as detailed below. 

4.4. Frequency range of eligible atoms given other atoms 

The harmonics tracker needs a set of core atoms from multiple 

partials and frames to estimate the frequencies. We construct this 

core atom set by incrementally including new atoms as the track-

ing progresses. The frequency of a newly incorporated core atom 

should be consistent with existing core atoms. One way to evalu-

ate this consistency is to estimate F and G from the current core 

set using (11), then predict the frequency mf̂  for any partial in-

dex m using (6). Only atoms within a δ-vicinity of mf̂ , i.e. ( mf̂ -

δ , mf̂ +δ), as considered eligible candidates for core atoms of 

the mth partial. Since core atoms are assumed to have accurate 

frequency estimates, we choose a relatively small vicinity, e.g. 

δ=0.1 bins. 

To be able to estimate F and G above with (11), we must al-

ready have at least two core atoms with different partial indices. 

In the case only one, say f m, is available, we can determine the 

eligible range for another partial index by fixing an upper bound 

for B, say BM. The eligible range for F0 then becomes: 
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This gives an eligible range for the nth partial as 
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4.5. The tracking algorithm 

The constant-pitch harmonics tracker proceeds frame-by-frame, 

from the seed point forwards and backwards until an endpoint is 

met. We require that the starting point be an actual atom detected 

with high λp, e.g. above 0.9. The tracking algorithm maintains a 

core atom set C, which is initiated as empty. The eligible fre-

quency range for the first atom (when C is empty) is defined as a 

few bins around the seed point. 

In each tracking step the tracker moves one frame forward or 

backward, finds new core atoms from the new frame, and re-

moves existing core atoms that appear no longer good enough. 

Given the current core atom set C, a single-frame tracking step 

proceeds as follows. 

Within the current frame, do 

1º find the eligible ranges for all partials consistent with C; 

2º find all atoms with high λp within these eligible ranges, let 

this set of new atoms be Cnew; 

3º if there are multiple atoms found for any partial index, do 

4º~5º 

4º use C∪Cnew to predict the frequency for that partial 

index; 

5º keep the atom closest to the predicted frequency in 

Cnew and remove competing atoms; 

With the current set of core atoms, do 

6º use C∪Cnew to predict the frequencies for all atoms in the 

core set, remove those that deviate more than δ from the 

prediction. 

From the seeding frame l, forward tracking repeats this step 

for frames l, l+1, l+2,…, until the number of consistent atoms 

found falls below a threshold level for three consecutive frames. 

We currently set the threshold at a fifth of the total number of 

partials for the relevant pitch, which is computed with (8). Simi-

larly, backward tracking repeats the step for frames l-1, l-2, …, 

until an end point is met. The tracking algorithm returns the 

event duration and all partial frequencies estimated from the final 

core atom set by partial-wise average, weighted by the atom en-

ergy. If not enough core atoms are available to compute the aver-

age for some partial, its frequency is computed with (11). 

While the previous tracking algorithms [12]-[14] also esti-

mate amplitudes and phase angles, doing so without considering 

interference between concurrent notes leads to faulty results. In 

this paper we address the interference using what we call the col-

lision regions. We explain them in the next section.  

5. COLLISION REGIONS 

This section discusses the interference classification stage (stage 

2), whose goal is to provide detailed description on the interfer-

ence between sinusoidal partials, so that the subsequent stage can 

use this information for estimating amplitudes. 

Spectral interference occurs if partials of concurrent notes 

have very close frequencies. To properly address interference we 

want to know exactly what partials have what level of interfer-

ence during which time interval. Each such group of partials has 

its own characteristics concerning interference and are best treat-

ed with an estimator tuned to that special occasion. As interfer-

ence is caused by concurrency in time and proximity in frequen-

cy, such interfering partial groups occupy localized regions in the 

time-frequency plane.  

5.1. Colliding sinusoids 

We say two frequencies collide if they are closer than a reference 

threshold δf from each other, so that the presence of one may 

compromise the estimation of the other. The value of δf is related 

to the frequency resolution of the estimator. As we measure si-

nusoids from STFT, a convenient choice is a fixed value of δf in 

DFT bins. We say two sinusoids collide if their frequencies col-

lide. 

 
Figure 3 Detail of Figure 2: colliding partials 

Figure 3 shows the spectral detail of the 1st half of the signal 

in Figure 2 near 1.3kHz. At the beginning we have the first note 

(C4=262Hz) starting around time 32800 (at 44.1kHz sample rate). 

Its 5th partial has frequency measured at 1316.6Hz. Then at time 

44000 the second note (E4) enters. Its 4th partial frequency is 

1328.1Hz, which is very close to the 5th partial of the first note. 

The 11.5Hz difference in their frequencies is too small to be told 

by the spectrogram, computed with window size 2048 (46.4ms). 

Consequently we observe a distinctive interference pattern in the 

central part of Figure 3. Such beating pattern is a typical sign of 

colliding partials. Since components from different notes cancel 

one another from time to time, nonnegativity-based methods (e.g. 

[1]-[3]) cannot handle the case without redesign. It is for the es-

timation of sinusoids from such spectrograms that we propose the 

idea of collision regions. 

Given a set of constant-frequency sinusoids with known du-

rations and frequencies, it is trivial to determine whether and 

when any two of them collide. Additional complication arises as 

more than two sinusoids lie close to each other, all starting and 

finishing at different times. To describe sinusoid collisions in an 

organized way suitable for algorithmic handling, we cut the T-F 

plane into rectangular tiles called collision regions, each contain-

ing a number of colliding sinusoids from start to end. 

5.2. Definition 

We define a collision region (CR) of a set S of sinusoids as a rec-

tangular area in the time-frequency plane, described by a pair of 

coordinates (t1, f1) and (t2, f2), so that: 
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a) s∈S have durations containing [t1, t2] and frequencies 

within ( f1, f2);  

b) f ∈(f1, f2) if and only if there is s∈S so that f and s collide.  

It follows that for every s∈S there is at least one other s’∈S that 

collides with s over [t1, t2]. We denote a collision region as 

CR:(S; t1, f1, t2, f2), or simplified as CR(S). 

A sinusoid s’S is said to collide with CR:(S; t1, f1, t2, f2) if 

it collides with any s∈S at any t∈[t1, t2]. A collision region of S is 

said to be closed if no sinusoid outside S collides with it. Sinus-

oids in a closed CR(S; t1, f1, t2, f2) are considered free from inter-

ference from sinusoids outside S during [t1, t2]. If the CR con-

tains multiple sinusoids, their mutual interference should be con-

sidered for estimating their parameters during [t1,t2]. 

For example, an isolated sinusoid s of duration [t1, t2] and 

frequency f has its own trivial CR:({s}; t1, f-δf, t2, f+δf) which is 

also closed. Two colliding sinusoids s1 and s2 of duration [0,2] 

and [1,3] have 3 closed CRs, on intervals [0,1], [1,2] and [2,3], 

respectively. 

 
Figure 4 Collision regions of Figure 3 

Figure 4 shows the collision regions marked out for the T-F 

range of Figure 3 with δf=3 bins. In Figure 4 we have marked the 

frequency axis in bins. Between time 32800 and 44000 the 5th 

partial of the first note is free from interference, therefore it oc-

cupies its own CR with total bandwidth of 6 bins, 3 (i.e. δf) on 

each side. Between 32800 and 74800 we have two partials 

0.54bin apart. Since 0.54< 3, these two partials are put into the 

same CR, whose bandwidth becomes 6.54 bins. At 74800 the 

fifth note starts whose 2nd partial almost overlaps the 4th partial of 

the second note. This establishes a new CR that contains 3 par-

tials. 

5.3. Finding collision regions 

Given a set of sinusoids S, we look for a complete set of closed 

CRs to cover S using an iterative process. Starting from an arbi-

trary sinusoid s0∈S with its trivial CR, we add other sinusoids s1, 

s2, …, one at a time into the picture. Each time a new sinusoid si 

is added, we update the set of CRs so that 1) every CR is still 

closed and 2) the whole CR set covers the new sinusoid as well 

as the previous ones. 

5.3.1. Collision table 

The update process relies on a data structure we call a collision 

table. Given a closed CR set C covering sinusoid set S and a new 

sinusoid sS, the collision table tells which CRs in C collide 

with s at what time. To be more specific, the table T(s,C) con-

tains a sequence of non-overlapping intervals that together cover 

the duration of s, so that on each of these intervals s collide with 

a different combination of 0, 1 or 2 collision regions in C.1 The 

collision table is generated by finding all CRs in C which collide 

with s, segmenting the duration of s at their boundaries, and 

enumerating the 0, 1 or 2 CRs that collide with s over each seg-

ment. 

5.3.2. Updating the complete CR set 

Let C be a closed CR set covering Si-1, and T(si,C) be the colli-

sion table computed for the next sinusoid si. The following rou-

tine updates C to a closed CR set covering Si=Si-1∪{si}. 

1º let τ1=(t1, ·) be the first segment in T, for all CRs c:(Sc; tc1, 

fc1, tc2, fc2)C that collide with si on τ1, do 2º; 

2º if tc1<t1, add new CR:(Sc; tc1, fc1, t1, fc2) to C; 

3º let τ-1=(·, t2)∈T be the last segment in T, for all CRs c:(Sc; 

tc1, fc1, tc2, fc2)C that collide with si on τ2, do 4º; 

4º if tc2>t2, then add new CR:(Sc; t2, fc1, tc2, fc2) to C; 

5º for every τ=(tτ1, tτ2) in T, there are 0, 1, or 2 CRs in C col-

liding si on τ, do one of 6º, 7º or 8º in each case; 

6º if no CR in C collides with si on τ, add a new CR:({s}; 

tτ1, fs-δf, tτ2, fs+δf) to C; 

7º if one CR:(Sc; tc1, fc1, tc2, fc2)C collides with si on τ, 

then replace it with CR:(Sc+{si}; tτ1, min(fc1, fs-δf), tτ2, 

max(fc2, fs+δf)); 

8º if two CRs:(Sc1; tc11, fc11, tc12, fc12), (S21; tc21, fc21, tc22, 

fc22)C collide with si on τ, then replace them with 

one CR:(Sc1+Sc2+{s}; tτ1, min(fc11, fc21), tτ2, max(fc12, 

fc22)). 

Once this update has been performed for all partials of all 

notes, we have the complete set of collision regions ready. Figure 

5 shows the CRs found for the signal in Figure 2. While CRs 

may overlap themselves, no CR overlaps any sinusoidal partial 

inside another CR.  

 
Figure 5 Collision regions identified for Figure 1 

6. AMPLITUDE EVALUATION 

This section discusses the stationary component estimation stage 

(stage 3) whose goal, in the current implementation, is to esti-

mate sinusoidal amplitudes based on pre-detected interference 

details. Estimation of amplitude, like that of frequency, can be 

corrupted by noise and interference. For the amplitude we adopt 

                                                           
1 s cannot collide with more than two CRs in C at any time, be-

cause three CRs colliding with s must have collisions among 

their member sinusoids, so they cannot be all closed. 

3 bins 

 

3 bins 

 

3 bins 
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a similar strategy as we did for frequency, i.e. we measure them 

directly from data only at “good” atoms. However, since ampli-

tudes are not assumed to satisfy strict constraints as the frequen-

cies do, it is crucial we obtain as many direct estimates as we can 

to describe amplitudes closely. Assuming that sinusoids within 

one closed CR do not suffer interference from outside the CR, we 

do amplitude estimation on a CR-by-CR basis.  

6.1. Isolate partials 

The simplest CRs are those containing only one sinusoid. Atoms 

in these CRs are considered free from interference, so can be es-

timated using any algorithm for estimating solo sinusoid. In this 

work we use standard orthogonal projection of the spectrum: 

2|||| w

xw
H

  jae    (14) 

where w is the spectrum of a pure windowed sinusoid at the es-

timated partial frequency with zero phase, and a and φ are the 

amplitude and phase angle estimates. 

6.2. Least square estimator 

Tolonen [15] proposed to use the least square method for esti-

mating “colliding” sinusoids, of which orthogonal projection can 

be regarded as a special case. For a set of given frequencies, the 

least square method estimates the amplitudes and phase angles at 

each frame by solving a linear system involving all the sinusoids. 

To apply this method we need to know what frequencies are col-

liding at which frames, which is conveniently handled by colli-

sion regions.  

For each frame of a closed CR spanning N bins and contain-

ing M sinusoids, N>M, a linear system of size M is constructed 

using the spectral data from these N bins. To be more specific, it 

takes the form of 

xWWλW
HH     (15) 

W is an N×M matrix whose M columns are spectra of pure win-

dowed sinusoids at the M frequencies and zero phase, truncated 

to contain only the N bins of the CR. λ=(λ1, …, λM )
T
, 

λm=amexp(jφm), encodes the amplitude and phase angle of the mth 

sinusoid involved, and x is the spectrum of this frame, also trun-

cated to those N bins. Noticing that W remains the same for all 

frames of a CR, we compute UM×N=[uij]=(W
H
W)-1W

H
, then use  

Uxλ     (16) 

to compute λ for all these frames. 

6.3. Exceptions 

The least square method assumes that a good estimate must yield 

a small square error so as not to produce a large residue. Intui-

tively, this small square error must be close to the least square 

error, and ideally we may hope this good estimate also be close 

to the least square estimate. However, in the note separation task 

there are two exceptions to such reasoning: that the good esti-

mate may not yield a small square error, and that the proximity of 

errors may not lead to the proximity of estimates. 

6.3.1. Onset exception 

When the harmonics of a note is corrupted by an additive noise, a 

good estimate shall produce a residue close to that noise. In this 

case it is not adequate to run a least square estimator. A main 

source of additive noise in a piano recording is note onset attacks. 

While lasting a very short duration, the onset displays a wide-

band behaviour that contaminates the spectrum of harmonics of 

other on-going notes. Accordingly, at the onset of each note we 

mark all on-going partials of other notes as not estimable for one 

frame, so that the least square estimation is not attempted. 

6.3.2. Heavy interference exception 

The least square estimator usually works fine when W is well-

conditioned. However, as frequencies become close so that the 

sinusoids get highly correlated, W gets ill-conditioned and (15) 

becomes unstable. Intuitively, as the sinusoids become similar to 

each other, the amplitudes and phase angles can be traded be-

tween themselves without incurring much change to the residue, 

so that a good estimate with nearly least square error may deviate 

far from the least square estimate. Consequently we may observe 

large biases on least square estimates of individual sinusoids, 

even if the total residue is kept minimal.  

To evaluate the reliability of amplitude and phase estimated 

with (16), we consider the sensitivity of the least square estimate 

of the mth partial with regard to x: 

  2/12
j mjm uJ  .   (17) 

A change of δ in the residue can contribute a bias up to Jm∙||δ|| to 

λm. The smaller is Jm, the more likely has λm a reliable estimate. 

In a CR which contains only one sinusoid, J1=(1+εw) ||w||-1, 

where ||w|| is the L2 norm of the window spectrum, and |εw|<<1 is 

attributed to the truncations used to construct W. We use Jm||w|| 

as an indicator of the reliability of least square estimates. Ampli-

tudes are estimated with (16) for partial m only if Jm||w|| is below 

a preset threshold, e.g. 2. Other amplitudes are marked not esti-

mable and passed on to the next stage (6.4). 

6.4. Interpolation and extrapolation 

Amplitude parameters that have not been measured due to relia-

bility concerns are inferred from the already estimated ones by 

means of interpolation and extrapolation. Using such “guessing” 

techniques means we no longer target accurate additive separa-

tion as an objective. However, by common-sense design we may 

still maintain the naturalness of separated notes and their percep-

tual resemblance to what is heard in the original recording. 

6.4.1. Interpolation 

Interpolation is applied on a partial-by-partial basis to atoms 

whose amplitudes have not been estimated but lie between other 

atoms whose amplitudes have. More specifically, if amplitudes 

have been measured for a partial m at frames l1 and l2, l1<l2-1, but 

not at frames between the two frames, then we interpolate be-

tween the two frames exponentially: 

  12
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 , l=l1+1, …, l2-1.  (18) 

where lma ,  is the amplitude of partial m at frame l.  

The interpolation stage fills the gaps between atoms with 

measured amplitudes, but does not estimate amplitudes of atoms 

at the start and end of partials. For these an extrapolation stage is 

involved.  
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6.4.2. Extrapolation using amplitude modulation profile 

To infer amplitudes before the first or after the last direct esti-

mates of a sinusoid, we need to make assumptions about ampli-

tude laws in these places. While it is always possible to extrapo-

late directly from the measured amplitudes of each partial, doing 

so, according to our experiments, is not advisable near onsets or 

far beyond measured atoms. On the other hand, since various 

partials can have reliable estimates during different intervals, it is 

possible to make cross-partial reference. In this paper we com-

pute an amplitude modulation (AM) profile from the already es-

timated amplitudes for this purpose. 

An AM profile is a function of time that describes the overall 

amplitude variation rate of the partials of a note. Let l be the 

frame index, the AM profile, denoted by Pl, is given as 
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, l=1, …, L-1.  (19) 

where L is the length of the note in frames, lma ,  is the amplitude 

of partial m at frame l, and  l lmm aa , . Pl is interpreted as the 

average of amplitude rates at frame l weighted by partial ampli-

tudes.  

If none of the partials of a note has reliable amplitude esti-

mates for the first L1 frames (onset frames), we cannot compute 

Pl with (19) at frames 1 to L1. In this case we obtain rough ampli-

tude estimates by orthogonal projection2, assuming partials near 

the onset have dominating energy. These rough amplitudes are 

used to estimate Pl for l=1, …, L1-1. 
1LP is linearly interpolated 

from 11LP  and 11LP . 

If none of the partials of a note have reliable estimates for the 

last L2 frames, we cannot turn to orthogonal projection like for 

onset frames, as leftover partials near offsets are often masked by 

noise or interference. For these frames we simply linearly extrap-

olate the AM profile itself, while taking special care that the am-

plitude rate be non-positive.  

Further smoothing can be applied to the AM profile for im-

proved smoothness. Once the AM profile is ready the extrapola-

tion is done by applying the profile directly: 

1,,  lm

P

lm aea l  (forward)   (20a) 

1,

-

,
1

 

lm

P

lm aea l  (backward)  (20b) 

7. TRANSIENTS 

This section discusses the transient extraction stage (stage 4), 

which separates the initial attack of each note from audio. Piano 

notes have transients at keystrokes. Although in theory all sounds 

can be represented as sinusoids, the sinusoidal representation of a 

transient would involve faster amplitude and frequency changes 

than the standard technique could handle, and the physical mean-

ings of the parameters would be unclear.  

In this work we simply represent the transient with the com-

plex spectrum. The transient is assumed to stretch the length of 

one long “transient” frame before the start of the harmonics. Let 

the DFT of this frame be X(k), k=0, …, K/2-1, where K is the 

                                                           
2 Or any other estimator for single, interference-free sinusoids. 

length of the transient frame; let f 1, …, f M be the frequencies of 

the note(s) starting with this transient, and g1, …, gN be the fre-

quencies of other on-going sinusoids during this frame. We de-

rive the spectrum of the transient by notching out the on-going 

sinusoids, while preserving the starting ones: 

1º for each gn, n=1, …, N, remove 4 bins from X(k) centred at 

gnK by setting at value at these bins to 0; 

2º for each f m, m=1, …, M, recover 4 bins centred at f mK by 

restoring these bins to their original value. 

The separated transient is synthesized from the spectrum with 

inverse DFT. To reconstruct a complete note, we join the transi-

ent to the harmonics with standard overlap-add method. We ini-

tialize the phase angles of the harmonics to their spectral phases 

at the first frame. As the same phases are also preserved in the 

transient, the transition between transient and harmonics is kept 

smooth. 

8. RESULT 

We run our note separator on a commercial recording of Bach’s 

Prelude in C, BWV 846a, using one channel sampled at 44.1kHz. 

The initial part of its spectrogram is given in Figure 2.  Figure 6 

shows the separation results for the first four notes. Graphically 

these single-note spectrograms look smoother than the originals 

in Figure 2, owing to the explicit modelling as constant-

frequency harmonic sinusoids. We do observe irregularities in 

the harmonics where they used to overlap, but the result is well 

contained in plausible range. Since guessed parameters have 

guaranteed smoothness, we know that these less regular parts are 

the result of direct estimates from data, and it is these parts that 

pinned down the characteristics of the notes in the original re-

cording. Perceptually we have found no audible artefact with the 

separated notes, and heard very little difference between the sep-

arated notes and their counterparts in the original recording. 

 
Figure 6 First four notes separated 

Figure 7 shows details of Figure 6(a) and Figure 6(b) around 

1.3kHz, i.e. the 5th partial of the first note (C4) and the 4th partial 

of the second note (E4).  Although these two partials were shown 

to interfere heavily in the original spectrogram (Figure 3), our 

method is able to obtain reasonably clean separation from the 

same spectrogram. A small anomaly in the result is the inaudible 

amplitude spike estimated for the second note when the fifth note 

(E5) kicks in, showing that our handling of parameter estimation 

during other notes’ onsets still has room for improvement. 

(a) C4 

 

(b) E4 

(c) G4 (d) C5 
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Figure 7 Details of Figure 6 

Figure 8 shows the reconstruction we get by summing up all 

resynthesized notes in Figure 1. As with separated notes, the re-

constructed spectrogram has a smoother and sharper look than 

the original. Because of parametric modelling, much of the non-

music content in the original recording, such as background 

noise, the pianist’s humming-along, and other unidentified extras, 

are removed from the reconstruction. Listening comparison be-

tween the reconstruction and the original shows the two highly 

similar to the ear. Minor difference can be heard at some note 

attacks, mainly towards the end of the recording where low-

pitched notes become more frequent. Since low pitches introduce 

more interference to the harmonics and eats out more spectral 

bins from the transient, we can expect some performance loss on 

both the stationary and the transient parts.  

 
Figure 8 Reconstruction of recording 

9. SUMMARY AND FUTURE WORK 

In this paper we have presented a semi-automatic system for sep-

arating a piano recording into individual notes. The system em-

ploys two concepts: the imitation method that allows us to trade 

between modelling accuracy and result stability, and the collision 

region that helps organize systematic handling of interfering si-

nusoids. Our results show that the system is able to obtain sepa-

rated notes with high quality and true to the original recording 

even though the signal processing techniques involved at fairly 

basic. The notes are represented with a transient-plus-harmonics 

model, therefore are ready to be used by all algorithms handling 

sinusoidal models, in addition to those handling monophonic or 

general audio waveforms. Direct reconstruction from the separat-

ed notes gives a de-noised version of the recording. 

While reasonably self-contained for proof of concept, the 

proposed system is only a small step towards general note separa-

tion task. The system can be improved in many ways for sound 

quality, robustness and usability. For example, the phase angle at 

individual frames may be reincorporated during or after ampli-

tude estimation to preserve minor pitch and wave shape varia-

tions. For amplitude estimation we may use multiple window 

sizes up to the duration of the collision region instead of a con-

stant size of 2048. The transient energy where it collides with on-

going sinusoids may be partially restored, and the handling of 

transient may go beyond one frame to capture the full force and 

span of note attacks. We may also start bringing musical instru-

ments with continuously variable pitches, as well as non-pitched 

instruments, into the picture. 

10. ACKNOWLEDGEMENT 

Part of this work was finished when the author was with Queen 

Mary, University of London and Professor Mark Sandler, with 

support from the Centre for Digital Music platform grant. 

11. REFERENCES 

[1] S. Ewert, B. Pardo, M. Müller and M.D. Plumbley, “Score-

informed source separation for musical audio recordings: an over-

view,” IEEE Signal Processing Magazine, vol.31 no.3, pp.116-

124, May 2014. 

[2] R. Hennequin, B. David and R. Badeau, “Score informed audio 

source separation using a parametric model of non-negative spec-

trogram,” in Proc. IEEE International Conference on Acoustics, 

Speech, and Signal Processing, Prague, 2011, pp.45-48. 

[3] N. Bryan and G. Mysore, “Interactive refinement of supervised and 

semi-supervised sound source separation estimates,” in Proc. IEEE 

International Conference on Acoustics, Speech, and Signal Pro-

cessing, Vancouver, 2013. 

[4] P.-K. Jao, Y.-H. Yang and B. Wohlberg, “Informed monaural 

source separation of music based on convolutional sparse coding,” 

in Proc. IEEE International Conference on Acoustics, Speech, and 

Signal Processing, Brisbane, 2015. 

[5] S. N. Levine and J. O. Smith III, “A sines+transients+noise audio 

representation for data compression and time/pitch scale modifica-

tions,” in Proc. AES 105th Convention, San Francisco, 1998. 

[6] N.H. Fletcher and T.D. Rossing, The Physics of Musical Instru-

ments (2nd ed.), Springer-Verlag New York Inc., 1998.  

[7] A. Gunnarsson & I. Gu, “Music signal synthesis using sinusoid 

models and sliding-window ESPRIT,” in Proc. IEEE International 

Conference on Multimedia and Expo, Toronto, 2006.  

[8] J. P. Bello, L. Daudet and M. B. Sandler, “Automatic piano tran-

scription using frequency and time-domain information,” IEEE 

Transactions on Audio, Speech, and Language Processing, vol.14, 

no.6, 2006, pp.2242-2251. 

[9] S. Sigtia, E. Benetos and S. Dixon, “An end-to-end neural network 

for polyphonic piano music transcription,” IEEE/ACM Transac-

tions on Audio, Speech, and Language Processing, vol.24, no.5, 

2016, pp.927-939. 

[10] K. O’Hanlon and M. D. Plumbley, “Polyphonic piano transcription 

using non-negative matrix factorisation and group sparsity,” in 

Proc. IEEE International Conference on Acoustics, Speech, and 

Signal Processing, Florence, 2014. 

[11] M. Marolt, “A connectionist approach to automatic transcription of 

polyphonic piano music,” IEEE Transactions on Multimedia, vol.6 

no.3, 2004, pp.439-449. 

[12] R.J. McAulay and T.F. Quatieri, “Speech analysis/synthesis based 

on a sinusoidal representation,” IEEE Transactions on Acoustics, 

Speech, and Signal Processing, vol.34, no.4, 1986, pp.744-754. 

[13] X. Serra, “Musical sound modeling with sinusoids plus noise,” Mu-

sical Signal Processing, Swets & Zeitlinger Publishers, 1997. 

[14] Wen X. and M. Sandler, “Sinusoid modeling in a harmonic con-

text,” in Proc. 10th International Conference on Digital Audio Ef-

fects (DAFx), Bordeaux, 2007. 

[15] T. Tolonen, “Methods for separation of harmonic sound sources 

using sinusoidal modeling,” in Proc. AES 106th Convention, Mu-

nich, 1999. 

(a) C4: 5th partial (b) E4: 4th partial 



Proceedings of the 19th International Conference on Digital Audio Effects (DAFx-16), Brno, Czech Republic, September 5–9, 2016

ASSESSING THE SUITABILITY OF THE MAGNITUDE SLOPE DEVIATION DETECTION
CRITERION FOR USE IN AUTOMATIC ACOUSTIC FEEDBACK CONTROL

Mr. Marc Ciufo Green

Audio Lab
Dept. of Electronics
University of York

York, UK
marc.c.green@york.ac.uk

Dr. John Szymanski

Audio Lab
Dept. of Electronics
University of York

York, UK
john.szymanski@york.ac.uk

Dr. Matt Speed ∗

Allen & Heath,
Penryn, UK

ABSTRACT

Acoustic feedback is a recurrent problem in live sound reinforce-
ment scenarios. Many attempts have been made to produce an
automated feedback cancellation system, but none have seen wide-
spread use due to concerns over the accuracy and transparency of
feedback howl cancellation. This paper investigates the use of the
Magnitude Slope Deviation (MSD) algorithm to intelligently iden-
tify feedback howl in live sound scenarios. A new variation on this
algorithm is developed, tested, and shown to be much more com-
putationally efficient without compromising detection accuracy.
The effect of varying the length of the frequency spectrum history
buffer available for analysis is evaluated across various live sound
scenarios. The MSD algorithm is shown to be very accurate in
detecting howl frequencies amongst the speech and classical mu-
sic stimuli tested here, but inaccurate in the rock music scenario
even when a long history buffer is used. Finally, a new algorithm
for setting the depth of howl-cancelling notch filters is proposed
and investigated. The algorithm shows promise in keeping fre-
quency attenuation to a minimum required level, but the approach
has some problems in terms of time taken to cancel howl.

1. INTRODUCTION

In any system where sound captured by a microphone is amplified
and reproduced by a nearby loudspeaker, a portion of the ampli-
fied sound emanating from the loudspeaker will be received by
the microphone. This sound is subsequently re-amplified and fed
back to the loudspeaker [1]. In this way, the sound system forms a
closed loop (see figure 1). The most apparent effect of this acous-
tic feedback loop is the screeching sound that can develop (termed
‘feedback howl’), which can cause severe limitations to the sys-
tem’s performance.

Formulated in a form relating specifically to acoustic feedback
by van Waterschoot and Moonen [2], Nyquist’s criterion states that
if for a radial frequency ω:{

|G(ω, t)F (ω, t)| > 1

∠G(ω, t)F (ω, t) = n2 nπ, ∈ Z
(1)

where G(ω, t) and F (ω, t) represent the short-term frequency re-
sponses of the forward and return parts of the loop respectively,
then the system is unstable and has potential to feed back at that
frequency.

Howl inevitably occurs in sound reinforcement systems as am-
plification levels are increased beyond a certain level - the system’s

∗ M Speed is now affiliated with Focusrite Audio Engineering

There  is  scope  for  investigation  in  how best  to  detect  and  single  out  howl  frequencies 

amongst musical or speech signals, whilst minimising false positives. There is also scope for 

improvement  in  the  methods  used  to  cancel  feedback  such  that  the  desired  signal 

components are affected minimally. If an especially clean system of howl cancellation could 

be devised, this could allow for the possibility that the occasional false positive in howl 

identification  might  be  more  acceptable  than  it  is  in  present  systems.  –  For  the 

conclusion?? 
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F

Figure 1: Schematic for a PA system producing acoustic feedback.
G represents the electroacoustic forward signal path, and F repre-
sents the acoustic return path.

Maximum Stable Gain (MSG) [2]. Given the system loop magni-
tude response, it is possible to predict the MSG as follows:

MSG [dB] = −10 log10
max(|G(ω)F (ω)|2)
|G(ω)F (ω)|2

, ω ∈ P (2)

where the denominator of the fraction is the Mean Loop Gain
(MLG) and P represents the set of frequencies in the range of in-
terest that fulfil the phase condition of equation (1). The MSG de-
fines the upper limit for usable amplification levels from any given
PA system. It is the aim of feedback control systems to increase
the MSG of a system, giving more usable gain before feedback
howl occurs.

Despite the availability of numerous automatic feedback man-
agement systems on the market, the majority of professional sound
engineers prefer to manage feedback manually, typically reduc-
ing the magnitude of problematic frequency bands using a graphic
equaliser [3, 4]. This is largely due to the common perception that
automatic feedback control systems are unreliable - there is always
the risk of an automatic system falsely identifying a desired sound
component as feedback howl and attempting to suppress it, or an
actual instance of howl going undetected. Both scenarios could
ruin a carefully-constructed live mix.

Setting aside these flaws, a reliable automatic feedback man-
agement system would make a desirable addition to live sound
technology. The acoustic return path response F (ω) can change
dramatically over time depending on room temperature [5], the
addition of an audience into a performance space and particularly
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microphone movement [6, 7]. This can affect the frequencies at
which feedback howl is likely to occur.

This paper investigates the Magnitude Slope Deviation (MSD)
method for automatic detection of feedback howl, and is organ-
ised as follows: Section 2 outlines previously-proposed feedback
howl detection methods, details the MSD method and proposes
new algorithms based upon this method. Section 3 introduces the
software toolkit created for this research and outlines the tests that
were undertaken. Results from these tests are presented in Section
4 and discussed in Section 5. Section 6 concludes the paper.

2. HOWL DETECTION

Most modern automatic feedback control systems focus on break-
ing the gain condition of equation (1) by applying filters to the
audio signal in the forward path in order to attenuate problematic
frequencies. The Notch filter-based Howling Suppression (NHS)
technique is by quite some way the method that has seen the widest
use [8, 6, 9]. NHS systems use a bank of narrowband notch fil-
ters, reducing the gain at very localised frequency bands to remove
howl frequencies.

A key factor in the effectiveness of these systems is the means
by which howl is identified from a background of ‘desired’ musical
or speech sound. In order to minimise false positive identifications
that could result in incorrect suppression of music or speech, it
is important to accurately differentiate howl from desired signal
components

The first step in howl identification is spectral analysis of the
incoming signal, followed by the application of a standard peak
picking algorithm to find local maxima in the spectrum and iden-
tify a number of candidate howl frequencies (generally around 10)
[2, 10, 9]. Each candidate frequency peak is subsequently anal-
ysed to determine whether the peak is caused by a feedback howl
or a desired source signal component. Various methods of doing
this have been proposed, based upon observed spectral and tempo-
ral characteristics of feedback howl that are distinct from music or
speech, including:

• higher magnitude than desired components (when allowed
to develop) [10]

• sinusoidal in nature - highly localised in frequency [11]

• lack of harmonic components until signal clips [11]

• consistently present across time, very little frequency devi-
ation [2]

• exponential increase in magnitude until signal clips [12]

These features are illustrated in Figure 2, which shows a spectro-
gram of a simulated microphone signal featuring speech compo-
nents and a howl component that is clearly visible at just over 700
Hz.

The methods of howl identification broadly fall into two cat-
egories based on which howl characteristics they utilise in their
analysis: spectral or temporal. Spectral methods compare the mag-
nitude of a candidate howl peak to a reference magnitude that can
be set manually, or obtained by a number of means. If the ra-
tio between the candidate howl peak and the reference magnitude
exceeds a certain threshold, the candidate peak is flagged by the
system as howl. Reference magnitudes can be pre-set absolute val-
ues [3, 2, 13, 8, 10], or calculated from the average power across
the spectrum [8, 14, 15, 9], neighbouring frequency magnitudes
[16, 12] or harmonic frequency magnitudes [4, 8].

Figure 2: Spectrogram of feedback simulation using a speech sig-
nal and a ‘church’ acoustic environment. No howl prevention mea-
sures have been applied.

As opposed to the spectral methods, temporal methods of howl
identification require several frames of frequency data in order to
conduct their analysis. The Peak Magnitude Persistence technique
[13, 15, 17] looks for candidate frequencies that are present across
large amounts of time relative to the typical duration of speech or
music components.

The most recently-proposed temporal method of howl identi-
fication is measurement of the so-called Magnitude Slope Devia-
tion (MSD) of candidate frequency bins [10]. This technique, pro-
posed by Osmanovic et al. [12], utilises the fact that howl compo-
nent power increases linearly over time when plotted on a decibel
scale. The system described (intended for use in aviation commu-
nication systems) looks at the changes in frequency magnitude of
a candidate frequency band over time by storing an 8-frame ‘his-
tory buffer’ of magnitude values. Once peak picking has identified
potential howl frequencies, the historic data for those frequencies
is analysed and a ‘global reference’ line gradient between the first
and last magnitude values in the memory buffer is calculated. Gra-
dient values for adjacent magnitude values are subsequently cal-
culated and compared against this reference gradient to find devia-
tions in gradient value. If the average deviation between gradients
is < 0.05 dB per frame then the frequency band in question is
flagged as a probable howl candidate. The MSD technique was
verified to work well in aircraft communication scenarios, but has
not previously been tested in live music or speech sound reinforce-
ment scenarios.

2.1. The ‘Summing’ MSD Method

The originally-proposed method to calculate MSD involves nu-
merous gradient calculations for each new frame of frequency spec-
trum data. For a magnitude history buffer of length N and with
K frequency bins, KN gradients must be calculated. For more
detailed frequency analyses, the number of calculations required
increases significantly, and this computational inefficiency is not
ideal for time-critical feedback cancellation scenarios. To mitigate
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Figure 3: MSD data calculated with the summing method using
a 16-frame FFT history buffer for the howl simulation shown in
Figure 2.

this problem, a new method for assessing the MSD of frequency
spectrum data was implemented and tested as part of this research.

In the new ‘summing’ method, a finite-difference approxima-
tion to the second-order derivative (with respect to time) of the
decibel-scale magnitude history buffer data is calculated. Any fre-
quency bin that is linearly growing in magnitude over time should
have values for gradient change that are consistently close to zero.
To calculate the Magnitude Slope Deviation, the absolute values of
historical gradient change data for each frequency bin are squared
(in order to accentuate the difference between minima and the rest
of the data), then summed. The approach can be expressed as:

MSD(k,m) =

m∑
n=(m−N)+1

|G′′(k, n)|2 (3)

where m is the present analysis frame and G′′(k, n) is the finite-
difference approximation of the second derivative of the dB-scale
magnitude history data by frequency bin k and analysis frame n,
with respect to n. This produces pronounced minima where mag-
nitude gradients are more consistent over time, and minima that are
below a certain threshold are flagged as howl frequencies. Figure
3 shows data calculated using this technique for the howl simula-
tion shown in Figure 2, using a history buffer of 16 frames (N =
16) of FFT analysis data, each calculated using 256 samples (k =
128). The pronounced valley at 725 Hz is a strong indication that
howl is present at that frequency.

One problem with this summing approach is that MSD(k,m)
values would approach zero if there were periods of time with no
energy in the kth bin. This would give false positive howl iden-
tifications. A future version of this algorithm should address this
issue with the inclusion of a condition to exclude the identification
of frequency bins with zero or very low energy.

2.2. The MSD-Inspired Notch Depth Setting Algorithm

One of the problems faced by Notch filter-based Howling Sup-
pression systems is how best to set the depths of notch filters in-

troduced to cancel howl. It is preferable that the notch filter depths
be as shallow as possible so as not to affect the ‘desired’ sound
too much, whilst still being deep enough to ensure that the gain
condition of equation (1) is broken. This paper proposes a new
method to set notch filter depths known as MSD-Inspired Notch
Depth Setting (MINDS) algorithm.

The idea behind MINDS, given that feedback howls are char-
acterised by their growth over time, is that one way to find the
minimum filter depth required to cancel the howl is to monitor the
candidate frequency’s magnitude over time and gradually increase
the depth of a notch filter until the magnitude of the howl ceases
to increase. At this point, if the howl magnitude remains relatively
constant, the filter must be holding the howl in equilibrium (loop
gain ≈ 0 dB) and only a small additional depth increase should be
needed to cancel the howl.

MINDS is implemented by utilising historical frequency mag-
nitude data to compare the latest two magnitude gradients. If both
these gradients are above zero (or close, allowing very slowly de-
caying howls where loop gain is just below unity) then the notch
depth is increased by 1 dB, up to a maximum depth of -25 dB.
It is reasoned that if both these gradient values are negative, this
indicates that any howl present must be in decline, whereas if one
gradient is positive and the other negative, this is indicative of a
rapidly-changing signal that would not be consistent with the pres-
ence of howl. Filter depth is not increased in either case. This
behaviour is outlined in Algorithm 1, where kc is a candidate fre-
quency bin. In this way, even newly-received howl candidate fre-
quencies may not trigger the increase of filter depth. The process
repeats every time new frequency magnitude data (and with this,
new howl candidate data) becomes available.

At present, this algorithm provides no provision for the re-
moval of notch filters or any reduction in their depth after howling
has been suppressed. This was not a problem for the short simula-
tions described here.

if G′(kc,m) > −0.5 and G′(kc,m− 1) > −0.5 then
if notch depth > −25 then

notch depth = notch depth - 1;
end

end
Algorithm 1: MSD-Inspired Notch Depth Setting

3. TEST METHODOLOGY

3.1. The Feedback Analysis and Cancellation Toolkit

In order to test the effectiveness of the MSD and MINDS algo-
rithms in different scenarios in a repeatable fashion, it was nec-
essary to create a system capable of simulating feedback scenar-
ios using any given ‘desired’ stimulus sound and acoustic envi-
ronment. To this end, a system known as the Feedback Analysis
and Cancellation Toolkit (FACT) was developed. FACT is split
into three subsections, dealing with creating the virtual feedback
loop (simulation), detecting any howls that arise (detection) and
cancelling them out (notch filtering).

The most important part of the FACT system is the simulation
of the acoustic feedback itself. This is initialised using a stimulus
sound that represents the ‘desired’ microphone input (this can be
any monaural audio file) and a monaural Room Impulse Response
(RIR) representing the loop response of the sound system. All of

DAFX-87



Proceedings of the 19th International Conference on Digital Audio Effects (DAFx-16), Brno, Czech Republic, September 5–9, 2016

the simulations conducted for this study use stimulus sounds 20-30
seconds in length, and RIRs gathered using one loudspeaker and
one microphone using the swept-sine technique. All simulations
were run using a sampling frequency of 44.1 kHz.

Since the development of feedback howl is dependent on the
Maximum Stable Gain of the sound system, the MSG of each RIR
used was calculated using equation (2). In order to achieve a de-
sired target Mean Loop Gain for the simulation, a factor by which
to multiply the RIR values was specified as:

2(Target Gain [dB]−MLG [dB])/6 (4)

In order to facilitate the introduction of filters mid-simulation
when modelling the acoustic feedback loop, the stimulus sound is
split into frames. Each frame is convolved with the RIR one at a
time and the output from the convolution is recorded and simulta-
neously added back into the input, starting at the beginning point
of the next frame. The convolution output is not confined to the
next frame, allowing convolution outputs to accumulate over time.
This effectively simulates the coupling of the loudspeaker output
to the microphone input in addition to the desired sound. FACT
makes use of Hann windowing, and each frame is overlapped by
50% with adjacent frames in order to smooth changes in notch fil-
ter processing that may occur between frames. Figure 4 shows a
diagrammatic representation of this process. Hann windows were
used as overlapping these by 50% gives unity gain in the over-
lapped region. A signal that is split into frames that overlap by
50%, windowed using the Hann function and then recombined can
be reconstructed exactly.

To gain frequency spectrum data to use in howl analysis, an
FFT process using analysis frames of 256 samples was run concur-
rently with the howl simulations. Before FFT analysis, the simu-
lation output signal was downsampled by one order of magnitude
to 4410 Hz using MATLAB’s resample function, which automati-
cally applies an anti-aliasing filter. This was in order to cut down
on the amount of frequency data to be analysed by the system (full-
spectrum analysis would produce ten times more frequency data).
Analysis of RIRs using the criteria in equation (1) showed no feed-
back howls developing below the upper frequency analysis cutoff
of 2205 Hz. This was corroborated in preliminary howl simula-
tions without any notch filtering, so the reduced frequency range
was deemed sufficient for these simulations.

3.2. Testing ‘Summing’ MSD

To test the effectiveness of the new ‘summing’ MSD algorithm
against the original, simulations were run using a short sample of
conversational speech as stimulus sound. This stimulus was cho-
sen as the original MSD algorithm has previously been established
as working well with speech signals [12]. Simulations were run
using four different RIRs in order to assess the effectiveness of the
algorithm across several different acoustic environments. These
were an RIR of a living room recorded by the author - referred to as
‘Small Room’ - and three RIRs of larger spaces sourced from ope-
nairlib.net [18], which will be referred to as ‘Church 1’, ‘Church
2’ and ‘Hall’.

The simulations were run using an MLG of 2 dB above the
MSG level calculated for each IR. Firstly, each simulation was run
with howl detection disabled. This was to allow howl to develop
in each case in order to confirm the presence of howl frequen-
cies predicted by analysing the RIRs using equation (1). Figure

2 shows the output of one such simulation. Next, the simula-
tions were re-run twice, once using the ‘original’ MSD detection
method and once using the ‘summing’ MSD detection method,
both using magnitude history buffer lengths of 16 frames. The
gradient tolerance for the ‘original method’ simulations were set to
0.5 dB change per frame and the ‘summing method’ simulations
used a minima threshold of 1 (dB frame−2)2 (see equation (3)).
This makes the testing more stringent on the summing method, as
calculating the MSD based on the values used here for the original
method would equate to using a summing minima threshold of 4
(dB frame−2)2. It should be noted that this also has the potential
to make results from the original algorithm less accurate, though
this was not observed in the tests presented here.

The effectiveness of each algorithm was assessed by analysing
FACT output data. Detection speeds were found by examining
timestamp data corresponding to the earliest introduction of filters
at correct frequencies. The accuracy of each algorithm was deter-
mined by finding the number of unique filter frequency values and
calculating the percentage of unique values that correspond to ac-
tual howl frequencies. Howl identifications in adjacent frequency
bins were treated as identification of a single howl (allowing for
spectral leakage). For these tests, in order to evaluate compu-
tational efficiency, MATLAB’s ‘Run and Time’ feature was also
used to generate a report indicating the processing time of each
simulation. The simulations were run on an Apple MacBook Pro,
powered by a 2.4 GHz Intel Core 2 Duo CPU.

3.3. The Impact of Varying the History Buffer Length

In the original proposal for the MSD method, the buffer length of
magnitude history data used for analysis is 8 frames [12]. Since
this system was initially proposed to cancel howl only in speech
signals, it is possible that 8 frames might not be adequate data for
musical scenarios. A series of tests were therefore run to assess
how varying the length of magnitude history data used to calculate
gradient deviations by the MSD algorithm affects its accuracy in
detecting howl from different stimulus sounds.

Tests were run using the ‘Small Room’ RIR at a gain 3 dB
above the MSG. Loop response analysis of the IR at this gain level
showed two frequencies liable to howl. Simulations were then run
iteratively, with magnitude history buffer lengths varied between
three frames - the minimum required to detect a persisting gra-
dient - and twenty-four frames. The simulations were run using
three stimuli in order to assess how using different buffer lengths
could yield different levels of detection accuracy in multiple sce-
narios. The stimuli were the conversational speech sample used
previously, an excerpt from ‘Jupiter’ from Holst’s The Planets [19]
(‘Classical Music’) and an excerpt from ‘The Raven That Refused
To Sing’ by Steven Wilson [20] (‘Rock Music’). Howl detection
times and accuracies were calculated as described in section 3.2.

3.4. Testing the MINDS Algorithm

The effectiveness of the MINDS algorithm was assessed using data
gathered for the magnitude history buffer length tests described in
section 3.3. In these simulations, the same instance of feedback
howl was detected at slightly different times and therefore had
been allowed to grow to different magnitudes before a filter was
introduced. In this way, the final depths reached by the filters in-
troduced to counter the howls could be compared against the mag-
nitude of the howl when they were introduced. Notch filter depth
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Figure 4: Convolution process used to create the virtual acoustic feedback loop.

Table 1: MSD Algorithm Howl Detection Times [seconds]

Howl 2Howl 1

IR SummingOriginalSummingOriginal

3.8465.0501.0451.074Small Room
5.0505.0502.0172.148Hall
8.6068.6647.6197.619Church 1

1.4511.509Church 2

data was only used when the introduced filter remained assigned
to the howl frequency by the end of the simulation, not reassigned
due to any false positive howl IDs.

4. RESULTS

4.1. MSD Algorithm Types

Both original and summing forms of the algorithm were 100% ac-
curate in howl identification. Table 1 shows the detection times
for the first and second howl frequencies in each simulation as de-
tected by both the original and summing algorithms. As can be
seen, the summing algorithm detects howl occurrences as quickly
or faster than the original algorithm in every case.

Table 2 shows the processing time taken in each simulation
to run the MSD algorithm. It can be clearly seen that the sum-
ming algorithm is an order of magnitude more efficient to run than
the original algorithm. The quoted times represent 1754 calls to
the MSD evaluation function, meaning that, on average, the origi-
nal algorithm takes 26ms to run, whereas the summing algorithm
takes 188µs. The summing algorithm is therefore almost 140 times
more efficient than the original algorithm on average. It is just as
accurate as the original algorithm at detecting howls and always
detects howls just as fast or faster than the original algorithm.

Although these tests represent only a small number of scenar-
ios, the results demonstrate the advantages of the summing algo-
rithm very clearly. For this reason, the other simulations in this
study used the summing algorithm.

Table 2: MSD Algorithm Processing Times

Time [s] SummingOriginal

0.26248.394Small Room
0.33946.610Hall
0.33043.841Church 1
0.38544.260Church 2

4.2. History Buffer Length

Figure 5 shows how detection accuracy varied with magnitude his-
tory buffer length using each of the three stimuli. Accuracy of
detecting howl from speech increases rapidly as buffer length is
increased, reaching 100% using a buffer of just seven frames. This
perhaps illuminates why a buffer of eight frames was originally
proposed by Osmanovic et al. [12], as the original system was
designed for use with speech.

At that same seven-frame mark, accuracy has reached 66%
(meaning only one incorrect howl ID) in the ‘Classical Music’
simulations. The accuracy hits 100% using an eleven-frame buffer,
briefly dipping back down to 66% before staying at 100% from a
thirteen-frame buffer onwards.

Howl detection using the ‘Rock Music’ stimulus is signifi-
cantly less accurate. Accuracy does steadily increase as the buffer
length is increased, eventually climbing to 22% as the buffer length
reaches twenty-four frames. This provides some indication that
a much longer buffer length could remedy the inaccuracy of the
MSD algorithm in the rock music scenario. Unfortunately, twenty-
four analysis frames represents over a third of a second of audio
- already a long time to allow howl to develop. Going by the up-
ward trend, over 100 frames of data would be required in order to
approach 100% accuracy (although this has not been tested). This
would correspond to almost 1.5 seconds of audio - clearly an unac-
ceptable amount of time to allow potential howls to develop before
detection.
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Figure 5: Detection accuracies of howl from different stimuli when
varying the length of magnitude history buffer available for MSD
analysis.

4.3. MINDS Algorithm Evaluation

Figure 6 shows final notch depths plotted against initial howl mag-
nitudes for both first and second howl frequencies. As can be seen,
there is a slight trend downwards in filter depths as howl magni-
tude increases in both cases, but this is not as pronounced as might
be expected. In the case of the first howl, for instance, the magni-
tude of the howls before the filter was added varies from −9.2 dB
to over 8 dB - a range of over 17 dB, whilst the final filter depths
only vary 3 dB across that entire range. With the second howl,
the magnitude varies over a range of over 20 dB whilst the filter
depths only vary by 4 dB. These results give some evidence of the
effectiveness of the MINDS algorithm at arriving at the minimum
notch depth required to cancel a howl peak, regardless of the mag-
nitude of the howl upon detection. As these results are limited to
one set of simulations, however, more tests would be required to
give conclusive evidence on this point.

Despite the promising nature of the aforementioned results,
there is some evidence from other simulations that the algorithm’s
mandate to keep frequency attenuation to a minimum can some-
times have unintended consequences. Figure 7 shows one such
case. The initial howl frequency at 724 Hz is quickly detected and
effectively cancelled. The second howl, at 1171 Hz, is detected
and a filter is introduced at 2.93 seconds. The depth of the filter
reaches its final value of −10 dB by 3.3 seconds. It can be seen
from the spectrogram that the howl persists at a significant mag-
nitude for several seconds after the filter depth ceases to increase,
remaining a component of the signal for the duration of the ten-
second segment depicted in the figure. Since this howl is no longer
growing in magnitude and is not significantly higher in magnitude
than the desired audio, most detection algorithms are not able to
identify it. Since it is not likely to be flagged as a howl candidate
again, the howl is allowed to persist, which could affect listener
perception of sound quality in a live scenario.

5. DISCUSSION

Results from the testing of the two forms of MSD algorithm reflect
favourably on the summing method. The summing method never
took longer to catch howl than the original method in any case,
and the increase in computational efficiency is vast, which should
make it more feasible to implement MSD analysis on embedded
processing chips with limited computing power. It could be espe-
cially useful in keeping the necessary number of calculations low
when applying the MSD algorithm to rock music scenarios, which
tests indicated may require much longer buffer lengths (and hence
more calculations if the original MSD method was used) than other
scenarios to maintain accuracy.

More testing is required to confirm its effectiveness in a wider
variety of scenarios, however it seems the summing MSD algo-
rithm can be recommended over the original algorithm despite the
limited amount of data comparing the two methods in this study.

The results presented show that in addition to the previously-
confirmed effectiveness of the MSD algorithm at identifying howl
from speech, the algorithm can also discern howl from classical
music, albeit requiring a larger magnitude history buffer to achieve
optimal accuracy than for speech in this case. The findings re-
ported here contradict those of van Waterschoot and Moonen [10],
who reported results from a similar test indicating that an MSD
algorithm using a 16-frame history buffer is 55% likely to trig-
ger in error as gradient deviation threshold is adjusted to give a
100% chance of howl detection. Even more interesting is the
fact that their tests used a solo violin piece as stimulus sound.
One would expect this kind of stimulus to be relatively spectrally
sparse, which the results of this study indicate should make howl
detection accurate using the MSD algorithm. One possible reason
for this discrepancy is the fact that van Waterschoot and Moonen
used a full-spectrum FFT analysis in their test.

The clear exception to the generally excellent accuracy of the
MSD algorithm found here is when the rock music stimulus was
used. Accuracy ratings in this case were much lower than for other
stimuli. The fact that so many false howl identifications were made
is probably due to the harmonic richness of the bass guitar sound,
clearly visible on the simulation shown in Figure 8. This figure
shows the close correspondence of many of the filter frequencies
to these harmonics and how a great deal of the low-end of the sig-
nal has been attenuated by the five-second mark. Since the stim-
ulus is a polished rock production, the bass guitar likely has dy-
namic range compression applied. This means that there is a pe-
riod of time after the instrument’s attack phase (when the strings
are plucked) where the amplitude of the instrument will be more
or less constant, rather than exhibiting a natural amplitude decay.
It is this period of constancy that is likely triggering the false howl
identifications. This could also explain why the MSD algorithm
performed relatively well here when classical music was used as
the stimulus, as dynamic range compression is not typically used in
classical recordings. Since dynamic range compression is common
in rock and pop live performances as well as recordings, this rep-
resents a shortcoming of the MSD detection algorithm that needs
to be addressed before it can be incorporated into any commercial
feedback control systems intended for use in those scenarios.

The problems encountered using MSD with a rock-music stim-
ulus sound recall the early systems using Peak Magnitude Persis-
tence howl detection, which examined the sound signal for cor-
relation at time intervals that had to be “greater than the duration
of... a single note in a musical performance” [13] for any level of
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10.1 2.2059 -11

10.7 2.2494 -12
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16.4 1.4803 -10

Depth going down, but not proportional to how fast magnitude goes up.
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Figure 6: Final notch filter depths against howl magnitude upon identification. Simulations used ‘Classical Music’ as stimulus and ‘Small
Room’ as loop response.

Figure 7: Spectrogram of simulation output using MINDS to set
notch filter depths. Triangles indicate addition of notch filters.

accuracy to achieved. It seems that the MSD algorithm may face
a similar stipulation, at least in situations where dynamic range
compression is in use. The typical length of a bass note in ‘The
Raven That Refused To Sing’ is about 1 second. This corresponds
closely to the trends shown in Figure 5, which indicate that around
1.5 seconds of audio information would need to be analysed by the
MSD algorithm in order for detection accuracy approaching 100%
to be achieved with this stimulus.

5.1. MINDS Algorithm

The results presented here show some evidence for the effective-
ness of the MINDS algorithm at finding the optimum depth for a
notch filter cut, regardless of the magnitude of the howl upon its
detection. Since only gradient information is considered, the vari-
ance in final filter depths is very small compared with that of the
howl magnitudes upon their introduction. Whilst these results are

Figure 8: Spectrogram of simulation output using MSD algorithm
on rock music stimulus. Triangles indicate addition of notch filters.

very promising, there is a tendency to make the notch filter depths
slightly too shallow. This problem could perhaps be alleviated by
introducing a ‘final cut’ stage to the algorithm. In such a feature,
the depth of each notch filter would be increased by an additional
fixed amount when the gradient of the howl frequency magnitude
turns negative, thus ensuring a fast cancellation of the howl at the
expense of perhaps attenuating the problematic frequency slightly
more than the absolute minimum required. In its present incarna-
tion the MINDS algorithm simply stops increasing the filter depth
at this point, allowing the howl to decay at its own pace, which can
sometimes take several seconds.

6. CONCLUSION

The aim of this paper has been to investigate the viability of the
MSD and MINDS algorithms for use in automatic acoustic feed-
back cancellation systems in live-sound scenarios. The new ‘sum-
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ming’ method for calculating MSD has been shown to be much
more computationally efficient, yet no less accurate or timely, and
can be recommended as an MSD implementation of choice mov-
ing forward. The algorithm has been shown to work well in the
speech and classical music scenarios tested here, but potentially
less so in rock music scenarios where extensive use of dynamic
range compression can interfere with the functionality of the al-
gorithm, causing it to be 8 less accurate when using comparable
history buffer lengths to classical music or speech scenarios.

The MINDS algorithm has been shown to be very promising in
terms of its ability to cancel howl instances whilst keeping notch
filter depths to a minimum. There are some problems with this
approach in terms of the speed at which howl instances can be
cancelled, and it would be desirable to modify this algorithm in
order to reduce the time taken to calculate optimum notch filter
depths.
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ABSTRACT

Crosstalk cancellation serves as an important role in binaural sig-
nals playback through loudspeakers, which reproduce a particular
auditory scene to the listener’s ears. In practice, due to either the
listener’s head movement or rotation, etc, the actual transfer func-
tion matrix will differ from the design matrix, which results in de-
terioration in the performance of crosstalk cancellation. Crosstalk
cancellation system (CCS) is very non-robust to these perturba-
tions. Generally, in order to improve the robustness of CCS, sev-
eral pairs of loudspeakers using a multi-band approach process-
ing band-passed content to appropriately spaced loudspeakers are
needed. In this paper, by means of assumed stochastic analysis,
a stochastic robust approximation method based on random per-
turbation matrix modeling the variations of the transfer function
matrix is introduced and evaluated. Under free-field condition,
simulation results demonstrate the effectiveness of the proposed
method.

1. INTRODUCTION

Binaural technology is often used to reproduce a virtual auditory
scene to the listener as if he/she is personally on the scene. The
principle of binaural technology is to reconstruct the acoustic pres-
sures at the listener’s eardrums so that the reproduced sound field
is identical with what would be produced and can deliver an ex-
tremely realistic three dimensional virtual acoustic environment to
a listener, which could be of great benefit in virtual reality, aug-
mented reality, computer multimedia, home theater, video games,
digital television, and so forth [1, 2]. First, the binaural signals are
synthesized by appropriately encoding spatial cues corresponding
to the desired target scene, which is suitable for headphone pro-
duction. In practice, headphone binaural audio production suf-
fers from in-head localization and poor frontal imaging [3], while
playback through loudspeakers is largely immune to these prob-
lems. In addition, compared with headphone reproduction, cues
by the involvement of the listener’s own head, torso and pinnae
in sound diffraction and reflection during playback can enhance
the perceived realism of sound reproduction [4]. When the bin-
aural audio is reproduced through loudspeakers, it suffered from a
problem of so-called “crosstalk” component of the signals, i.e. the
component of the signal for right ear fed to the left ear and vice
versa, which severely destroys the 3D spatial information for the
listener.

∗ This author is also with Xinjiang Laboratory of Minority Speech and
Language Information Processing, Chinese Academy of Sciences, Urumqi,
Xinjiang

Ideally, the expected signals obtained at the listener’s ears are
delayed copies of the input binaural signals. To suppress, if not
totally eliminate, the unintended crosstalk, in mathematics, it boils
down to designing a crosstalk cancellation matrix to approximate
the inversion of the transfer function matrix. Since the concept of
crosstalk cancellation was introduced in 1960s [5, 6], many studies
with the aim of minimizing the crosstalk were extensively inves-
tigated [7, 8]. In terms of design of crosstalk cancellation filters,
different algorithms have been proposed. In the time domain, the
least mean square (LMS) algorithm [7] and its variations [9, 10]
are the predominant ones. In contrast to the time-domain method
that is time consuming for long filters, the fast frequency-domain
deconvolution method offers more advantage in terms of compu-
tational speed and is also widely used [8]. Thus far, all of the
above-mentioned crosstalk cancellation methods employ the LMS
optimization technique. In [11] a method based on a minimax de-
sign criterion is proposed, and its solution is obtained by utilizing
second-order cone programming (SOCP) techniques. Although it
achieves excellent channel separation, especially at low frequen-
cies, its huge computational cost limits its practical applications.
In addition, to efficiently implement the crosstalk cancellation sys-
tem, a number of filter topologies, such as recursive and shuffler
form [3, 12, 13], are also presented. Generally, the crosstalk can-
cellation system is optimized to achieve optimum cancellation at
a given transfer function matrix corresponding to a nominal lis-
tener’s position. However, in practical applications, many factors
that disturb the transfer function matrix are unavoidable, such as
tiny movements or rotations of the listener’s head, noise, etc. All
these disturbances or errors have adverse effects on crosstalk can-
cellation system (CCS), especially when CCS is ill-conditioned.
The inverse filter is very sensitive to small errors in the transfer
function matrix and may reproduce large distortions in the filter’s
output. To improve the robustness of CCS, a circular or linear array
is suggested using a multi-band approach processing band-passed
content to appropriately spaced loudspeakers [14, 15].

However, even with such multiple loudspeakers reproduction,
design of the crosstalk cancellation filters with some inherent im-
proved robustness is still necessary. This raises the need for deal-
ing with improving the robustness of crosstalk cancellation sys-
tem against slight disturbances or errors. When the transfer func-
tion between the loudspeakers to the ears is characterized by the
room impulse response, they are very are very sensitive to spatial
mismatch. Under certain circumstances, the transfer function is
a stochastic one. In [16], a spatial robust crosstalk cancellation
method is proposed in the case of far-field in reverberant envi-
ronments. Further, a method that jointly handles the three prob-
lems of crosstalk, reverberation reduction, and spatial robustness
with respect to varying listening positions was proposed in [17].
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Still, due to the fact that crosstalk cancellation of room impulse re-
sponse in a reverberant environment is extremely non-robust, prac-
tical crosstalk cancellation system are commonly designed to can-
cel only the direct-path transfer functions. In this paper, the aim
of this study attempts to model of the disturbance of transfer func-
tion itself due to movement of the listener’s head from a statistical
view. A random variable matrix is introduced to characterize the
variations of the transfer function matrix between the loudspeak-
ers and the listener’s ears on the basis of statistical modeling. Then
the traditional crosstalk cancellation problem turns into stochastic
robust approximation problem [18]. In this framework, joint least
squares optimization crosstalk cancellation method [19, 20] that
take multiple positions into account can be treated as special cases,
when the transfer function matrix is subject to discrete distribution.
Simulation results demonstrate that this method can improve the
robustness of crosstalk cancellation, especially when the nominal
transfer function matrix is ill-conditioned.

2. CROSSTALK CANCELLATION FORMULATION

This section presents an overview of well-established material about
crosstalk cancellation. Fig. 1 shows a geometry diagram of the im-
plementation of crosstalk cancellation system under investigation,
in which pL and pR denote the left and right input audio signal,
respectively, and hL

n ; n = 1, 2; represent the impulse response (IR)
from the nth loudspeaker to the left ear (a similar pair of IRs for
the right ear, for concision, are not shown).
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Figure 1: Geometry diagram for a typical crosstalk cancellation
system.

Considering reproducing only the left audio signal, i.e., pR =
0, in matrix form, it can be written as[

b̂L
b̂R

]
=

[
AL

1 AL
2

AR
1 AR

2

] [
c1
c2

]
(1)

where b̂L and b̂R are the transfer functions between pL and the
listener’s ears, respectively, and AL

1 is a convolution matrix, which
is expressed as

AL
1 =


hL
1 0(0) · · · 0

hL
1 (1) hL

1 (0) · · · 0
...

...
...

...
0 0 · · · hL

1 (M − 1)

 (2)

and similarly for AL
2 ; AR

1 and AR
2 , and c1, c2 are the correspond-

ing crosstalk cancellation filter coefficients vectors. A more sim-

plified form in matrix can be expressed as

Ac = b (3)

where the transfer function matrix A is composed of AL
1 , AL

2 ; AR
1

and AR
2 .

The widely used criterion for crosstalk cancellation is least
mean squares (LMS), which minimizes the squared distance be-
tween the set of desired input signals and the actual obtained sig-
nals at the listener’s ears. In our case, bL is a pure delay, and bR
is a zero vector. For a given head position, CCS filter coefficients
can be solved by

J0(c) = ∥b−Ac∥22 (4)

The optimum filter coefficients are then expressed as

copt = argmin
c

J0(c) = A†b (5)

where A†= (ATA)−1AT is the Moore-Penrose generalized in-
verse of real-valued A. Obviously, such crosstalk cancellation sys-
tem is only effective when the listener is in the prescribed position
and the so-called “sweet spot” is small.

3. PROPOSED STOCHASTIC ROBUST CROSSTALK
CANCELLATION METHOD

In practice, the transfer function matrix A is unavoidably influ-
enced by some perturbations and errors due to misalignments, tiny
head movement. etc. In this section, we consider the statistical
model for the variations in A from statistics point of view.

3.1. Stochastic Robust Approximation

Assuming that A is a random variable matrix taking values in
Rm×n with mean Ā, A can be expressed as A = Ā + U , where
U is a random matrix with zero mean. Here, the constant matrix
Ā represents the average value of A, and U characterises its sta-
tistical variation. Naturally, employing the expected value as the
objective function, we can get

argmin
c

E{∥Ac− b∥} (6)

where E represents the mathematical expectation. This problem
is referred to as the stochastic robust approximation problem [21].
When A is a discrete random variable with only a finite number of
values, i.e

prob(A = Ai) = pi, i = 1, ..., k (7)

where prob means the probability of different Ai ∈ Rm×n, 1T p =
1, p ≽ 0, the problem turns into

argmin
c

(p1∥A1c− b∥+ ...+ pk∥Akc− b∥) (8)

Therefore, both the joint multi-position optimization [19] and
multi-position weighted optimization [20] for crosstalk cancel-
lation can be seen as special cases of the stochastic robust approx-
imation, given by equation (8). Considering the LMS norm, the
stochastic LMS method for crosstalk cancellation can be described
as

argmin
c

E{∥Ac− b∥22} (9)
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Further, it can be expanded as

E{∥Ac− b∥22} = E{(Āc− b+ Ux)T (Āc− b+ Ux)}

= (Āc− b)T (Āc− b) + E{cTUTUc}

= ∥Āc− b∥22 + cTPc

(10)

where P = E{UTU} corresponds to mathematical expectation of
the autocorrelation matrix of the perturbation matrix U . Therefore
the statistical robust approximation problem shows a similar form
with the regularized least-squares method [22]

argmin
c

∥Āc− b∥22 + ∥P 1/2c∥22 (11)

with analytical solution

copt = (ĀT Ā+ P )−1ĀT b (12)

3.2. Modeling Random Perturbation

In the following, the variations of the transfer function are mod-
eled in a way to improve the spatial robustness of crosstalk can-
cellation from a statistical point of view. Without loss of gener-
ality, the perturbation ξLi (i = 1, 2) on the transfer function from
the loudspeakers to listener’s left ear is modeled as a statistical
variable with zero mean and variance σL

i (i = 1, 2) (modeling
ξRi (i = 1, 2) similarly). Then, the perturbed transfer function is
expressed as uL

i = ξLi h
L
i (i = 1, 2). Further, the perturbation

matrix U is denoted as

U =

[
ξL1 Ā

L
1 ξL2 Ā

L
2

ξR1 ĀR
1 ξR2 ĀR

2

]
(13)

The expectation matrix P of autocorrelation of the perturbation
matrix U is expressed as

P = E{UTU}

= E{
[

ξL1 ĀL
1 ξL2 ĀL

2
ξR1 ĀR

1 ξR2 ĀR
2

]T [
ξL1 ĀL

1 ξL2 ĀL
2

ξR1 ĀR
1 ξR2 ĀR

2

]
}

=

[
PL
1 PL

2
PR
1 PR

2

] (14)

where PL
1 = E{

(
ξL1

)2(
ĀL

1

)T (
ĀL

1

)
+
(
ξR1

)2(
ĀR

1

)T (
ĀR

1

)
}, PL

2 ,
PR
1 , PR

2 denoted similarly.
Due to its uncertainty in practice, it’s reasonable to further as-

sume that all the perturbation random variables independent and
identically distributed (IID) with zero mean and variance σ, and
then the antidiagonal block elements PL

2 , PR
1 of the P matrix are

reduced to zeros. Finally, the P matrix is expressed as

P = σ2

[ (
ĀL

1

)T
ĀL

1 +
(
ĀR

1

)T
ĀR

1 0
0

(
ĀL

2

)T
ĀL

2 +
(
ĀR

2

)T
ĀR

2

]
(15)

4. EXPERIMENTAL VERIFICATION AND ANALYSIS

In this section, the performance of the proposed stochastic LMS
method is compared with the traditional LMS method by simula-
tions under free-field condition.

4.1. Performance Metrics and Experimental Setup

To analyze the crosstalk cancellation performance, the channel
separation (CHS) is adopted as the evaluation measure, which is
defined as the ratio between the desired signal and the crosstalk
signal. In our case, owing to set the input right signal zeros in prior,
the signal received by the listener’s left ear is the desired signal
and the signal received by the listener’s right ear is the crosstalk.
There, the channel separation is expressed as

CHS(k) = 20 log | bL(k)
bR(k)

| (16)

where k denotes different discrete frequencies. The average chan-
nel separation is defined as

CHS =
1

nL − nH + 1

nH∑
k=nL

CHS(k) (17)

where nL and nH are the entire frequency ranges of interest.
In order to verify the robustness of the proposed method, the

slight movement of the listener’s head is selected as the perturba-
tion factor among all the perturbation factors. The average channel
separations of different listener’s head positions are calculated and
compared with traditional LMS method. According to human au-
ditory characteristics, usually, the interaural level difference (ILD)
servers as a predominant cue at frequencies below 5 kHz, while in
higher frequencies, the listener’s head, especially the pinna have a
dominant effect in sound localization. Due to free-field condition
without consideration of the listener’s head effects, the frequency
range of computing average channel separation is selected between
200-5000 Hz and the frequency sample is selected as 16 kHz. Fig.
2 illustrates the schematic diagram of the listener’s head move-
ment. The loudspeakers are separated by a distance of ds = 0.1 m

o
x

Y

Left speaker
Right speaker

sd 2 sd 2

LLl RLl

ux

uy

R

Figure 2: The schematic of listener’s head movement in experi-
ment.

and an θ = 10◦ from the default listening position (with the head
placed symmetrically between the loudspeakers) corresponding to
the “stereo dipole” configuration [23]. The vertical distance R be-
tween the center of the nominal listener’s head position to the two
speakers is 0.5 m. Because of fundamental difficulties in achieving
good crosstalk cancellation at low frequencies, the desired bL(n)
was designed as an unit impulse response filtered by a high-pass
filter with a cut-off frequency of 200 Hz. The optimum delay for
crosstalk cancellation is calculated according to the rule suggested
in [19]. The region xu for listener’s head slight movement is cho-
sen between (1, 2, 3, 4) cm corresponding to the head movement
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towards the right (the cancellation is more effective as the head
moves forwards/backwards than if it moves sideways [24] and fur-
ther, due to the symmetry only consider the right movement and
set yu = 0). In free field, the transfer function (for example, the
left speaker to the left ear) in frequency domain is expressed as

H(w) =
1

4πlLL
e−jklLL (18)

where lLL is the distance from the left loudspeaker to the listener’s
left ear, k = w/c is the wave number and c is the sound speed, set
by 340 m/s.

4.2. Analysis of Experimental Result

For proposed stochastic LMS method, the optimal proper σ of the
perturbation needs to be determined in advance. A series of tests
were conducted by changing the variance σ range (0.01-1) with
interval 0.005. For θ = 10◦, the average channel separations de-
signed according to the traditional LMS method (solid line) and
stochastic LMS method (dashed line) with different σ are shown
in Fig. 3. In Fig. 3, the lines from top to bottom describe differ-
ent head movement positions from xu = 1 cm to xu = 4 cm with
different line styles represent different methods.
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Figure 3: Comparison of the average CHSs at different head po-
sitions: from top to bottom xu = 1 cm, 2 cm, 3 cm, 4 cm for
θ = 10◦ with different σ (solid line for the stochastic LMS method
and dashed line for the traditional LMS method).

Strictly speaking, for the traditional LMS method, the average
channel separation of different head movement is a specific value
and does not vary as the σ varies, which is depicted as a straight
line. It’s clearly shown from the Fig. 3 that in the vicinity of
σ = 0.1, the average channel separation of the proposed stochas-
tic LMS method is higher than the corresponding traditional LMS
method, demonstrating that the proposed method is robust against
the listener’s slight movement. For clearly showing the improve-
ment, the listener’s ear responses are drawn in Fig. 4 with dif-
ferent head movements. Ideally, the left ear response should be
unity (above 200 Hz) and the right ear response should be zero.
As shown from the Fig. 3 and Fig. 4, compared with the tradi-
tional LMS method, introducing the perturbation brings improved
channel separation in the vicinity of 1000 Hz.

Under the free-field condition, the analysis of the transfer func-
tion matrix revealed that, for a given loudspeaker angle, its ro-
bust frequency range is determined by the “ring frequency”(RF),

which is inversely proportional to the angle [23]. It indicates that
the crosstalk cancellation is inherently non-robust in the frequency
range above the RF. The RF of the “stereo dipole” is about 11 kHz,
which is beyond the scope of the frequency (8 kHz) considered in
our experiment. For further comparison, the loudspeaker angle is
increased to 20◦, where the RF is about 5.6 kHz and repeat the ex-
periment with other parameters keeping the same. Similar to Fig.
3, for θ = 20◦, the the average channel separation designed ac-
cording to the traditional LMS method and stochastic LMS method
with different variance σ and head positions are shown in Fig. 5.
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Figure 5: Comparison of the average CHSs at different head po-
sitions: from top to bottom xu = 1 cm, 2 cm, 3 cm, 4 cm for
θ = 20◦ with different σ (solid line for the stochastic LMS method
and dashed line for the traditional LMS method).

As can be seen from Fig. 5, in the vicinity of σ = 0.15, the av-
erage channel separation of the proposed stochastic LMS method
is still higher than the traditional LMS method, which shows good
agreement with the first experiment. When the variance σ = 0.15,
the listener’s ear responses are drawn in Fig. 6 with different head
movement. From discussions described above, there exists non-
robust frequency point corresponding the “ring frequency” around
5000 Hz. The perturbation introduced by the listener’s slight head
movement results in the rapid decrease of its performance and the
spectral distortion. The proposed stochastic LMS method not only
improves channel separation in the vicinity of 1000 Hz, but also
greatly reduces the spectral distortion around the “ring frequency”.
This again confirms the expectation that proposed stochastic ap-
proximation crosstalk cancellation method provides an enhanced
robustness.

5. CONCLUSION

A novel stochastic LMS crosstalk cancellation method based on
statistical modeling is proposed for the designing of crosstalk can-
cellation system. A random perturbation matrix modeling the vari-
ations of the transfer functions due to perturbations is introduced
and lied in parallel to the actual nominal transfer matrix during
driving the crosstalk cancellation filters. Under the free-field con-
dition, simulation results proved that the proposed method is ro-
bust against listener’s slight head movement.
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Figure 4: Ear responses at head positions with different line styles representing different methods for θ = 10◦: (a) xu = 1 cm, 2 cm; (b)
xu = 3 cm, 4 cm.
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Figure 6: Ear responses at head positions with different line styles representing different methods for θ = 20◦: (a) xu = 1 cm, 2 cm; (b)
xu = 3 cm, 4 cm.
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ABSTRACT 

This paper deals with simulation of BBD circuit based analog 
flanger effects. The famous Electro-Harmonix Deluxe Electric 
Mistress flanger effect was used as a case study in this paper. The 
main attention of this paper is paid to the analysis and simulation 
of the LFO circuit, the BBD clock generator circuit and BBD 
circuit simulation of this effect. However, in order to compare 
the simulation results with measured data, the signal path simula-
tion using the DK-method has been introduced as well. 

1. INTRODUCTION 

A delay line is an essential part of many audio effects, foremost 
delay effects and some modulation effects like chorus and flang-
er. The construction of these audio effects has been known since 
late 1960s when the bucket-brigade device (BBD) was invented 
by F. Sangster in Philips Research Labs [1, 2]. The BBD is basi-
cally an analog shift register to shift the electrical charge, repre-
senting the input signal, along internal capacitors. The resulting 
delay time is given by the number of the internal capacitors and 
by the period of the clock signal which is used to control the 
shifting the charge inside the BBD. The clock signal could be 
modulated by a low frequency oscillator (LFO) in order to obtain 
a time-variable delay typical for chorus and flanger audio effects.  
Although the BBD has been still used especially for analog guitar 
effect pedals, digital implementations of modulation effects be-
came more popular. The delay line is realized by a circular buffer 
in the memory where the time delay is given by the length of the 
circular buffer. Because the simple circular buffer provides only 
a discrete time delays equal to an integer multiple of the sam-
pling period, fractional delay lines have been introduced for au-
dio effects which require any value of delay time to work proper-

ly – e.g. modulation effects where the delay time is modulated by 
the digital LFO [3]. The fractional delay line is implemented us-
ing the circular buffer and the neighboring samples in the circular 
buffer are interpolated in order to obtain the time delay of any 
value. Linear interpolation, spline interpolation or finite impulse 
response (FIR) filter are often used as interpolators with different 
sonic qualities and computational demands [3]. The latest genera-
tion of the digital audio effects however tents to emulate sonic 
qualities of their analog models by simulation of their electric 
circuits in real time. Many types of such audio effects were simu-
lated during last years, foremost guitar amplifiers with tubes, gui-
tar distortion pedals, guitar compressor pedals, guitar wah pedals, 
etc. The audio delay effects with the BBD are the main topic in 
paper [4]. The general structure of such effects is described and 
further, simulation of some parts of these effects is introduced 
there – namely antialiasing and reconstruction filters and com-
pandor circuit used in analog delay guitar pedals. The BBD cir-
cuit is simulated using the black box approach – by measurement 
of frequency response and harmonic distortion and their simula-
tion using a simple digital filter and waveshaping technique alt-

hough an approach for the BBD circuit has been proposed. Be-
cause the authors dealt foremost with delay audio effect analysis 
and simulation where the delay time is fixed and the clock signal 
generation unit has not been described there, foremost the simu-
lation of the clock generation circuit and a simple model of the 
BBD circuit are described in this paper.  

2. CIRCUIT ANALYSIS AND SIMULATION 

The Electro-Harmonix Deluxe Electric Mistress effect has been 
used as case study in this paper. Although it is possible to per-
form the simulation of the whole circuit, this approach is not 
suitable for real time simulation due to high computational de-
mands and therefore a division into separate functional units is 
used.  

2.1. Low frequency oscillator  

The low frequency oscillator circuit very often comprises of an 
integrator and a comparator circuits connected in a feedback 
loop. The circuit schematic of the LFO is shown in Figure 1. The 
simulation of this circuit using the DK method is fully described 
in [6]. This circuit generates a triangle signal with the frequency 
given by R1, R2, R3 and C1 values. The R1 resistor is often a po-
tentiometer to control the LFO speed. 
 

 

Figure 1: Typical LFO circuit. 

The first operational amplifier (OPA) is the non-inverting com-
parator with hysteresis 

 𝑈H = 2𝑈Supp
𝑅2

𝑅3
        (1) 

and the second OPA serves as the integrator with the output 

𝑈LFO(𝑡) = 𝑈Ref −
1

𝑅1𝐶1
∫ ±(𝑈Supp − 𝑈Ref)𝑑𝑡,       (2) 

giving, together with the comparator, the integration time 

𝑡Int = 2
𝑅1𝑅2𝐶1

𝑅3
        (3) 

and LFO frequency 𝑓 =
1

2𝑡Int
. USupp is the OPA power supply and 

URef is the virtual zero voltage offset. 
The digital simulation of this circuit might be implemented ac-
cording to 

𝑈LFO[𝑛 + 1] = 𝑈LFO[𝑛] + 𝑠
𝑈Supp

𝑅1𝐶1𝑇s
,      (4) 
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where Ts is the sampling period, boundary condition 𝑈LFO[0] =
𝑈Ref and 𝑠 = ±1. The sign s is changed to the opposite value 
every time when the LFO output signal exceeds the comparator 
thresholds 

  𝑈LFO[𝑛 + 1] >  𝑈𝑅𝑒𝑓 + (𝑈Supp − 𝑈Ref)
𝑅2

𝑅3
       (5) 

or 

 𝑈LFO[𝑛 + 1] <  𝑈𝑅𝑒𝑓 − (𝑈Supp − 𝑈Ref)
𝑅2

𝑅3
.     (6) 

2.2. Clock generation unit 

The BBD chip cannot operate only by itself and requires clock 
signals to control the BBD chip provided by the clock generation 
unit. In contrast to the LFO circuit, this circuit is often unique for 

audio effect manufacturers and for specific audio effects. How-
ever some general characteristic can be found as well. A triangle 
signal from the LFO is typically filtered by a low pass filter to 
shape the LFO signal to a sine wave by filtering higher harmon-
ics. The filtered LFO signal is used to control an astable oscilla-
tor generating the clock signal. It could be either an integrated 
circuit (e.g. MN3101 with an internal or an external oscillator) or 
it is also possible to generate the clock signal using discrete cir-
cuit parts – an astable circuit and a flip-flop chip generating two 
phase opposite signals as can be seen in Figure 2 which shows 
the clock generation unit of the Electro-Harmonix Deluxe Elec-
tric Mistress effect [5]. 
 

 

Figure 2: Clock generator circuit of Electro-Harmonix 

Deluxe Electric Mistress effect. 

The input low pass filter consists of OPA IC1, potentiometer R1, 
resistors R2, R3 and capacitors C1 and C2. The transfer function of 
the low pass filter is given by  

𝐻(𝑝) =
𝐶1𝑅1𝑝+1

𝐶1𝐶2𝑅1𝑅3𝑝2+ (𝐶2𝑅3+𝐶1𝑅1)𝑝+1
          (7) 

and a corresponding digital filter can be designed using the bilin-
ear transform of the transfer function (7). 
The second part of the circuit is the clock generator. The main 
principle is based on charging and discharging of the capacitor 
C3. The capacitor is charged via collector current from the tran-
sistor T1 until the capacitor voltage is equal to threshold voltage 
from the low pass filter, then the comparator IC2 is switched to 
low output value and the capacitor C3 is immediately discharged 
via the high speed diode D2 and the comparator output switches 
back to the original high output value. The whole process is be-
ing repeated as can be seen from Figure 3. Simulation of the cir-
cuit could be solved in real time like other audio circuit using an 
appropriate method (e.g. DK-method) but duration of transients 
is shorter than a typical sampling period and therefore the simu-

lation would have to run at very high sampling frequencies. The 
most important information is not however the signal itself but 
rather the time when the signal reaches the threshold value. Sup-
posing an approximation of the step response of the simulated 
circuit with a step response of a passive RC network given by 

𝑈THD = 𝑈Max (1 − 𝑒−
𝑡

𝜏),           (8) 

with approximation parameters τ (equal to the time constant), 
UMax (equal to the max voltage which can be reached) and UTHD 
(the voltage to which the capacitor should be charged), the un-
known time t can be expressed using  

𝑡 = −𝜏 log (
𝑈Max−𝑈THD

𝑈Max
),           (9) 

on the condition that the UTHD voltage is constant or is being 
changed very slowly during the integration. For slowly changing 
voltage UTHD, a linear interpolation can be used to formulate the 
equation 

𝑈THD(𝑡0+𝑡)−𝑈THD(𝑡0)

𝑡
= 𝑈Max (1 − 𝑒−

𝑡

𝜏),      (10) 

where t0 is the boundary condition and t the unknown integration 
time. Because the time t cannot be simply isolated from equation 
(10), a numerical method must be used to get the integration 
time. 

 

Figure 3: Step response of the astable circuit and its ap-

proximation. 

The astable oscillator output signal is connected to the clock in-
put of the flip-flop chip which reacts on the rising edge, the data 
port of the flip flop chip is connected to the output port Q2 in or-
der to flip the output to the opposite state, generating two oppo-
site clock signals for the BBD with the period equal to 

𝑇Clock = 2𝑡   (11) 
at Q1 and Q2 output ports.  

2.3. BBD simulation 

There have been used more types of BBD chips from different 
manufactures (e.g. MNxxx chips made by Panasonic and 
SADxxx manufactured by Reticon company) in guitar effects. 
Basically, the internal structure is very similar, consisting of a 
series of MOS transistors used as switches and capacitors used to 
hold the electric charge. The simplified circuit topology is shown 
in Figure 4 [4]. The first transistor and capacitor are used for 
sampling of an input signal. The rest of the circuit consist of 
charge holding elements which are separated by DC biased gates 
enhancing the charge transfer [2]. The neighboring charge hold-
ing elements are controlled using two anti-phase clock signals in 
such way that neighboring switches are in opposite states in order 
to pass the electric charge only into a subsequent stage.  
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Figure 4: Simplified BBD circuit topology. 

The crucial difference between the BBD delay line and the varia-
ble circular buffer used for implementation of a delay line in 
digital effects is that the BBD has a fixed number of cells. In case 
of variable circular buffer, the desired delay is obtained using 
variable number of delay cells but the input and output signal 
samples are written and read with a constant sampling period. On 
the contrary, a variable sampling period is required to obtain the 
desired delay from the BBD delay line. It means that for the digi-
tal implementation of the BBD delay line we have to match the 
digital effect sampling period with the BBD sampling period. An 
oversampling can be used to match the sampling periods for stat-
ic delay times, as has already been suggested in [4]. However, 
more challenging is when the BBD sampling period is modulated 
by the LFO. In this case, there is no constant relation to match 
the sampling periods and an interpolation of the input and output 
signals is required because the BBD sampling can occur at any 
time between the input and output signal samples. An algorithm 
based on this principle has been designed and its flowchart de-
scribing processing of one signal sample is shown in Figure 5. 

The algorithm uses one variable tTemp to store the time incre-

ments. This variable is initialized to the BBD clock period ob-
tained from (9).While it is greater than a sampling period Ts, it is 
decremented by Ts and output signal samples are read from the 

BBD. If the tTemp is less than Ts, the new input sample for the 

BBD is acquired, signal samples stored in the BBD delay line are 
shifted and new clock period is computed from (9) and added to 

tTemp. Because the BBD sampling occurs between audio signal 

samples, linear interpolation is used, as shown in Figure 5. The 

samples in the delay cells are shifted according to 𝑏𝑏𝑑[2𝑛 +

𝑚 + 1] = 𝑏𝑏𝑑[2𝑛 + 𝑚] for 𝑛 ∈ 〈0,
𝑁

2
− 1〉 and 𝑚 =

modulo2(𝑚 + 1) where N is number of cells of the BBD chip 

(512 for SAD1024 BBD used in this effect) and bbd is the delay 
line to store the samples. 
The model might be further extended with integrated filters simu-
lating frequency dependent electric charge transfer between the 

cells. The filtration can be done e.g. using 𝑏𝑏𝑑[2𝑛 + 𝑚 + 1]

+=
𝑇𝐶𝑙𝑜𝑐𝑘

𝜏
(𝑏𝑏𝑑[2𝑛 + 𝑚] − 𝑏𝑏𝑑[2𝑛 + 𝑚 + 1]) with TClock given 

by (9) and  𝜏 is filter time constant. Ideally, each cell transfer 
should be further process by a nonlinear function to simulate the 
transistors nonlinearities.  

 

Figure 5: BBD chip simulation algorithm –processing for 

one audio sample. 

Both nonlinear processing and filtration for each cell transfer 

however introduce very high computational demands when real-

time processing is considered and both can be replaced by the 

BBD output sample filtering and nonlinear processing with char-

acteristic e.g. according to paper [4]. 

2.4. Main signal path 

Figure 6 shows the direct signal path consisting of the summation 
amplifier, antialiasing and reconstruction filters and SAD1024 
BBD. The BBD line is connected to the nodes UBBDin and 
UBBDout. The whole signal path circuit except the BBD circuit can 
be simulated using different approaches. However, the challenge 
is the instantaneous feedback causing the flanger effect. The ap-
proach using the division of the signal path circuit into sub-
circuits would require adding a unit delay into the global feed-
back loop changing the overall frequency response of the circuit, 
as it was already shown in [6] where the unit delay was used in 
the tube guitar power amplifier simulation. Therefore simulation 
of the whole signal path circuit as one block is used. The nodal 
DK method with incidence matrices defined in [7] is a suitable 
method. Because the circuit contains operational amplifiers, an 
extension of the DK method introduced in [6] is used. The whole 
circuit can be described by the conductance matrix 

 𝑺 = (
𝑵R

T𝑮R𝑵R + 𝑵X
T𝑮X𝑵X 𝑵u

T 𝑵OPA−O
T

𝑵u 𝟎 𝟎
𝑵OPA−O + 𝑨𝑵OPA−I 𝟎 𝟎

) (12) 

 
where NR, NX, Nu, are incidence matrices, GR and GX resistors 
and capacitors conductance matrices all defined in [7] and    
NOPA-I, NOPA-O are incidence matrices and A is the vector of 
OPAs amplifications all defined in [6]. A linear model of the 

OPA given by 𝑈Out = 𝐴(𝑈+ − 𝑈−) is used. Except the linear-
ized OPAs, there are no other nonlinear circuit elements and thus 
the circuit can be described by a linear state space representation 
given by 
 

 

Figure 6: Circuit schematic of the signal path of the flanger effect.
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𝑿 = 𝑨𝑿 + 𝑩𝑼
𝒀 = 𝑫𝑿 + 𝑬𝑼

     (13) 

where inputs vector is given by 𝑼 = [
𝑈In[𝑛]

𝑈BBDout[𝑛]
], outputs vec-

tor is given by  𝒀 = [
𝑈𝑜𝑢𝑡[𝑛]

𝑈BBDin[𝑛]
], matrices A, B, D and E are lin-

ear system state space matrices derived according to [7] from the 
conductance matrix S defined in (12), vector X is the system state 
vector and n is the sampling period index. The secondary input 
UBBDout[n] and output UBBDin[n] are connected to the BBD delay 
line implemented using the algorithm from Figure 5.  

3. SIMULATION RESULTS 

In order to prove the validity of the proposed algorithm, the algo-
rithm was implemented in Matlab and the frequency response of 
the real flanger effect was measured. Because it is the time varia-
ble effect, it is generally difficult to evaluate the simulation only 
by measurement and comparison of the frequency responses of 
measured and simulated effect. However this flanger effect has a 
switch (called filter matrix on the effect box) bypassing the LFO 
circuit. In this regime, the input low pass filter in the clock gen-
eration circuit is fed up with constant voltage 1.7 V, this input 
voltage is amplified by the low pass filter using potentiometer R1 
in IC1 feedback yielding the comparator threshold voltages within 

𝑈THD ∈ (1.7, 8.4) V for all settings of the potentiometer R1 
(called „Range“) in Figure 3. This static regime allows to meas-
ure the frequency response of the effect. Figures 7 and 8 show 
comparison of the measured and simulated frequency responses. 
The sampling frequency used for the simulation was equal to 96 
kHz to match the frequency responses at higher frequencies oth-
erwise warped by the bilinear transform. The length of the BBD 
was 512 samples and the integration time was adjusted by resis-
tor R6 in Figure 3, which has the same function (with wide range 
of settings) in the original circuit, to match the frequency re-
sponses. 
Additionally, the algorithm was implemented in C++ language as 
a VST plugin and was able to run in real-time. The implementa-
tion of the BBD line requires shifting and filtering of all stored 
samples few times during one sampling period which is computa-
tionally very demanding for simulation in real time. To decrease 
the computational demands, the BBD line can by implemented as 
a fixed delay line using a circular buffer instead of shifting all the 
delay cells and further the low pass filtering between the delay 
cells can be omitted. This however can affect the effect frequen-
cy responses of the effect at high frequencies.   

4. CONCLUSIONS 

Simulation of the Electro-Harmonix Deluxe Electric Mistress 
flanger effect was described in this paper. The main attention was 
paid to simulation of the clock signal generation circuit and the 
BBD circuit. In contrast to the standard digital delay line imple-
mentations, the BBD delay line consist of fixed number of delay 
cells and the variable delay is obtained using different speed of 
reading the data from the delay line. The main signal path of the 
flanger effect was simulated using the nodal DK-method with 
incidence matrices. The novelty is use of the incidence matrices 
for operational amplifiers allowing simulation of the whole sig-
nal path circuit including the global feedback without dividing 
the circuit into blocks. The results showed good match between 
the simulated and measured frequency responses of the flanger 
effect proving validity of the proposed simulation algorithm. 

 

Figure 7: Frequency responses for min range parameter. 

 

Figure 8: Frequency responses for max range parameter. 
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ABSTRACT

In the present contribution we present the preliminary results of
a black box nonlinear system (NLS) modeling. The NLS is com-
posed by a nonlinear sigmoid-type input-output relationship
(NLTF) followed by a linear system (LTI), as in a Hammerstein
nonlinear system. Here, the used NLTF is derived from a de-
formation of the Hyperbolic Tangent power expansion. The ad-
vantage of using the hyperbolic tangent function is that nonlinear-
ity depends on the linear and cubic terms that measure curvature
(and thus nonlinearity) of the transfer function. The hyperbolic
tangent model is extended to other types of nonlinear systems by
expanding the nonlinear system in linear and increasingly nonlin-
ear contributions, where the expansion parameters are deformed
to enhance or suppress specific nonlinear modes of the expansion.
Simulations were performed using Matlab 2012a. The preliminary
results show fairly good agreement between the system obtained
by parametric inference and a reference system, with mean square
error (MSE)=0.035.

1. INTRODUCTION

Linear Time Invariant Systems (LTI) have been extensively stud-
ied for decades [1], [2]. However, the nonlinearities in audio mu-
sical systems that are responsible for specific tone characteristics
desired by many musicians [3], [4].

The nonlinearities of the NLS can be weak (i.e the NLS can
be represented by a power series expansion of only a few terms)
or strong (higher order terms of the power series expansion must
be calculated for the modelling system) [5]. If the NLS is very
weak, a linear approximation can be used. On the other hand,
very strong nonlinear systems as samplers, switches and other sys-
tems with discontinuities in the system representation must use the
entire terms of its power series representation, which is rather in-
convenient for modeling purposes [6]. Then, in accordance to the
"strength" of the nonlinearities an appropriate and efficient tech-
nique to be used is in order. Guitar and bass vacuum-tube ampli-
fiers can be considered weakly NLS and most of NLS identifica-
tion techniques make this assumption.

By its own nature, when a weak nonlinear system related with
saturation (NLS) has as input a pure sine wave
x(t) = A1 cos(2πf1t + φ1), higher harmonics related to the in-
put frequency will appear in the output, according with the relation
y(t) =

∑
nBn cos(2πnf1t + φn). Accordingly, LTI identifica-

tion techniques as impulse response, convolution and Laplace or

∗ This work was supported by author own support
† This work was supported by author own support

Fourier analysis cannot be used with NLS. Hence, many attempts
have been suggested to model such NLS [4].

The main techniques for NLS identification/modeling can be
classified in black box approaches, white box approaches or an-
alytic modeling techniques and grey box approaches. Black box
approaches involve no a priory knowledge on the NLS to be mod-
elled/identified. The NLS is excited with a set of test signals and
using obtained outputs, the coefficients of a polynomial or power
series relation are estimated in such a way as to minimize the error
between the true NLS system and the model. In this category one
finds the Volterra, Volterra-Wiener and Hammerstein model tech-
niques, for instance, [5], [7], [8], [9], [10], [11], [3], [12], [13]. On
the other hand, white box approaches involve total knowledge of
the system to be modelled. To achieve this, one needs to know the
circuit theory and the schematics of the devices to be modelled.
In possession of this information, the nonlinear differential equa-
tion set of the circuits involved can be obtained and solved. In
this category the models for SPICE Simulation, transient modified
nodal analysis, state-space representation and numerical methods
for solving nonlinear circuits techniques can be found as for in-
stance in refs. [14], [15], [16], [17], [18], [19], [20]. Grey box
approaches use polynomial models as in black box techniques, but
incorporating some knowledge about the nonlinear circuits used.
Good reviews of NLS modeling techniques can be found in [4],
[21].

In this work we propose a black box method where the NLS
is composed by a nonlinear sigmoid-type input-output relationship
(nonlinear transfer function, NLTF) followed by a LTI, as in Ham-
merstein nonlinear systems, [12]. This is shown in Fig. 1. The first
section shows the calculation of the output from the entire system
given a generic input. Then the developments based on the Hy-
perbolic Tangent series and its coefficients estimation are shown,
followed by a practical example.

Figure 1: The entire NLS proposed.
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2. A MODEL PROPOSAL FOR THE MODELING
SYSTEM

The NLS model (or cell) proposed here (Fig. 1) is half the sys-
tem proposed in [3] and is appropriate to model weakly NLS as a
vacuum tube amplifiers pre-amplifier or power stages and distor-
tion and overdrive devices. It is composed by an NLTF followed
by an LTI system as in a Hammerstein model [12]. The model-
ing procedure consists in applying appropriate test signals in order
to estimate both the NLTF and the LTI system that minimize the
error between the output of the NLS to be modeled and the NLS
model, by some minimization criterium of the error between the
true output signal against the NLS model output. Here we used
for simplicity the standard minimum square method as specified
further down in eq. (10). The modeling procedure is shown in
Fig. 2. One of the differences of this work is that the NLTF used

Figure 2: The modeling system and its variables.

is derived from a deformation of the Hyperbolic Tangent power
expansion. The development and identification of the coefficients
of this deformed expansion will be explained further below. As a
matter of fact, the harmonics produced for the NLTF are filtered by
the LTI system. This circuit section usually models the frequency
response of the amplifier stage to be modeled, including the para-
sitic capacitances, tone controls or a simplified output transformer
and speaker model.

Generally speaking, many LTI have the transfer function in
Laplace domain described as a quotient of polynomials by ([2],
[22]) :

H1(s) =
Y1(s)

X1(s)
= G

∑M
k=0Bks

M−k∑N
k=0Aks

N−k
, (1)

where G is the Global Gain of the LTI and Bk and Ak are the
coefficients of the differential equation that rules the LTI.

It is straight forward to show [2] that the differential equation
which relates the output y1(t) with the input x1(t) is

N∑
k=0

Ak
dN−kx1(t)

dtN−k
= G

M∑
k=0

Bk
dM−ky1(t)

dtM−k
, (2)

recalling that x1(t) is the response of the NLS to an input x(t).
The impulse response of eq. (1) can be analytically evaluated

by finding the Poles (roots of the denominator polynomial) of the
LTI, expanding eq. (1) in Partial Fractions and finding the inverse
Laplace transform to the expansion [2],[22]. Otherwise, a numer-
ical algorithm can be applied to eq. (2) to find a solution for that
differential equation.

The output y1(t) can be represented by the convolution

y1(t) =

∫ ∞
−∞

h1(τ)x1(t− τ) dτ , (3)

where x1(t) is the output of the NLTF for an input x(t), or for-
mally x1(t) = NLTF |x(t)(t), so that eq. (3) is

y1(t) =

∫ ∞
−∞

h1(τ)NLTF |x(t)(t− τ) dτ . (4)

For instance, if one estimate the NLTF as an arc hyperbolic sine
function, like the one that mimics diode distortion pedals and a
JCM900 preamp output voltage (ref. [15]), then eq. (4) can be
written as

y1(t) =

∫ ∞
−∞

h1(τ)arcsinh|x(t)(t− τ) dτ . (5)

To estimate this sub-system one has to apply an input signal x(t)
small enough in order that the NLS to be modeled may be consid-
ered a linear system. This is fairly true for many amplifiers and
distortion devices, and all techniques already developed for LTI
can be used, in time or in frequency domain. In the present case the
identification/estimation is performed by H̃1(ω) = Y (ω)/X(ω).

3. THE NONLINEAR SUB-SYSTEM MODEL

As a starting point for modeling the weakly nonlinear properties
of an audio-system, we start from a mathematical function, i.e. the
hyperbolic tangent

x1 = tanhα

=
eα − e−α

eα + e−α
, (6)

that in certain limits of α (the input signal and amplification) ex-
hibits predominantly linear properties and beyond these limits, then
the full nonlinear characteristics as can be seen in Fig.3. The
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Figure 3: x1 = tanhx.

choice for this specific function resides in the fact that a represen-
tation by exponential functions may be easily implemented com-
putationally. Then, the normalized output signal y1(t) of the non-
linear sub-system may be described by the input signal x(t) and
the response of the nonlinear sub-system

x1(t) = tanh

κ(x(t) + x0)︸ ︷︷ ︸
α

− tanh (κx0) , (7)
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where κ plays the role of an amplification factor and for a sym-
metric NLTF x0 ≡ 0, whereas for asymmetric NLTF x0 6= 0.
Note that besides the translation of the argument of the hyperbolic
function there is also necessarily a shift in the function such as to
match a zero input signal with a zero output signal. In this kind
of approach the nonlinearity is a unique one which may be seen
from the constituent differential equation that has the hyperbolic
tangent as solution.

∂2ξ(α)

∂α2
= 2

(
ξ3(α)− ξ(α)

)
(8)

The “beauty” of the hyperbolic tangent function is that the sec-
ond derivative and its dependence on the linear and cubic signal
is a direct measure for the curvature of the transfer function and
thus for the nonlinear behavior. In order to extend this nonlinear
model to other types of nonlinear systems we proceed in two steps,
first expand the nonlinear system in linear and increasing nonlin-
ear contributions, and second, extend the expansion by introduc-
ing new parameters that allow to tune the balance of the linear
and nonlinear character, in other words, allow to enhance or sup-
press specific nonlinear modes of the expansion. For signals x(t)
sufficiently small most of the audio systems show a linear behav-
ior, which corresponds to the first term of a small signal expansion,
where including nonlinear terms nevertheless restricting generality
we truncate at the fifth term that represents a nonlinear character.
If x1 = tanh(κx) with κx = α, then

ξ(α =)


∞∑
n=0

1

n!

∂n tanh(α)

∂αn

∣∣∣∣
α=κx0︸ ︷︷ ︸

an

α
n

− tanh (κx0)

=
(
1− tanh

2
(α)
)∣∣∣
α=κx0

α

− tanh(α)
(
1− tanh

2
(α)
)∣∣∣
α=κx0

α
2

−
(

1

3
− tanh

2
(α)

)(
1− tanh

2
(α)
)∣∣∣∣
α=κx0

α
3

+

(
2

3
−

1

2
tanh

2
(α)

)
tanh(α)×

×
(
1− tanh

2
(α)
)∣∣∣
α=κx0

α
4

+

(
2

15
−

21

30
tanh

2
(α) +

1

2
tanh

4
(α)

)
×

×
(
1− tanh

2
(α)
)∣∣∣
α=κx0

α
5

+O(α
6
) (9)

It is noteworthy that all terms of the expansion are linearly inde-
pendent so that one may modify the original factors an → an +
δan by an increment or decrement δan and thus adjust the linear to
the nonlinear proportions beyond that given by the hyperbolic tan-
gent function and additionally shape the nonlinearity since
[2
(
y3(α)− y(α)

)
] is no longer the original curvature.

Recalling that we are considering a black box modeling, nev-
ertheless focus on specific audio system characteristics the con-
nection between a system with measured total response function
(microphone, amplifier and speaker characteristics) may be deter-
mined using parametric inference techniques as laid out for in-
stance in [23]. To this end the input signal x(t) as well as the de-
sired output signal y(t) is discretized in T times
ti (i ∈ {0, . . . , T}) and the factors δan are adjusted such as to
minimize the difference of the model and the experimental data.

min
{x0,{δan}Nn=1}

(
T∑
i=0

∥∥∥∥y(ti)− ∫ ti

0

h(ti − τ)ξ(τ) dτ
∥∥∥∥
)

(10)

Here ||·|| denotes any convenient norm or semi-norm. In this work
we use the Euclidian norm.

A comment is in order here, other approaches make use of
orthogonal functional spaces which they use to model nonlinear
responses [5]. With respect to this approach ours is not that much
different, however, the advantage of the present approach is justi-
fied by the fact that all derivatives of the hyperbolic tangent func-
tion may again be represented by hyperbolic tangent functions and
constants, in other words only one function (represented by ex-
ponential functions) is needed to generate the whole expansion,
where in the present discussion we showed the linear and five non-
linear terms that appear in the expansion. In the symmetric case
the parity even terms in α disappear identically. Moreover, in prin-
ciple the tuning needs only to be stored in a vector that indicates
directly the linear and nonlinear characteristics to be modeled. For
example, if the NLTF would be a simple hyperbolic tangent, such
as y1(t) = tanhx(t), the hyperbolic tangent can be expressed as
a power series by [24]

tanhx = x− x3

3
+ 2

x5

15
− 17

x7

315
+ . . . , (11)

and then the coefficients an for n even would be 0 and a1 = 1,
a3 = − 1

3
, a5 = 2

15
, a7 = − 7

315
and so on. For a case of arc

hyperbolic sine as the NLTF, expanding the arc hyperbolic sine
gives [24]

arcsinh = x− x3

6
+ 3

x5

40
+ . . . , (12)

and in this case an for n even would be 0 and a1 = 1, a3 = − 1
6

,
a5 = 3

40
and so on, which is δa3 = − 1

2
a3 and δa5 = − 7

120
with

respect to the hyperbolic tangent case.

4. METHODS

In order to simulate a system to be identified, all the signals and
systems were performed using Matlab 2012a version. The sam-
pling frequency used is fs = 120000 samples per second in or-
der to accommodate the harmonics of the output signal up to the
5th component without aliasing, simulating an A/D system with
fs = 20000 samples per second with an anti-alias analogue 6th

order low-pass filter with cut-off frequency of 10kHz before the
sampling process and after the discretization, the signal is upsam-
pled 6 times. But all the signals involved to be exhibited are down-
sampled to fs1 = 20000 samples per second.

For the NLTF to be modeled, we chose the distortion simula-
tion presented in [21], given by

x1 = sign(x)(1− e−|x|) . (13)

The graphic of this NTFS is shown in Fig.4. The output of this
block feeds a discrete linear system which is a 2nd order digi-
tal Butterworth bandpass filter with cut-off frequencies of 100 Hz
and 8000 Hz, normalized to radians. This simulates approximately
the frequency response of a 12′′ guitar speaker. The frequency re-
sponse of this system is shown in Fig.5: The signal x[n] chosen for
the LTI identification is a linear chirp from 0Hz at n = 0 to 10kHz
at n = 65535 (or t = 0.96 s). In order to keep the nonlinear ef-
fects of the NLTF negligible, the signal must be so small that its
amplitude does not surpass the linear part of the NLFT. Because of
that, the maximal amplitude of the signal was chosen equal 0.01.
The periodogram and the spectrogram of this signal is shown in
Fig. 6.
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Figure 4: Graphic of the NLTF x1 = sign(1− e−|x|)
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Figure 5: Frequency response of the LTI system to be identified.

Injecting the signal x[n] in the system to modeled, the signal
y[n] is obtained and assuming the NLTF nonlinear effect is negli-
gible, then H1(w) can be estimated by

H̃1[k] =
Y [k]

X[k]
, (14)

where Y [k] and X[k] are the FFTs of the signals x[n] and y[n],
respectively. In Fig. 7, can be seen the periodogram and the spec-
trogram of the signal y[n]. Note that using these signal amplitude,
aliasing practically did not occur and the nonlinear effect appears
as a very faint 3rd harmonic line in its spectrogram. Just for the
sake of exemplification, if the chirp signal used here would have a
large amplitude A (eg. A = 5), the output of the NLS to be mod-
eled would had the periodogram and spectrogram shown in Fig.8
The frequency response of H̃1[k] obtained is shown in Fig.9: The
impulse response estimation of h̃1[n] is obtained performing the
IFFT over H̃1[k]. It’s worth noting that this form of estimation
will provide a FIR system model, even if the LTI system to be
estimated be an IIR system (as our case). But if one choose the
appropriate number of coefficients for the FIR system, the error
can be made negligible and the computational effort minimized.
Using N = 65536, then the estimation of the LTI system H̃1[k]

impulse response h̃1[n] is obtained. The next step is to estimate
the NLTF of the system. To do that, a second signal x[n] is in-
jected in the system, now a sine signal with fixed frequency inside
the band pass of the system (already identified) but with amplitude
large enough so the output signal y[n] be distorted. Here the sig-
nal was a sine signal with frequency of 500Hz (around the center
frequency of the Bandpass) and amplitude A of 5. The input and
output signals can be seen in Fig.12 To remove the phase influ-
ence of the LTI sub-system in the output signal, an inverse filter
(aka equalizer filter) g[n] obtained by turning the magnitude of

Figure 6: The Periodogram and the Spectrogram of the signal x[n]
for LTI estimation.

Figure 7: The Periodogram and the Spectrogram of the signal y[n].

H̃1[k] = 1.0 and then g[n] = IFFT [ 1

H̃1[k]
] as shown in Fig. 10.

This will preserve the amplitude of the signal y[n] but will correct
the phase only. is applied to the output signal y[n], and giving an
equalized signal yeq[n]. The scatter plot between x[n] and yeq[n]
is shown in Fig.11: As can be seen by the Lissajous curves ob-
tained, the phase wasn’t completely corrected but the phase error
of yeq[n] is small enough for the next step. Finally, with both sig-
nal x[n] and yeq[n], the new coefficients ak+δak of eq. (9) can be
estimated. Here, we used minimization with Euclidian norm and
consequently, least squares fitting techniques, evaluated up to the
10th order. The coefficients obtained for our example are

a0 + δa0 0= .000412543580279774 ,

a1 + δa1 0= .695903675375691 ,

a2 + δa2 8= , 42100337873921e− 06 ,

a3 + δa3 = −0.0873565648035508 ,
a4 + δa4 = −1.51387407429003e− 05 ,

a5 + δa5 0= .00715137611726394 ,

a6 + δa6 2= .73945820531464e− 06 ,

a7 + δa7 = −0.000280736782949899 ,
a8 + δa8 = −1.67046480776686e− 07 ,

a9 + δa9 4= .11012487805344e− 06 ,

a10 + δa10 3= .17102262802150e− 09 ,

· · · .

The comparison between the outputs of the actual system and the
NLS estimated is shown in Fig.12.

Finally, it is shown on Fig.13 the output of the system to be
modeled and the model for all the parameters above, having as
input a sine signal of 1kHz.
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Figure 8: The Periodogram and the Spectrogram of the signal y[n]
for a chirp with A = 5.
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Figure 9: Frequency response of the LTI system estimated.

The Mean Square Error (MSE) between y[n] and y1[n], esti-
mated by

MSE =
1

N

N−1∑
n=0

(y[n]− y1[]n)2 (15)

was around MSE = 0.035.

5. CONCLUSIONS

In the present work we discussed a black box approach for a NLS
that shall simulate the response of an audio system such as a tube
amplifier for musical instruments with its characteristic frequency
response of the amplifier, including the parasitic capacitances, tone
controls, output transformer and speaker. To this end we used a
chirp signal to excite the NLS followed by a LTI and adjusted the
coefficients of a deformed hyperbolic tangent power expansion in
order to reproduce a desired output by the use of parametric infer-
ence technique. The choice for the deformed hyperbolic tangent
function resides in the fact that a representation by exponential
functions may be easily implemented digitally and allows to de-
scribe symmetric as well as asymmetric amplification using trans-
lations of the argument and amplitude respectively. Moreover the
hyperbolic tangent function has a simple relation to its nonlinear-
ity since the second derivative depends on the linear and cubic
function. As a specific example we used an exponential distortion
x1 = sign(1− e−|x|) followed by a Butterworth 2nd order band-
pass filter with cut-off frequencies related to 100Hz and 8kHz to
simulate the frequency response of an 12” speaker. For the exam-
ple used, the Mean Square Error (MSE) between y[n] and y1[n]
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Figure 10: Frequency response of the Inverse filter estimated.
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Figure 11: Scatter plot between x[n] and yeq[n].

was around MSE = 0.035.
The authors of the present work are aware of the fact that

there are other approaches similar to the present one, however, they
make use of orthogonal functional spaces which they use to model
nonlinear responses. We believe, that the advantage of the present
approach is justified due to the fact that all derivatives of the hy-
perbolic tangent function may again be represented by hyperbolic
tangent functions and constants. The deformation parameters that
were determined to reproduce the desired input - output signal re-
lation showed that the desired system can be reproduced with fairly
good fidelity. In future work we intend to apply the proposed pro-
cedure to a selection of other amplifiers obtained by measurements
and compare quality as well as computational efficiency for simu-
lation applications.

6. REFERENCES

[1] Chi-Tsong Chen, Linear Systems Theory and Design, Ox-
ford University Press, Oxford, UK, third edition, 2009.

[2] S. Haykin and B. van Veen, Signals and Systems, John Wi-
ley & Sons,Ltd, Hoboken, New Jersey, USA, second edition,
2005.

[3] K. Dempwolf, M. Holters, and U. Zölzer, “The influence
of small variations ina a simplified guitar amplifier model,”
in Proc. of the 12th Int. Conference on Digital Audio Effects
(DAFx-10), Como, Italy, Sept. 01-04, 2009, pp. DAFx–1–
DAFX–6.

[4] J. Pakarinen and D. T. Yeh, “A review of digital techniques
for modeling vacuum-tube guitar amplifiers,” Computer Mu-
sic Journal, vol. 33, no. 2, pp. 85–100, 2009.

DAFX-107



Proceedings of the 19th International Conference on Digital Audio Effects (DAFx-16), Brno, Czech Republic, September 5–9, 2016

0 1 2 3 4 5 6 7 8

x 10
−3

−5

0

5

time [s]

x(
t)

NLTF signal test x(t)

0 1 2 3 4 5 6 7 8

x 10
−3

−1

0

1

time [s]

y re
al

(t
)

Output signal y(t) from actual system

0 1 2 3 4 5 6 7 8

x 10
−3

−1
0
1

time [s]

y m
od

(t
)

Output signal y(t) from model

Figure 12: Comparison between the outputs from the actual system
and from the NLS estimated.

−3 −2 −1 0 1 2 3

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x

ou
tp

ut
 N

LT
F

 x
 O

ut
pu

t N
LT

F
 e

st
im

at
ed

Estimated NLTF x true NLTF

 

 

NLTF estimated
True NLTF

Figure 13: Estimated NLTF vs. Actual NLTF.

[5] Martin Schetzen, The Volterra and Wiener Theories of Non-
linear Systems, John Wiley & Sons,Ltd, New York, USA,
1980.

[6] M. R. Dunn, “The volterra series and its application,” M.S.
thesis, University of California, 1992.

[7] Martin Schetzen, “Nonlinear system modeling based on the
wiener theory,” Proceedings of the IEEE, vol. 69, no. 12, pp.
1557–1573, 1981.

[8] J. Schattschneider and U. Zölzer, “Discrete-time models for
nonlinear audio systems,” in Proc. of the 2nd COST G-6
Workshop on Digital Audio Effects (DAFx-99), Trondheim,
Norway, Dec. 09-11, 1999.

[9] A. Farina, “Simultaneous measurement of impulse response
and distortion with swept-sine technique,” in AES 108th Con-
vention, Paris, France, Feb. 19-24, 2000, pp. 1–24.

[10] A. Farina, A. Bellini, and E. Armelloni, “Non-linear con-
volution: A new approach for the auralization of distorting
systems,” in AES 110th Convention, Amsterdam, The Nether-
lands, May 12-15, 2001, pp. 1–4.

[11] Thomas Hélie, “On the use of volterra series for real-time
simulations of weakly nonlinear analog audio devices: Ap-
plication to the moog ladder filter,” in Proc. of the 9th Int.
Conference on Digital Audio Effects (DAFx-06), Montreal,
Canada, Sept. 18-20, 2006, pp. DAFx–7–DAFX–12.

[12] A. Novák, L. Simon, F. Kadlec, and P. Lotton, “Nonlinear
system identification using exponential swept-sine signal,”
IEEE Trans. Instrum. and Meas., vol. 59, no. 8, pp. 2220–
2228, 2010.

[13] I. Mezghani-Marrakchi, G. Mahé, S. Djaziri-Larbi, M. Jaï-
dane, and M. T.-H. Alouane, “Nonlinear audio system iden-
tification through audio input gaussianization,” IEEE Trans.
Audio, Speech and Language Processing, vol. 22, no. 1, pp.
41–53, 2014.

[14] S. Möller, M. Gromowski, and U. Zölzer, “A measurement
technique for highly nonlinear transfer functions,” in Proc.
of the 5th Int. Conference on Digital Audio Effects (DAFx-
02), Hamburg, Germany, Sept. 26-28, 2002, pp. DAFx–203–
DAFX–206.

[15] K. Dempwolf, M. Holters, and U. Zölzer, “Analysis and sim-
ulation of an analog guitar compressor,” in Proc. of the 13th

Int. Conference on Digital Audio Effects (DAFx-10), Graz,
Austria, Sept. 06-10, 2010, pp. DAFx–1–DAFX–8.

[16] M. Holters and U. Zölzer, “Physical modelling of a wha-wha
effect pedal as a case study for application of the nodal dk
method to circuits with variable parts,” in Proc. of the 14th

Int. Conference on Digital Audio Effects (DAFx-11), Paris,
France, Sept. 19-23, 2011, pp. DAFx–31–DAFX–35.

[17] O. Kroning, K. Dempwolf, and U. Zölzer, “Analysis and sim-
ulation of an analog guitar compressor,” in Proc. of the 14th

Int. Conference on Digital Audio Effects (DAFx-11), Paris,
France, Sept. 19-23, 2011, pp. DAFx–205–DAFX–208.

[18] F. Eichas, M., M. Holters, and U. Zölzer, “Physical modeling
of the mxr phase 90 guitar effect pedal,” in Proc. of the 17th

Int. Conference on Digital Audio Effects (DAFx-11), Erlan-
gen, Germany, Sept. 01-05, 2014, pp. DAFx–1–DAFX–6.

[19] D. T. Yeh, J. S. Abel, A. Vladimirescu, and J. O. Smith, “Nu-
merical methods for simulation of guitar distortion circuits,”
Computer Music Journal, vol. 32, no. 2, pp. 23–42, 2008.

[20] D. T. Yeh, J. S. Abel, and III J. O. Smith, “Automated phys-
ical modeling of nonlinear audio circuits for real-time audio
effects-part i:theoretical development,” IEEE Trans. Audio,
Speech and Language Processing, vol. 18, no. 4, pp. 728–
737, May 2010.

[21] Udo Zölzer, Digital Audio Effects, John Wiley & Sons,Ltd,
Chicester, West Sussex, UK, second edition, 2011.

[22] Julius O. Smith III, Physical Audio Signal Processing for
Virtual Musical Instruments and Audio Effects, W3K Pub-
lishing, 2010, http://books.w3k.org.

[23] David Roxbee Cox, Principles of Statistical Inference, Cam-
bridge University Press, Cambridge, UK, 2006.

[24] L. Rade and B. Westergreen, Mathematical Hand-
book for Science and Engineering, Springer-Verlag,
Berlin/Heidelberg, Germany, fifth edition, 2004.

DAFX-108



Proceedings of the 19th International Conference on Digital Audio Effects (DAFx-16), Brno, Czech Republic, September 5–9, 2016

SIGNAL-MATCHED POWER-COMPLEMENTARY CROSS-FADING
AND DRY-WET MIXING

Marco Fink∗, Martin Holters, Udo Zölzer

Department of Signal Processing and Communications,
Helmut-Schmidt University Hamburg

Hamburg, Germany
marco.fink@hsu-hh.de

ABSTRACT

The blending of audio signals, called cross-fading, is a very com-
mon task in audio signal processing. Therefore, digital audio work-
stations offer several fading curves to select from. The choice of
the fading curve typically depends on the signal characteristics and
is supposed to result in a mixed signal featuring power and loud-
ness close to the input signals. This work derives a correlation-
based design of the fading curves to achieve exact power consis-
tency to avoid audible fluctuations of the signal’s loudness. This
principle is extended to the problem of mixing original signals with
effect-processed signals using the dry-wet balance. Weighting co-
efficients for dry and wet signals are derived which realize the de-
sired dry-wet balance but maintain the signal power.

1. INTRODUCTION

The convenience and affordability of todays audio processing tools
allows almost any user to work on audio data, especially digitally.
Digital audio workstations (DAWs) offer manifold possibilities for
recording, mixing, arranging, adding effects, mastering, etc. One
of the essential tools within any DAW is the cross-fader which
allows to smoothly blend between separate pieces of audio [1].
A cross-fade is realized by multiplying the signals with fading
curves, as illustrated in Fig. 1, and summing the weighted signals.
Three main applications for the utilization of cross-fading can be
emphasized:

1. Transition between songs:
Many digital audio players allow to cross-fade between the
end of the current song and the beginning of the next song
to achieve smooth transitions and continuous sound. Quite
long transition times of several seconds are applied in gen-
eral.

2. Blend between different tracks or takes:
Oftentimes cross-fading is applied to switch between differ-
ent takes of a recording to combine the best parts of differ-
ent performances of the instrumentalist. Typical cross-fade
times for this application are in the range of 10−30ms [2].
The transition between different recorded tracks or instru-
ments within a song can also be realized using cross-fades,
especially in electronic music.

3. Fading between sources in DJ-ing:
Many DJs artistically recompose elements from recordings
to create new songs. This approach requires cross-fading

∗ The author is now with Ableton and can be contacted using
marco.fink@ableton.com

0 5 10 15 20 25 30

n in ms

x1(n) x2(n)

Figure 1: Exemplary cross-fading of two signals using square-root
fading curves

to blend between sources and beats. In other words, turnta-
bles and mixers can even be considered as the DJs actual
instrument and underlie a continuous evolution [3].

Another application of cross-fading is to blend intact and syn-
thesized concealment audio streams in the context of packet loss
concealment [4, 5]. All mentioned applications share the require-
ment of preserving the signal’s loudness while cross-fading. It
is well-known that the cross-faded signal power depends on the
correlation of the signals to be mixed. Uncorrelated signals are
cross-faded using the so-called Equal Power Crossfade featuring
a −3 dB weighting in the transition center. In contrast, correlated
signals are supposed to be linearly cross-faded corresponding to a
weighting of−6 dB [2, 3]. However, these rules of thumb are very
practically motivated and not perfectly accurate. Therefore, this
work derives fading curves analytically based on the exactly mea-
sured correlation of the signals to be cross-faded to achieve perfect
power preservation. The perfectly power-complementary fading
curves are derived in Sect. 2 based on a simple signal model. The
power preservation property of the proposed design is validated in
Sect. 3. Additionally, Sect. 4 demonstrates that the proposed fad-
ing design can also be utilized in the context of dry-wet mixing
which shares several properties with the problem of cross-fading.
The work is concluded in Sect. 5.

2. CROSS-FADING

The cross-fading of two signals x1(n) and x2(n) of a certain length
N can be described as

xmix(n) = w(n)x1(n) + wi(n)x2(n), n ∈ [0, . . . , N − 1],
(1)
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wherew(n) andwi(n) are the fading and the inverse fading curve.
Assuming signals with the same power and hence same signal vari-
ance

σ2
x = E

[
x21
]
= E

[
x22
]

(2)

and identical mean value

µx = E [x1] = E [x2] = 0 (3)

allows one to estimate the variance of the faded signal

E
[
x2mix

]
= E

[
(w x1 + wi x2)

2] (4)

= E
[
w2x21 + 2wwi x1 x2 + w2

i x
2
2

]
(5)

= w2E
[
x21
]
+ 2wwi E [x1x2] + w2

iE
[
x22
]

(6)

= w2σ2
x + 2wwi Cov(x1, x2) + w2

i σ
2
x. (7)

Expressing the covariance as the product of the signal variances
and the correlation coefficient Cov(x1, x2) = rx1,x2 σ

2
x yields

E
[
x2mix

]
= w2σ2

x + 2wwi rx1,x2σ
2
x + w2

i σ
2
x (8)

= σ2
x(w

2 + 2wwi rx1,x2 + w2
i ). (9)

It is typically desirable that the cross-faded signal features the
same power and hence variance as the input signals

E
[
x2mix

]
= σ2

x(w
2 + 2wwi rx1,x2 + w2

i ) = σ2
x. (10)

Canceling the variance holds

w2 + 2wwi rx1,x2 + w2
i = 1. (11)

In the following, the amplitude ratio of w and wi shall be de-
scribed with the function depending on the normalized time index
α = n

N−1

f(α) =
w(α)

wi(α)
. (12)

Rewriting Eq. (12) to w(α) = f(α)wi(α) and inserting it into
Eq. (11) holds

w2
i (α) =

1

1 + 2 f(α) rx1,x2 + f2(α)
. (13)

Multiple assumptions concerning f(α) can be made:

1. f(0) = 0 since the fading curve w starts with an amplitude
of 0

2. f(1) = ∞ since the inverse fading curve wi ends with an
amplitude of 0

3. f(α) = 1
f(1−α) since the fading curves w and wi are sym-

metric and hence feature the same amplitude in the center
of the curve f(0.5) = 1.

Several functions fulfill these requirements. In the following, the
tangent function ftan(α) = tan(π α

2
) and the function fscl(α) =

α
1−α are utilized and applied in Eq. (13) to hold the inverse fading
curves

wi,tan(α) =
1√

1 + 2 tan(π α
2
) rx1,x2 + tan2(π α

2
)

(14)

=
cos(π α

2
)√

1 + 2 rx1,x2 sin(π α
2
) cos(π α

2
)
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Figure 2: Power-complementary cross-fading curves for different
correlation coefficients

and

wi,scl(α) =
1√

1 + 2 α
1−α rx1,x2 + α2

(1−α)2

(15)

=
1− α√

1− 2 (1− rx1,x2)α (1− α)
.

Correspondingly, the fading curves are derived as

wtan(α) =
sin(π α

2
)√

1 + 2 rx1,x2 sin(π α
2
) cos(π α

2
)

(16)

and
wscl(α) =

α√
1− 2 (1− rx1,x2)α (1− α)

. (17)

From Eq. (16,17) follows that perfectly power-complementary
fading curves can be analytically designed whenever the correla-
tion coefficient

rx1,x2 =

N−1∑
n=0

(x1 − µx1)(x2 − µx2)√
N−1∑
n=0

(x1 − µx1)2
√
N−1∑
n=0

(x2 − µx2)2
. (18)

is computed beforehand. The fading curves are plotted in Fig. 2
for different correlation coefficients. Apparently, the wtan curve
evolves from a sine curve to a slightly S-shaped curve for decreas-
ing correlation values. In contrast, the wscl changes from non-
symmetric S-shaped curve to the linear curve. It should also be
noted that the proposed cross-fading curve design also works flaw-
lessly for negatively correlated signals. Certainly the amplitude
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Figure 3: Power and loudness according ITU BS-1770 of cross-
faded sinusoids featuring different correlation coefficients rx1,x2

of the cross-fading curves increases to compensate the power loss
caused by destructive interference. Cross-fading completely neg-
atively correlated (rx1,x2 = −1) remains an undesirable scenario
since infinite amplification in the transition center is required. How-
ever, cross-fading amplitude-inverted signals is improbable in prac-
tice anyways. Timbral coloration caused by cancellations of spe-
cific signal components remains a typical problem [1].

3. EVALUATION

Two simple experiments shall prove the effectiveness of the pro-
posed fading curves. Two sinusoids of 1 s length featuring the
same frequency ω0 but different phase offsets φ

x1(n) = sin(ω0 n) (19)
x2(n) = sin(ω0 n+ φ), φ ∈ [0, . . . , 2π] (20)

are cross-faded using the linear curve wlin(α) = α, the square-
root curve wsqrt(α) =

√
α, and the curves from Eq. (16,17). The

power of the cross-faded signals is plotted against the correlation
coefficient in Fig. 3a). Using the proposed curves yields constant
power for all values of rx1,x2 whereas the linear and square curve
produce varying power progressions. The linear and square-root
cross-fading is solely power-complementary for fully correlated
(rx1,x2 = 1) and uncorrelated signals (rx1,x2 = 0), respectively.
In addition to the signal power, the loudness according to ITU BS-
1770 [6] was measured and illustrated in Fig. 3b). Basically, the
loudness runs the same trend as the power.

In the following, the experiment shall be repeated using a real-
world signal. An excerpt from the Organ Handel sample of length
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Figure 4: Power and loudness according to ITU BS-1770 of cross-
faded mono-to-stereo converted signals featuring different corre-
lation coefficients rx1,x2

1 s from the SQAM database [7] is processed with the mono-to-
stereo conversion from [8] resulting in two decorrelated signals.
The degree of decorrelation depends on the stereo width parameter
and processing band width. The processing band is set from 50Hz
to 16 kHz whereas the stereo width parameter is varied from 0 to
1. Figure 4 illustrates the power and loudness of the cross-faded
mono-to-stereo converted signals over the corresponding correla-
tion coefficient. In contrast to the first experiment, the power varies
slightly for the proposed fading curves. However, the loudness re-
mains almost constant. Like beforehand, the application of the
linear and square-root curves yield correlation-dependent varying
results with deviations > 1 dB.

Both experiments validate the effectiveness of this novel ap-
proach of power-complementary cross-fading. Fortunately, it is
also useful in the context of dry-wet mixing as shown in the fol-
lowing.

4. DRY-WET MIXING

Involving audio effects to shape the sound of a single or multiple
instruments is a key task of musicians, audio engineers and pro-
ducers. Many effect units offer a so-called dry-wet balance knob
defining the proportion of unprocessed (dry) and processed (wet)
signal in the output. Hence, the resulting mix can be described as
a weighted sum

xmix(n) = gd xd(n) + gw xw(n), (21)
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Figure 5: Power and loudness according to ITU BS-1770 of rever-
berated and original signal mix using different dry-wet balances

of dry signal xd(n) and wet signal xw(n). The relationship of the
weighting coefficients gd and gw defines the dry-wet balance g.
Typically, the dry-wet balance covers the value range from 0 (full
dry) to 1 (full wet). Since the amount of decorrelation added to the
dry signal through the effect processing is typically unknown, one
has to expect power and resulting loudness variations in the mixed
signal for different dry-wet balances similar to the cross-fading
problem of the previous section. The design formulas Eq. (14-17)
can directly be utilized to obtain the weighting coefficients by in-
serting the dry-wet balance g instead of the normalized time index
α as proven by the following experiment.

An excerpt of the SQAMs Guitar Sarasate sample of length
10 s is convolved with the M7 - 3 Rooms 08 Music Room impulse
response of the Samplicity’s Impulse Response Library [9] to re-
alize a reverberation effect. The power and loudness of xmix(n)
is measured for different dry-wet balances g and plotted in Fig. 5.
The dry and wet signal feature a correlation coefficient rxd,xw =
−0.1417. Hence, destructive interferences occur and the power of
the mixed signal is significantly reduced for the linear and square-
root relation of the weighting coefficients. In contrast, obtaining
weighting coefficients with the proposed design results in con-
stant power and almost constant loudness for all dry-wet balances.
However, applying this approach is solely possible for off-line pro-
cessing since the correlation coefficient has to be computed for the
whole signal length before the dry-wet mix is performed and con-
sequently the property of power preservation is solely achieved
in temporal average. Nevertheless, the proposed approach can be
utilized in a real-time application when the cross-correlation coef-
ficient is sample-wise estimated as shown in [10].

5. CONCLUSION

Cross-fading is a key tool in audio editing of whatever form. The
selection of fading curves by audio professionals is mainly based
on experience and hence, is more or less imprecise. This work
analytically derives perfectly power-complementary fading curves
based on the exactly measured correlation of the signals to be
cross-faded. The derivation is based on a simple mixing signal
model and some basic assumptions which are met by most audio
signals. Experiments on synthetic and real-world signals validate
the effectiveness of the fading curve design. The proposed fading
curve design can also be utilized in the context of dry-wet mix-
ing due to similar boundary conditions. An additional experiment
exposes the power-preservation for mixing dry and reverberated
signals for any dry-wet balance using the proposed design.
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ABSTRACT

This paper describes a time-domain algorithm to upmix stereo
recordings for an enhanced playback on a surround sound loud-
speaker setup. It is mainly the simplified version of a previously
published frequency-domain algorithm where the standard short-
time Fourier transform is now replaced by an IIR filter bank. The
design of complementary filter blocks and their arrangement in a
tree structure to form a filter bank are derived. The arithmetic com-
plexity of the filter bank itself and of the complete upmix algorithm
is analysed and compared to the frequency-domain approach. The
time-domain upmix is less flexible in its configuration but achieves
an audio quality comparable to the frequency-domain implemen-
tation at a fraction of its computational cost.

1. INTRODUCTION

Upmixing is a process to generate additional channels when an
audio source is intended to be played back over a setup with more
loudspeakers than source channels. Ideally, a good upmix should
redistribute the input signal to all available loudspeakers provid-
ing an immersive listening experience without compromising the
original character of the stereo track. For example, the azimuth
position of sources in a stereo mix as well as the overall timbre
and spatial character should be preserved.

Most algorithms in this area are based on the same processing
principles applied to a time-frequency-domain representation of
the input signal. The channels of a stereo or multi-channel record-
ing are described as a weighted sum of direct signal sources over-
laid by an uncorrelated ambient signal [1, 2]. First, the azimuth
positions or panning coefficients of the sources are estimated un-
der the assumption that only one dominant source is active at a sin-
gle time-frequency instant. Next, the direct and ambient compo-
nents are separated with the knowledge of the panning coefficients.
Having the separated signals with their related source positions it
is possible to remix the original content considering any different
target loudspeaker configuration.

Other algorithms mainly focus on a direct and ambient signal
separation [3, 4], where [3] is one of the few examples for a time-
domain approach. However, as a normalised least mean squares
(NLMS) method is used to adapt an FIR extraction filter with sev-
eral hundreds of coefficients it is computationally quite demand-
ing. Further examples for time-domain approaches are Dolby Pro
Logic I and II [5] which were widely spread in the consumer area
a decade ago and were optimised for a cost effective implementa-
tion using simple time-domain operations. Basically, only a few
subtractions and additions of the left and right channels with ad-
ditional phase shifts and VCAs (voltage controlled amplifiers) for

simple directional steering are required. But due to full-band pro-
cessing of the input signal the capability to separate multiple con-
current sources is quite limited.

The idea behind the approach presented in this paper and its
derivation is similar to the previous work in [6, 7] but all deriva-
tions are rewritten to yield an equivalent time-domain formulation.
This allows to replace the short-time Fourier transform (STFT),
previously used to create a time-frequency representation of the
input signal, by a non-subsampling filter bank as in [8]. It is build
of complementary IIR filters arranged in a tree structure and allows
a perfect allpass reconstruction. In [2, 7] it was already pointed out
that the STFT spectra resolution could be reduced to Bark bands
without impairments. Hence, a low-resolution filter bank would
be well suited to search for an optimal trade-off between complex-
ity and frequency resolution and to analyse the influence of the
time-frequency resolution on the quality of the resulting upmix.

The underlying stereo signal model and estimation of source
positions as well as the direct and ambient component separation
will be introduced in Sec. 2. Afterwards, the design of the filter
bank is described in Sec. 3 together with an analysis of its arith-
metic complexity. Section 4 shows the application of the proposed
separation in the context of a stereo to multi-channel surround
sound upmix and compares the results with its frequency-domain
counterpart.

2. SIGNAL SEPARATION

2.1. Stereo signal model

The left and right channels of a stereo signal

xL(n) =

[
I∑
i=1

gLi · si(n)

]
+ aL(n) (1)

xR(n) =

[
I∑
i=1

gRi · si(n)

]
+ aR(n) (2)

can be described as a weighted sum of I source signals si(n) and
additive uncorrelated ambient signals aL(n) and aR(n) in the left
and right channel, respectively. The weightings gLi and gRi of the
individual sources are called panning coefficients and are bound
between zero and one. Their squared sum should be equal to one
(g2Li

+ g2Ri
= 1) to achieve a constant power and loudness of a

panned source independent of its current position. By applying a
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filter bank, the signal model

xL(b, k) =

[
I∑
i=1

gLi · si(b, k)

]
+ aL(b, k) (3)

xR(b, k) =

[
I∑
i=1

gRi · si(b, k)

]
+ aR(b, k) (4)

is transformed into a time-frequency representation. The variables
b and k denote the time and band index, whereas b is equal to n for
non sub-sampling filter banks and will be used in the following.

Two simplifications are required to invert the signal model and
to recover sufficient approximations of the source signals and their
panning parameters. First, it is a typical assumption that at a cer-
tain time instant n and in a frequency band k only a single dom-
inant source su is active and the contribution of other sources is
close to zero (

∑
∀i 6=u |si(n, k)| ≈ 0) if the time and frequency

resolution is not too small [9]. This allows to summarise the time-
frequency representations of the individual sources

gL(n, k) · s(n, k) ≈
I∑
i=1

gLi · si(n, k) (5)

into a single source s(n, k) and panning coefficients gL/R(n, k).
Second, the left and right ambient signal can be expected to

sound similar but due to different paths and reflections in the room,
they are decorrelated. Hence, the left and right ambient signals

aL(n) = HAL{a(n)}, aR(n) = HAR{a(n)}

originate from a single ambient signal a(n) which has been modi-
fied by an abstract filter operationH(·). Combining both assump-
tions, a simplified time-frequency signal model

xL(n, k) = gL(n, k) · s(n, k) +HAL{a(n, k)}, (6)
xR(n, k) = gR(n, k) · s(n, k) +HAR{a(n, k)} (7)

with a reduced number of unknowns can be obtained.
If a STFT would be used for the time-frequency transform, the

abstract filter operation in the signal model could be implemented
as a multiplication of A(n, k) with a frequency response

HA(k) = γ(k) · ejφ(k), 0 < γ(k) < 1 (8)
0 < φ(k) ≤ π

consisting of a band-wise magnitude γ(k) and phase φ(k) coeffi-
cient. This leads to a signal model

XL(b, k) = gL(b, k) · S(b, k) +HAL(k) ·A(b, k) (9)
XR(b, k) = gR(b, k) · S(b, k) +HAR(k) ·A(b, k) (10)

in the time-frequency domain. The actual decorrelation filter pa-
rameters are usually not known for general music material and are
difficult to estimate. However, a coarse approximation of a decor-
relation filter response by a random distribution can lead to real-
istically sounding decorrelated signals [10, 11, 12] and was also
successfully used for ambience extraction in [7]. Furthermore,
the desired correlation of the left and right ambient signal can be
nicely adjusted by the phase angle φ where φ = π/2 would yield a
broadband correlation of 0 and with φ = π the resulting ambient
signals are out of phase (correlation is −1).

With a time-domain filter bank, the application of the ambi-
ence decorrelation filters HAL and HAR is not as trivial as in the
frequency-domain. An equivalent time-domain formulation of the
filter in (8) with a corresponding signal model could look like

haL/R
(k) = γ(k) · ±1, 0 < γ(k) < 1 (11)

xL(n, k) = gL(n, k) · s(n, k) + haL(k) · a(n, k) (12)
xR(n, k) = gR(n, k) · s(n, k) + haR(k) · a(n, k) (13)

where the filter is modelled with a band-wise gain γ(k) and a phase
shift of π can be achieved by choosing opposite sign coefficients in
each channel. Other phase shifts would require a time-domain fil-
tering of each sub-band and would impose the problem of inverse
filtering when extracting the direct and ambient signal in Sec. 2.3.

2.2. Estimation of source directions

For typical music mixes the amplitude of the ambient signal a(n, k)
can be assumed to be far less than the amplitude of the direct sig-
nal s(n, k). This also means that the power of the left and right
channels

PxL(n, k) ≈ g2L(n, k) · Ps(n, k) (14)

PxR(n, k) ≈ g2R(n, k) · Ps(n, k). (15)

is mainly depending on the weighted direct signal power. Rear-
ranging and solving equations (14)-(15) with the constraint g2L +
g2R = 1, the panning coefficients

ĝL(n, k) =

√
PxL(n, k)

PxL(n, k) + PxR(n, k)
(16)

ĝR(n, k) =

√
PxR(n, k)

PxL(n, k) + PxR(n, k)
. (17)

can be estimated from the power of the left and right stereo chan-
nels. A simple estimate of the power of a sub-band signal x(n, k)

Px(n, k) = α · Px(n− 1, k) + (1− α) · x(n, k)2 (18)

can be determined by recursive averaging with a coefficient 0 <
α < 1. Other power estimates, in particular with signal adaptive
coefficients, may be investigated in the future and could for exam-
ple improve processing of transients.

The "stereophonic law of sines" [13]

gL − gR
gL + gR

=
sin(θ)

sin(θ0/2)
= −Ψ (19)

describes the perceived angle θ of a source if its amplitude is
weighted by gL/R for playback on a left and right loudspeaker
with an angle θ0 between both. The normalised position index Ψ,
ranging from −1 for left and +1 for right positions, combines the
coefficients gL/R in a single value. From (14)-(15) and (19) one
can derive estimates for the position index and angle

Ψ̂(n, k) =

√
PxR(n, k)−

√
PxL(n, k)√

PxR(n, k) +
√
PxL(n, k)

(20)

θ̂ = arcsin
(

sin(θ0/2) · Ψ̂(n, k)
)

(21)

based on the power of the left and right stereo channel.
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2.3. Direct and ambient signal separation

When the panning coefficients or their estimates from the previous
section are known, the signal model (12)-(13) can be transformed
mathematically to get the direct and ambient signal components

ŝ(n, k) =
haR(k) · xL(n, k)− haL(k) · xR(n, k)

haR(k) · ĝL(n, k)− haL(k) · ĝR(n, k)
(22)

â(n, k) =
ĝL(n, k) · xR(n, k)− ĝR(n, k) · xL(n, k)

ĝL(n, k) · haR(k)− ĝR(n, k) · haL(k)
. (23)

For low-resolution filter banks as used in the upmix application the
random decorrelation filter gains γ(k) from (11) would cause an
audible band-wise panning instead of the desired diffuse decorre-
lation. Hence, the decorrelation filters are set to

haL(k) = 1, haR(k) = −1 (24)

and in this case the extraction formula can be further simplified to

ŝ(n, k) =
xL(n, k) + xR(n, k)

ĝL(n, k) + ĝR(n, k)
(25)

â(n, k) =
ĝL(n, k) · xR(n, k)− ĝR(n, k) · xL(n, k)

ĝL(n, k) + ĝR(n, k)
. (26)

As already pointed out in [6], the above equations are very simi-
lar to a classical mid-side decomposition performed in sub-bands.
The main difference is the weighting with the estimated panning
coefficients to allow proper separation of ambient and direct com-
ponents in case the direct signal is not panned to the center.

3. COMPLEMENTARY FILTERBANK

An IIR filter bank as in [8, 14] is used to create a time-frequency
representation of the input signal. It consists of complementary
filter blocks arranged in a tree structure and additional allpass sec-
tions are inserted to achieve an overall allpass reconstruction prop-
erty. The individual bands will not be downsampled, hence the
reconstruction can be a simple summation of the sub-bands.

3.1. Complementary allpass filter structure

The basic building block of the filter bank is a filter pair F and F̃
which split an input signal into a lower and higher complementary
band. The two filters are power complementary if their transfer
functions satisfy ∣∣∣F (ejω)

∣∣∣2 +
∣∣∣F̃ (ejω)

∣∣∣2 = 1 (27)

and if the sum of the transfer functions additionally yields an all-
pass magnitude response∣∣∣F (ejω) + F̃ (ejω)

∣∣∣ = 1 (28)

they are doubly complementary [15]. Therefore, by summation of
both filter outputs it is possible to recover the input signal except
for a certain phase shift.

The pair of filters could be directly designed with standard
methods allowing for above constraints. However, by decompos-
ing a single filter prototype F in two parallel allpass sections it is
possible to obtain a second complementary output with just one
further subtraction. The detailed derivation can be found in [16]
and will be shortly summarised in the following sections.
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Figure 1: Doubly complementary allpass filter structure (a) with
exemplary magnitude and phase response for a 5th order butter-
worth lowpass (b).

3.1.1. Allpass Decomposition

An IIR filter F (z) can be split into a parallel sum

F (z) =
P (z)

D(z)
=

1

2

(
A1(z) +A2(z)

)
(29)

of two allpass filters A1(z) and A2(z) in case the following re-
quirements are met:

1. the order N of F (z) is odd
2. P (z) is a mirror symmetric polynomial, P (z−1) = zN P (z)

3. F (z) has real coefficients and |F (ejω)| ≤ ∞ (bounded
real transfer function)

This holds true for typical IIR filter designs like Butterworth, Cheby-
shev and elliptic filters. Furthermore, a complementary filter

F̃ (z) =
Q(z)

D(z)
=

1

2

(
A1(z)−A2(z)

)
(30)

can be easily obtained by the difference of the allpass filters as
depicted in Fig. 1. The summed transfer function of a comple-
mentary filter stage formed by (29) and (30)

H(z) = F (z) + F̃ (z) = A1(z) (31)

has the required allpass characteristic. This means that perfect
magnitude reconstruction is possible but the phase shift and group
delay of A1(z) will remain in the reconstructed signal.

The respective order of the allpass sections isN1 = (N−1)/2
and N2 = (N + 1)/2 where N1 + N2 = N . Table 1 gives
an overview of the required instructions per sample for a comple-
mentary allpass filter structure compared to a direct form imple-
mentation with two separate filters. It can be seen that the comple-
mentary filter created with the allpass decomposition requires only
little more than half of the instructions as a direct-form implemen-
tation with two filters.
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Mult. Add. Overall

Compl. Allpass struct. N + 2 2N + 2 3N + 4

2x Direct-Form filters 3N + 1 4N 7N + 1

Table 1: Number of multiplications, additions and overall opera-
tions for a single complementary filter stage per sample.

Figure 2: Alternating selection of poles in the z-plane to create an
allpass decomposition.

3.1.2. Filter design

The general form of the two allpass filters

A1(z) =

N1∏
k=1

z−1 − pk
1− z−1 pk

A2(z) =

N∏
k=N1+1

z−1 − pk
1− z−1 pk

(32)

is fully defined by the knowledge of the poles pk, as the zeros
zk = 1/pk are the inverse of the poles. From (29) and (30) it is
apparent that F (z) or F̃ (z) feature the same poles as the sum or
difference of A1(z) and A2(z). Hence, the poles of the allpass
filters are just subgroups of the poles already contained in F (z).

An algorithm to derive a suitable grouping of the poles from
a filter transfer function F (z) is described in [16] where first the
polynomialQ(z) is determined and then the zeros of P (z)+Q(z)
are calculated. The zeros outside the unit circle will form the first
allpass A1(z) and the zeros inside the unit circle will form the
second allpass A2(z). The algorithm to calculate Q(z) is recur-
sive and requires several polynomial multiplications which may
become numerically unstable for high order filters. In particular
Butterworth designs lead to very small valued coefficient sets and
it may become difficult to find a stable decomposition for filter
orders above 5.

A more simple graphical allpass decomposition is given in
[17] which directly makes use of the poles typically derived in the
IIR design procedure and hence is less prone to numerical errors.
The poles of Butterworth, Chebyshev and elliptic lowpass filters
are placed on an ellipsoid curve inside the unit circle. An alter-
nating separation as depicted in Fig. 2 yields two groups of poles,
whereas the smaller group with (N − 1)/2 poles is assigned to
A1(z) and the remaining (N + 1)/2 poles are assigned to A2(z).

(a) M = 3 filters, 4 output bands

(b) M = 5 filters, 6 output bands

Figure 3: Two exemplary filter bank structures consisting of 3 and
5 complementary filters.

3.2. Filter bank tree structure

In the following, Hk(z) = Yk(z)/X(z) will denote the transfer
function of a filter bank channel k. Overall M complementary
filters Fm(z)/F̃m(z) are used and Am,1(z) and Am,2(z) are the
corresponding allpass decompositions.

The complementary filter stages are cascaded in a tree struc-
ture to successively divide the bands and to create M + 1 outputs.
An exemplary filter bank with 4 outputs and 3 complementary fil-
ters is shown in Fig. 3 a). The additional allpass sections A3,1(z)
and A1,1(z) are required to guarantee an overall allpass transfer
function after summing the sub-band outputs for reconstruction.
For example, when summing the individual output transfer func-
tions without the allpass sections it appears that

H(z) = H0(z) +H1(z) +H2(z) +H3(z)

= F2(z) ·
(
F1(z) + F̃1(z)

)
+ F̃2(z) ·

(
F3(z) + F̃3(z)

)
= F2(z) ·A1,1(z) + F̃2(z) ·A3,1(z),

is not an allpass. However, by adding additional allpass sections
after F2/F̃2 the overall transfer function

H(z) = F2(z) ·A3,1(z) ·A1,1(z) + F̃2(z) ·A1,1(z) ·A3,1(z)

= A2,1(z) ·A1,1(z) ·A3,1(z)

becomes allpass. Another exemplary filter bank structure to yield
six doubly complementary bands is given in Fig. 3 b). If a recon-
struction is not required in the desired application and the filter
bank is only used for signal analysis, the additional allpass sec-
tions can be omitted without altering the power of the sub-band
signals.

More details about the general setup of tree-structured recur-
sive filter banks and in particular about the placement of the ad-
ditional allpass sections to yield allpass reconstruction properties
can be found in [14]. In a summary, the basic rules are:

• The overall transfer function for a bank of M filters is

H(z) =

M∑
k=0

Hk(z) =

M∏
m=1

Am,1(z). (33)
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Mult. Add. Overall

Compl. filters N + 2 2N + 2 M · (3N + 4)

Add. allpass N1 2N1 MA · 3N1

Table 2: Number of multiplications, additions and overall opera-
tions per sample for a filter bank with M filters of order N . MA

denotes the required number of allpass sections for perfect magni-
tude reconstruction.
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Figure 4: Arithmetic complexity for filter banks with 2 analysis and
C synthesis channels compared to an STFT analysis/synthesis.

Hence, the overall group delay only depends on theAm,1(z)
sections and can be minimised by always applying the lower
number of poles to Am,1(z) during the allpass decomposi-
tion.

• It has to be assured that every sub-band signal passes all
possible allpass sections (Am,1(z), m = [1 . . .M ]) on its
way through the filter bank. Missing allpass sections have
to be inserted into the signal path.

• The required number of additional allpass sections can be
minimised with a simple rule: At every branch we have to
add the corresponding allpass sections of all filters in the
opposite branch.

3.3. Arithmetic complexity

The arithmetic complexity in terms of required multiplications and
additions for a filter bank with M filters of order N is given in
Table 2. It can be seen that the complexity linearly increases with
the number of bands and filter order.

The STFT is the standard transform for analysis/synthesis sys-
tems and the question is how it would compare to a filter bank
based approach in terms of arithmetic complexity. The number
of operations to transform a block of length NF with a standard
Cooley-Tukey FFT (radix-2) can be estimated to be in the range
of ∼ 5 log(NF )NF . With a typical overlap of 75 % and real
valued time-domain signals this yields ∼ 10 log(NF ) instructions
per sample and transform.

Figure 4 compares several recursive filter banks and a STFT
variant with a block size of NF = 2048 samples. The complex-
ity of the filter bank analysis/synthesis system is mainly indepen-
dent of the number of output channels as the synthesis is a simple
summation of all sub-bands. In contrast for the STFT, as well as

Figure 5: Stereo to 5 channel upmix.

M MA N Frequencies [Hz]

FB I 3 2 3 220, 1000, 4000

FB II 5 6 3 220, 500, 1000, 2000, 5000

FB III 5 6 5 220, 500, 1000, 2000, 5000

STFT NF = 2048, NH = 512

Table 3: Chosen filter bank parameters.

sub-sampled filter banks, an equal complexity synthesis step is re-
quired and the complexity increases linearly with the number of
synthesis channels. It can be seen that a filter bank may be in par-
ticular advantageous if the application only requires a few bands
with low filter orders but arbitrary frequency resolution and if more
output than input channels are to be generated.

4. UPMIX APPLICATION

The estimated direct signal source positions and the separated di-
rect and ambient signals can be used to create a stereo to surround
upmix following a signal flow as depicted in Fig. 5. The direct
signal is repanned on the front loudspeakers, for example by us-
ing Vector Base Amplitude Panning (VBAP) [18], while the am-
bient signals are added to the corner loudspeakers. To decorrelate
the front from the rear ambient signals, a short delay is included
but it would also be possible to apply more advanced time-domain
decorrelators as described in [19].

4.1. Filter bank configuration

Several combinations of filter order as well as corner frequencies
and number of bands were tested and the corresponding parame-
ters are given in Table 3. The magnitude response for configura-
tion FB II is depicted in Fig. 6 a) and the group delay for all given
configurations is plotted in Fig. 6 b). The coefficient α for the re-
cursive power estimation per sub-band was set to α = 5 · 10−4 in
the following experiments.

It turned out, that the positions estimated from the lowest and
highest band of the filter bank are not reliable as there is too much
overlap of individual sources in these frequency regions. There-
fore, in the following only filter bank outputs 1 up to M − 1 will
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Figure 6: Magnitude response and group delay for several filter
bank configurations.

be processed by the upmix and channel 0 and M will be directly
fed to the front left and right loudspeakers. In the end, this cor-
responds to a band-limiting of the extracted ambient and center
channels.

4.2. Evaluation of estimated positions

It was assumed in Sec. 2.2 that a low power ambient signal will not
influence the estimation of the panning coefficients. However, the
question is how the accuracy of the panning estimation is impaired
if the ambient signal power is increased. To further investigate
this, a single direct signal has been panned to various positions Ψi

and ambience was added with a Large Hall impulse response from
a Bricasti M7 stereo reverb unit. The ambient to direct power ratio
(ADR)

Γ = 10 log10

(
PAL + PAR

PS

)
(34)

describes the ratio between the overall ambient and direct signal
power where

Px =
∑
n

x(n)2

denotes power of a signal x(n). The resulting mean and standard
deviation of the position error

∆Ψi(n, k) = Ψ̂i(n, k)−Ψi (35)

is plotted for several ADR values in Fig. 7 a) and it can be seen that
stronger ambient components directly lead to a higher error. As the
ambient signal has near equal power in the left and right channel
the estimated positions will be biased towards the center and the
error further increases for strongly panned sources. In Fig. 7 b)
the error for Γ = −10 dB is compared between the different fil-
ter bank configurations from Table 3 and also to the STFT based
method from [6]. It is apparent that the error is relatively indepen-
dent of the filter bank configuration. Compared to the STFT based
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Figure 7: Mean and standard deviation of ∆Ψi for various con-
figurations.

position estimation the mean error for strongly panned sources is
higher, however, the standard deviation is considerably lower for
all source positions.

4.3. Ambient signal quality

Although the extracted ambient signals sound realistic they are too
different from the real signals which were added in the mixing
process and a direct comparison, e.g. by error energy, is usually
not significant. Therefore, only signal characteristics can be com-
pared and it is well known that ambient signals should be diffuse
and decorrelated to create an immersive sound field. The diffuse-
ness and uniformity of an ambient signal can be measured by inter-
channel cross-correlation (ICC) and inter-channel level differences
(ICLD), whereas for real ambient signals both are observed to be
close to zero. With a high-resolution frequency-domain imple-
mentation it is possible to apply versatile decorrelation filters with
little effort as described in detail in [7]. With a low-resolution filter
bank this is not feasible and with the simple filters as in (24) the
left and right ambient signals are just phase-inverse copies of each
other. Hence, the ICC is −1 and the ICLD is 0. Listening to the
isolated ambient sound field, the out of phase character creates an
impression of width but it can also evoke unpleasant cancellation
artefacts in particular during head movements. This is the main
difference to the frequency-domain implementation [7] where the
resulting ICC was freely adjustable.

4.4. Arithmetic complexity

A detailed analysis of the arithmetic complexity of the frequency-
domain upmix algorithm was done in [7] and the numbers in Ta-
ble 4 a) are based on these findings. However, for a fair compari-
son with the simplified time-domain approach, the ambient decor-
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relation filters in the frequency-domain were set to HAL(k) = 1
and HAR(k) = −1 according to (24) and no further decorrelation
between front and rear channels is applied. This partly reduces the
arithmetic complexity of the direct and ambient decomposition.

A corresponding analysis of the arithmetic complexity of the
filter bank based upmix algorithm is given in Table 4 b). As ex-
pected, the base cost for analysis and synthesis is drastically re-
duced for typical filter bank configurations. In contrast, the num-
ber of operations required for the upmix processing has increased
as all sub-bands are processed at full rate. Processing an upmix
from stereo to 5-channel surround in the frequency-domain re-
quires about 38 MFlops, whereas the corresponding time-domain
variant with a low-resolution filter bank is in a range between 8
and 20 MFlops. This could be further reduced by a lowered up-
date rate of the estimated positions and repanning coefficients but
was out of the scope of this study due to the large amount of pos-
sible solutions and parameters.

It has to be noted that highly optimised FFT implementations
(e.g. the FFTW library1) are widely available and can easily re-
duce the processing time for a transform by a factor of three up to
five. Of course, similar optimization strategies like code vectori-
sation could be applied to the filter bank. But as no ready to run
solutions are available this would require a comparably high effort
and programming expertise.

4.5. Discussion

Informal listening tests confirm that the generated 5-channel sur-
round upmix is convincing and works well with typical commer-
cial studio music recordings. Compared to the stereo input, the
source positions are well retained and no timbral coloration or
other artefacts are audible. The center loudspeaker successfully
stabilises the front image, in particular for listeners outside of the
sweet spot and the out of phase artefacts observed with the isolated
ambient signal are masked by the usually quite strong direct signal
and are not annoying. However, in a direct A/B comparison with
the STFT based frequency-domain upmix it is possible to spot sub-
tle differences. The ambient signal is weaker and does not create a
sound field as diffuse as experienced from the STFT approach.

First tests with discrete stereo microphone recordings showed
good results for coincident microphone arrangements. In contrast,
with non-conincident microphone setups a proper estimation of
directions and a separation of direct and ambient components is
not possible at the same quality. The reason is that phase shifts are
introduced in the direct signals between both channels violating
the basic signal model assumptions in Sec. 2.1.

Overall, the time-domain implementation upmix offers obvi-
ous benefits compared to a simple stereo playback even with the
lowest resolution filter bank FB I. The actual configuration of the
filter bank does not seem to have a strong influence on the results.
More important seems the fact that low and high frequency con-
tent is separated by the filter bank and will not interfere with the
estimation in the important mid frequency regions.

Another interesting aspect is the filter bank group delay of less
than 5 ms which is quite low compared to the blocking delay of a
STFT based analysis and synthesis. A STFT configuration with a
block size NF = 2048 at 44.1 kHz sample rate would yield about
46 ms delay. Therefore, the time-domain upmix is well suited for
real-time applications and implementations on low-cost stream-

1http://www.fftw.org/

based DSPs where no block-based processing is possible or FFT
implementations are not available.

5. CONCLUSION

The goal of this study was to develop a low-complexity time-
domain upmix algorithm. First, an equivalent time-domain for-
mulation to a previously described frequency-domain method for
estimation of source positions and separation of direct and ambient
signal components has been derived. A filter bank is then used to
create a time-frequency representation of the input signal and its
design based on complementary IIR filters is described.

The arithmetic complexity of the filter bank and the filter bank-
based upmix is compared to a STFT based approach. The time-
domain variant is less flexible in its possible configurations but
achieves an audio quality comparable to the frequency-domain ap-
proach at a fraction of computational cost. This makes it in par-
ticular well suited for low-cost and sample-by-sample DSP im-
plementations where no highly optimised FFT implementation is
available or for low-delay applications.

Sound examples of both the frequency-domain and time-domain
approach can be found on the website of the department2.
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a) Frequency Domain

Operations per block

ADD MULT SQRT Overall (2→ C)
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ABSTRACT
The use of the bandlimited ramp (BLAMP) function as an an-
tialiasing tool for audio signals with sharp corners is presented.
Discontinuities in the waveform of a signal or its derivatives re-
quire infinite bandwidth and are major sources of aliasing in the
digital domain. A polynomial correction function is modeled after
the ideal BLAMP function. This correction function can be used to
treat aliasing caused by sharp edges or corners which translate into
discontinuities in the first derivative of a signal. Four examples of
cases where these discontinuities appear are discussed: synthesis
of triangular waveforms, hard clipping, and half-wave and full-
wave rectification. Results obtained show that the BLAMP func-
tion is a more efficient tool for alias reduction than oversampling.
The polynomial BLAMP can reduce the level of aliasing compo-
nents by up to 50 dB and improve the overall signal-to-noise ratio
by about 20 dB. The proposed method can be incorporated into
virtual analog models of musical systems.

1. INTRODUCTION

Nonlinear audio processing introduces frequency components that
are not present in the original input signal. When the frequen-
cies of these components exceed half the sampling rate, or Nyquist
limit, they are reflected into the baseband through aliasing [1, 2].
Aliasing distortion can cause audible disturbances, such as beating
and inharmonicity, and affect the overall performance of an audio
system [3, 1]. In fields such as virtual analog modeling of musi-
cal systems, the aim is to emulate the harmonic distortion intro-
duced by analog systems while avoiding aliasing distortion [4, 2].
Therefore, it is of great importance to find efficient algorithms that
minimize its effect.

A well known previous approach to avoiding aliasing in non-
linear audio processing is oversampling [4, 5, 6, 7]. In oversam-
pling, the input signal is upsampled prior to processing (typically
by a low factor) and downsampled back to the original rate after
processing. This approach requires access to the original unpro-
cessed signal and, ideally, some knowledge on the order of the
nonlinear processing stage. In oversampling, the added compu-
tational costs will depend on the oversampling factor and order
of the filters used for its implementation. Other techniques avail-
able to avoid aliasing in nonlinear processing include the harmonic
mixer [8] and reducing the order of the nonlinearity [5]. The lat-
ter approach can also be used in distortion synthesis of classical
oscillator waveforms [9].

Signal processing operations that introduce discontinuities in
the waveform of a signal or its derivatives are major sources of
∗ The work of F. Esqueda is funded by the Aalto ELEC Doctoral School.
† The work of S. Bilbao is supported by the European Research Council,

under grant number ERC-StG-2011-279068-NESS.

aliasing. These discontinuities require infinite bandwidth to be
represented in the digital domain. Attempting to sample them triv-
ially will inevitably introduce aliasing distortion [10, 11]. When
a discontinuity is introduced in the first derivative of a signal, a
sharp edge or corner is introduced in the actual waveform.

Previous work on alias-reduced synthesis of oscillator wave-
forms has introduced the concept of quasi-bandlimiting discon-
tinuities found in the waveform [12, 11, 13]. This work further
explores this idea by presenting the use of the bandlimited ramp
(BLAMP) function to treat any discontinuities found in the first
derivative of a signal. This is achieved by quasi-bandlimiting the
corners found in the waveform of a signal. The BLAMP func-
tion was originally proposed for synthesis of alias-free triangular
waveforms [14, 11]. We derive a polynomial approximation of
the BLAMP function, or polyBLAMP, which leads to an efficient
implementation. Four examples of audio-specific scenarios where
corners appear in the waveform of a signal are discussed: syn-
thesis of triangular oscillator waveforms, hard clipping, half-wave
and full-wave rectification. Results obtained demonstrate that the
polyBLAMP method can effectively reduce the aliasing caused by
these corners and the discontinuities they introduce.

This paper is organized as follows. Section 2 derives the an-
alytical form of the BLAMP correction function. Section 3 dis-
cusses the computational costs of the BLAMP function and presents
the derivation of its polynomial approximation. In Section 4, the
performance of the method is evaluated by considering four appli-
cations. Finally, concluding remarks appear in Section 5.

2. INTEGRATED BANDLIMITED FUNCTIONS

Analog signals with discontinuities in their waveforms have infi-
nite frequency content and must be bandlimited to less than half
the Nyquist limit prior to sampling to avoid aliasing. The full-
band nature of discontinuous signals can be observed, for instance,
by considering the Fourier series (FS) expansion of a rectangular
pulse. The FS for this signal consists of an infinite sum of odd
sinusoidal components, with the amplitude of the kth harmonic
defined as 1/k of the first harmonic or fundamental.

We can model a single discontinuity in the continuous-time
domain using the Heaviside unit step function, which is defined as

u(t) =

{
0 t < 0
1 t ≥ 0,

(1)

where t is time. This function jumps from 0 to 1 at t = 0 and is
used in system analysis to measure the step response of a system.

In this work we are concerned with aliasing caused by discon-
tinuities occurring not in the waveform of a signal, but in its first
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Figure 1: Time-domain waveform of the (a) impulse, (b) bandlim-
ited impulse, (c) Heaviside unit step, (d) BLEP, (e) ramp, and (f)
BLAMP functions. Parameter T is the sampling period.

derivative. Therefore, we model a discontinuity in the first deriva-
tive by evaluating the integral of the Heaviside function (1) as∫ t

−∞
u(τ)dτ = tu(t) = r(t). (2)

Equation (2) is known in the literature as the ramp function [15].
It is characterized by the sharp corner that occurs at t = 0 when
the function starts to linearly increase.

Signals with discontinuities in their first derivative also have
infinite frequency content. One example of this is the triangular
waveform, which can be represented using the FS as an infinite
sum of odd sinusoidal components. In this series, harmonics decay
at a steeper rate than in the case of the rectangular pulse, with
the amplitude of the kth harmonic given by 1/k2 with respect to
the fundamental. In the digital domain, this steeper decay means
that the level of aliasing introduced during trivial, non-bandlimited
sampling of a sharp corner will be lower than that introduced in
discontinuous signals. Nevertheless, when working at audio rates
(e.g. 44.1 kHz) the effects of this aliasing may still be perceived,
particularly at high fundamental frequencies. Section 4.1 further
expands on the issue of aliasing in triangular waveforms.

In order to derive a correction function that can reduce the
aliasing introduced by trivial sampling of sharp corners we need
to take one step back and evaluate the derivative of the Heaviside
unit step function with respect to time. This derivative is defined
as the Dirac delta function [15], so that

du(t)
dt

= δ(t). (3)

Figures 1(a), 1(c) and 1(e) show the continuous-time domain
waveforms for the Dirac delta (represented by a single impulse),
Heaviside unit step, and ramp functions, respectively. From these
waveforms it should become evident that the size of the discontinu-
ity introduced in the first derivative by a sharp corner will depend
on the slope of the signal at this corner.

Time (s)

-8T -6T -4T -2T 0 2T 4T 6T 8T

0

1/π
2

Figure 2: BLAMP residual function is the difference of the BLAMP
and trivial ramp functions. Cf. Figs. 1(f) and 1(e).

The delta function has a flat unity spectrum, so its bandlimited
form can then be obtained by evaluating the inverse Fourier Trans-
form (FT) of an ideal brickwall lowpass filter [16], which yields

h(0)(t) = fssinc(fst), (4)

where fs represents the sampling rate and sinc(x) = sin(πx)/πx.
Figure 1(b) shows the waveform for this expression.

Following our previous logic, we can derive a bandlimited ex-
pression for the ramp function (2) by integrating (4) twice. The in-
tegral of the bandlimited unit impulse yields the closed-form equa-
tion for the bandlimited step (BLEP) function [11], expressed as

h(1)(t) =
1

2
+

1

π
Si(πfst), (5)

where Si(x) is the sine integral, defined as Si(x) =
∫ x
0

sin(t)
t

dt.
Previous work in the field of alias-free synthesis of rectangular
and sawtooth oscillators has focused on using this expression to
bandlimit the inherent discontinuities of these waveforms [17, 11,
18]. Figure 1(d) shows the shape for this function.

Moving on, (5) can be integrated once more using integration
by parts, yielding

h(2)(t) = t

[
1

2
+

1

π
Si(πfst)

]
+

cos(πfst)

π2fs
(6)

= th(1)(t) +
cos(πfst)

π2fs
. (7)

This equation gives the closed form expression for the BLAMP
function with unit slope, and its shape is shown in Fig. 1(f). At first
glance, Figs. 1(e) and 1(f) may appear indistinguishable. How-
ever, computing the difference between (7) and (2) quickly proves
otherwise, as shown in Fig. 2. This function is referred to as the
BLAMP residual function in this study.

In the discrete-time domain, the BLAMP residual can be used
to reduce the aliasing caused by a discontinuity in the first deriva-
tive by adding it to every sharp edge in the waveform. The first
step of this process involves centering the residual function at the
exact points in time where the edges occur and sampling it at the
nearest integer sample points. These sampled values must then be
scaled by the magnitude and direction (i.e. rising or falling edge)
of the discontinuity introduced in the first derivative of the signal.
The magnitude parameter, as previously stated, can be computed
from the slope of the signal at the edge.

3. POLYNOMIAL BLAMP APPROXIMATION

The analytic expression for the BLAMP residual function has two
limitations. First, its implementation is computationally expensive
due to the presence of the sine integral function. Secondly, the
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Figure 3: (a) Cubic B-spline basis function, (b) its first integral,
(c) its second integral or polyBLAMP approximation and (d) the
polyBLAMP residual, i.e., the difference between the polyBLAMP
and the trivial ramp functions.

function does not have finite support, it does not vanish. There-
fore, its truncation to a finite interval introduces small discontinu-
ities which will produce further aliasing. Both issues can be ad-
dressed by storing a windowed precomputed portion of the func-
tion in a lookup table. This approach is sometimes used in practi-
cal implementations of the BLEP method [17, 12, 18]. In general,
the effectiveness and efficiency of a table-based implementation
will depend on several variables, including table size, interpola-
tion method used (if any) and type of window.

In this work, we instead propose the use of a B-spline poly-
nomial approximation of the BLAMP function (the polyBLAMP)
which can be implemented with minimal computational costs. This
polyBLAMP function can correct four samples, two on each side
of every sharp edge in the waveform. The four-point polyBLAMP
function is derived by first approximating the bandlimited impulse
(3) as a piecewise polynomial using the coefficients for the third-
order B-spline basis function and following the same steps detailed
in the previous section [i.e. integrate twice and subtract (2)]. B-
spline interpolating polynomials have been used in this study due
to their steep spectral decay which makes them suitable for an-
tialiasing applications [19, 11].

Before moving on to the derivation of the polyBLAMP, we
first consider that, in practice, the exact sample points at which the
sharp edges occur in a signal (i.e. the points where the derivative
of the signal is discontinuous) will most likely not coincide with
the sampling intervals of the system and must be estimated. In the
four-point case, the process of centering the correction function
around a set of four samples can be seen as equivalent to delaying
it by D = Dint + d samples, where Dint = 1, and d ∈ [0, 1) is the
fractional delay.

The coefficients for the B-spline basis function can be ex-
pressed in terms of delay D using the four polynomials shown
at the top of Table 1. These polynomial coefficients are derived
via the iterative convolution of a rectangular pulse, and the re-
sulting waveform can be seen in Fig. 3(a). From this figure, that

Table 1: Third-order B-spline basis functions, its first integral
(polyBLEP), its second integral (polyBLAMP), and polyBLAMP
residual (1 ≤ D < 2 and 0 ≤ d < 1) [20].

Span Third-order B-spline basis function
[−2T,−T ] D3/6−D2/2 +D/2− 1/6

[−T, 0] −D3/2 + 2D2 − 2D + 2/3

[0, T ] D3/2− 5D2/2 + 7D/2− 5/6

[T, 2T ] −D3/6 +D2 − 2D + 4/3

Span First integral: Four-point polyBLEP
[−2T,−T ] D4/24−D3/6 +D2/4−D/6 + 1/24

[−T, 0] −D4/8 + 2D3/3−D2 + 2D/3− 1/6

[0, T ] D4/8− 5D3/6 + 7D2/4− 5D/6 + 7/24

[T, 2T ] −D4/24 +D3/3−D2 + 4D/3 + 1/3

Span Second integral: Four-point polyBLAMP
[−2T,−T ] D5/120−D4/24 +D3/12−D2/12 +D/24− 1/120

[−T, 0] −D5/40 +D4/6−D3/3 + 2D2/3−D/6 + 1/30

[0, T ] D5/40− 5D4/24 + 7D3/12− 5D2/12 + 7D/24− 1/24

[T, 2T ] −D5/120 +D4/12−D3/3 + 2D2/3 +D/3 + 4/15

Span Four-point polyBLAMP residual
[−2T, T ] d5/120

[−T, 0] −d5/40 + d4/24 + d3/12 + d2/12 + d/24 + 1/120

[0, T ] d5/40− d4/12 + d2/3− d/2 + 7/30

[T, 2T ] −d5/120 + d4/24− d3/12 + d2/12− d/24 + 1/120

loosely resembles the central lobe of the bandlimited impulse [see
Fig. 1(b)], we can observe the characteristic bell-shaped curve of
B-spline interpolators. Integrating this basis function once yields
the B-spline polynomial form of the BLEP function (known as the
polyBLEP [12, 11]), and integrating once more results in the four-
point polyBLAMP function [20]. The polynomials for these two
functions and their corresponding waveforms are shown in Table
1, and Figs. 3(b) and 3(c), respectively. Finally, the bottom four
rows of Table 1 show the piecewise polynomial coefficients for
the polyBLAMP residual evaluated by substituting D = d + 1
and computing difference between the polyBLAMP and the ramp
function. A two-point version of the polyBLAMP function can be
found in [21]. However, due to its superior performance, this work
focuses solely on the four-point method.

Expressing the four-point polyBLAMP residual function in
terms of the fractional delay d required to center it around a sharp
edge simplifies the procedure of sampling it at the four neighbor-
ing sample points. Therefore, parameter d must be estimated to
a certain degree of accuracy. First, we consider s[n] to be the
discrete-time signal to be antialiased, where n ∈ Z≥0 is the sam-
ple index. Next, we define na and nb as the sample indices of the
signal before and after an edge, i.e. the corner boundaries. For ev-
ery edge in the waveform, sample points na− 1, na, nb and nb +1
will be processed by the algorithm. The aim is to fit a polynomial
of the form f(D) = aD3 + bD2 + cD + e to the signal s[n] at
these four points. Lagrange interpolation can be used to find the
closed form expressions for coefficients a, b, c, and e. Since the
data points are evenly spaced, these coefficients can be written as

a = − 1
6
s[na − 1] + 1

2
s[na]− 1

2
s[nb] +

1
6
s[nb + 1]

b = s[na − 1]− 5
2
s[na] + 2s[nb]− 1

2
s[nb + 1]

c = − 11
6
s[na − 1] + 3s[na]− 3

2
s[nb] +

1
3
s[nb + 1]

e = s[na − 1]. (8)

After fitting the polynomial, the next step is to obtain the inter-
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section of this curve with ρ, the corner parameter. The value of ρ
will depend on the particular application. For instance, for corners
caused by rectification we need to find the zero-crossings of the
polynomial, thus ρ = 0. Further details on how this parameter is
adjusted for each application are given in Sec. 4. This inverse in-
terpolation problem is equivalent to solving the following equation
for D:

aD3 + bD2 + cD + e− ρ = 0. (9)

A solution can be estimated using Newton-Raphson’s (NR) itera-
tive method [20], defined as

Dq+1 = Dq −
f(Dq)

f ′(Dq)
, (10)

where q = 0, 1, 2, ..., Q− 1, and Q is the number of iterations re-
quired for the ratio f(Dq)/f ′(Dq) to become small enough to be
neglected, and D0 is an initial guess [22]. Since the solution to (9)
will range between [1,2) due to the restriction onD, an appropriate
initial guess would be D0 = 1.5.

We can then estimate the point where the discontinuity in the
first derivative occurs as

Dq+1 = Dq −
aD3

q + bD2
q + cDq + e− ρ

3aD2
q + 2bDq + c

. (11)

The resulting value DQ represents the fractional delay associated
with a sharp edge or corner. The slope at this point is obtained as
a byproduct of the NR method, which is given as

µ(DQ) = 3aD2
Q + 2bDQ + c. (12)

Finally, the value of d can be computed as d = DQ − 1. This
represents an estimated sharp edge at na + d, i.e. s[na + d] = ρ.

4. POLYBLAMP APPLICATIONS

This section shows how the polyBLAMP correction method can
be applied for antialiasing in four audio applications where dis-
continuities appear in the first derivative of the signal waveform.

4.1. Alias-Free Triangular Oscillator

The first application considered in this study is the synthesis of an-
tialiased triangular oscillator waveforms. This type of geometric
waveform is commonly used as a source signal in subtractive syn-
thesis due to its rich harmonic content. As mentioned in Sec. 2, the
triangular waveform is composed of odd harmonics only and has
the perceptual attribute of being smoother to the ears than sawtooth
and rectangular waveforms. This characteristic can be attributed to
the steep spectral decay of its harmonics, which decay at a rate of
about −12 dB per octave (the spectrum of sawtooth and rectan-
gular waveforms decays at a rate of about −6 dB per octave) [3].
This steep spectral decay rate is associated with the discontinuity
in its first derivative [10].

Fig. 4(a) shows the continuous-time domain waveform for four
periods of a triangular oscillator with fundamental frequency f0
and period T0 = 1/f0. Computing the first derivative of this sig-
nal results in the square signal shown in Fig. 4(b). The peak-to-
peak amplitude of this resulting waveform is determined by 2µ,
where µ is the absolute value of the slope of the rising and falling
portions of the signal. Since the slope of the falling section is the
negative of the slope of the rising section, the signal in Fig. 4(a) is
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Figure 4: (a) Continuous-time triangular waveform with arbitrary
fundamental frequency f0, (b) its first and (c) second derivatives.

formally known as the symmetrical triangular waveform. Finally,
evaluating the derivative of Fig. 4(b) yields the alternating impulse
train shown in Fig. 4(c).

In theory, an alias-free discrete-time implementation of the tri-
angular waveform can be achieved by replacing the impulses seen
in Fig. 4(c) with (4) (note that the polarity of every second pulse
has to be inverted) and integrating the function twice [16]. Due
to the infinite nature of the bandlimited impulse (4) and the diffi-
culties associated with performing the double integration, this ap-
proach is impractical. Instead, we propose adding the four-point
polyBLAMP residual function to the actual waveform at the exact
points where the impulses would appear in the second derivative,
i.e. at the corners. The residual function has to be scaled by 2µ
and inverted for positive edges of the waveform [see Fig. 4(c)].

Since this is a synthesis application of the polyBLAMP method,
there is no need to estimate the fractional points at which the edges
occur or the slope of the signal at those points; these two parame-
ters are readily available. To implement the proposed method we
first synthesize a trivial triangular waveform using a bipolar mod-
ulo counter φ[n] that switches its direction every time it reaches
+1 or−1 [23]. The fractional delay d associated with each corner
can be computed every time the polarity of the counter is inverted
as

d = (Tφ − φ[n])/Tφ, (13)

where Tφ = 2f0/fs is the phase step size. The slope parameter is
given by |µ| = 2Tφ.

Fig. 5 shows the waveform and spectrum for a 1661-Hz (MIDI
note A6) trivial triangular waveform sampled at 44.1 kHz without
and with four-point polyBLAMP correction. These results show
that the corrected signal is virtually alias-free below approx. 12 kHz.
Due to the inherent steep spectral decay of B-spline polynomi-
als, the polyBLAMP method introduces a frequency droop of ap-
prox. −12 dB. This droop begins after the 10 kHz mark and, if
necessary, can be compensated using a shelving EQ filter [11].
However, due to it only affecting high frequencies, it can be ne-
glected in most applications. One convenient property of the B-
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Figure 5: Waveform and magnitude spectra of a (a)-(b) 1661.2-Hz
trivial triangle wave, and (c)-(d) the same signal after four-point
polyBLAMP correction. Circles indicate non-aliased components.

spline polyBLAMP method is that it preserves the original range
of signal values, as the correction is performed “inwards”, so to
speak.

Several methods to synthesize triangular waveforms with re-
duced aliasing have been proposed. Stilson et al. initially sug-
gested double integration of a bipolar bandlimited impulse train
(BLIT) [16, 19]. Välimäki et al. developed a more efficient ap-
proach using a differentiated parabolic waveform (DPW) [24]. This
approach was later optimized for synthesis of triangle waveforms
by Ambrits and Bank [13] using efficient polynomial transition
regions (EPTR). The EPTR method was used as a reference to
evaluate the performance of the proposed polyBLAMP method.

The signal-to-noise ratio (SNR) of the A6 triangular wave-
form was measured with and without polyBLAMP correction. In
this context, SNR was defined as the power ratio between har-
monics and aliasing components. To show the limits of the pro-
posed method, a second measurement was performed on a 4168-
Hz (MIDI note C8) signal. This frequency represents the high-
est fundamental frequency on a piano. For further evaluation, the
SNRs obtained using oversampling by factors 2 and 4 were also
computed. The top two rows of Table 2 show the results obtained
from these measurements. The polyBLAMP method exhibits re-
sults comparable to oversampling by 4 at a fraction of the com-
putational costs. Additionally, the resulting SNRs for the EPTR
algorithm were 54 dB and 43 dB for the A6 and C8 signals, re-
spectively.

In terms of computational costs, the top row of Table 3 shows
the average synthesis times for a 1-second C8 triangular signal us-
ing oversampling by 2 and 4, the EPTR method and the four-point
polyBLAMP. These results were obtained by porting the algo-
rithm into Python and using the time function. The polyBLAMP
method yielded the fastest processing times.

Table 2: SNR measurements in dB for test signals of 1661 Hz (A6)
and 4186 Hz (A8). The best SNR on each row is bolded.

Signal Triv. OS polyBLAMP
by 2 by 4

Triangular A6 42 dB 52 dB 56 dB 54 dB
Triangular C8 30 dB 42 dB 46 dB 45 dB
Clipping A6 34 dB 42 dB 43 dB 57 dB
Clipping C8 24 dB 34 dB 38 dB 42 dB

Half-W. Rec. A6 40 dB 43 dB 44 dB 61 dB
Half-W. Rec. C8 28 dB 36 dB 38 dB 48 dB
Full-W. Rec. A6 32 dB 40 dB 41 dB 53 dB
Full-W. Rec. C8 20 dB 28 dB 30 dB 39 dB

4.2. Alias-Free Hard Clipping

Hard clipping is another example of an audio application where
discontinuities in the first derivative of a signal are introduced [20].
Signal clipping is a form of distortion that limits the values of a sig-
nal that lie above or below a predetermined threshold. Symmetric
hard clipping can be expressed as

fc(x[n]) = sgn(x[n])min(|x[n]| , L), (14)

where x[n] is the input signal, sgn(·) is the sign function, and
L ∈ (0, 1] is the normalized clipping threshold. In practice, signal
clipping may be necessary due to system limitations, e.g. to avoid
overmodulating an audio transmitter. In discrete systems, it can
be caused unintentionally due to data resolution constraints, or in-
tentionally as when simulating an analog system in which signal
values are saturated [25].

Fig. 6(a) shows the continuous-time clipped f0-Hz sinusoid
with clipping threshold L = 0.7 (solid line) together with the
original sine wave (dashed line). Following the same approach
as in the previous subsection, we evaluate the first derivative of
this signal and observe that this derivative presents discontinuities
at the exact points in time where it enters or leaves a saturation
[see Fig. 6(b)]. Further derivation of this signal yields the wave-
form shown in Fig. 6(c), which contains impulses whose polarities
depend on the direction of the observed discontinuities.

Implementation of the four-point polyBLAMP correction on
an arbitrary input signal requires a polynomial to be fit to the four
corner boundaries as described in Sec. 3. Then, the NR method can
be used to estimate parameters d and µ by substituting ρ = ±L in
(11). The polarity of ρ will depend on the polarity of the clipping
point being corrected, as shown in Fig. 6(c). Fig. 7 shows the

Table 3: Averaged computation time (in ms) for oversampling by
factors of 2 and 4, the EPTR, and 4-point polyBLAMP methods.

Oversampling EPTR polyBLAMP
Signal by 2 by 4

Triangular C8 36 ms 72 ms 45 ms 18 ms
Clipping C8 46 ms 102 ms - 43 ms

Half-W. Rect. C8 40 ms 89 ms - 18 ms
Full-W. Rect. C8 41 ms 90 ms - 28 ms
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Figure 6: (a) Continuous-time f0-Hz sinusoid hard-clipped with
clipping threshold L = 0.8, (b) its first and (c) second derivatives.

waveform and magnitude spectra for a 1661-Hz sinusoid clipped at
L = 0.3 before and after four-point polyBLAMP correction. Once
again, the corrected signal exhibits improved performance in terms
of aliasing. For instance, the level of the most prominent aliasing
component below the fundamental, at 720 Hz has been attenuated
by 43 dB. As before, the clipping threshold is preserved after the
correction, since the polyBLAMP method does not introduce any
overshoot in the time domain.

Rows 3 and 4 of Table 2 show the SNRs measured for two si-
nusoidal signals (MIDI notes A6 and C8) trivially-clipped, using
oversampling by factors 2 and 4, and after four-point polyBLAMP
correction. All these measurements were performed using a clip-
ping threshold L = 0.3. In this application, the four-point poly-
BLAMP method also exhibits better performance than oversam-
pling by low factors, with SNR improvements of 22.6 and 17.4 dB
for each respective signal. In terms of computational costs, the
polyBLAMP method shows similar costs to those of oversampling
by factor 2 but with improved SNR (see Tables 2 and 3).

As a final note on hard clipping, Fig. 6(c) shows that the sec-
ond derivative of the signal has discontinuities around each im-
pulse. These discontinuities, while small, will contribute to the
overall aliasing seen at the output of the clipper. Integrating the
BLAMP or polyBLAMP function should, in theory, yield a cor-
rection function that further reduces aliasing. This idea is not ex-
plored any further in this study and is left as future work.

4.3. Alias-Free Half-Wave Rectification

Signal rectification is a type of memoryless nonlinear processing
that can be used to introduce harmonic distortion. In a half-wave
rectifier, only positive portions of the waveform are kept, while
negative portions are set to zero

fr(x[n]) = max(x[n], 0). (15)

In analog applications, this can be achieved using a diode, which
only allows current to flow in one direction. A particular feature of
half-wave rectification is that it introduces even harmonics only.
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Figure 7: Waveform and magnitude spectra of a (a)-(b) 1660-Hz
trivial hard-clipped sine wave (L = 0.3), and (c)-(d) the same
signal after four-point polyBLAMP correction.

Figs. 8(a) and 8(b) show the continuous-time domain wave-
form for a half-wave rectified sine wave and its first derivative,
respectively. As expected, the corners introduced by the rectifier
translate into discontinuities in the derivative. The magnitude of
each discontinuity is determined by the slope µ of the original sig-
nal at the zero-crossings. Derivating this signal once more yields
the positive impulse train depicted in Fig. 8(c).

The polyBLAMP method can be used to round the corners
seen in Fig. 8(a) by centering it at the zero crossings. Parameters d
and µ can be estimated by replacing ρ = 0 in (9) and (11). This is
equivalent to finding the zero-crossings of the input signal. Fig. 9
shows the waveforms and magnitude spectra for a 1660-Hz sinu-
soid without and with polyBLAMP correction. In this example,
the removal of the spurious frequency components is evident, with
aliases below the fundamental are attenuated by more than 40 dB.
Rows 5 and 6 of Table 2 show the proposed method outperforms
oversampling by 2 and 4, and increases SNR by more than 20 dB
with respect to a trivial implementation of half-wave rectification.
In terms of computational costs, this implementation is cheaper
than oversampling by a factor 2, as shown in Table 3.

4.4. Alias-Free Full-Wave Rectification

In full-wave rectification, negative portions of the waveform are
not zeroed, but inverted, for example by taking the absolute value:

fR(x[n]) = |x[n]| . (16)

This process introduces both even and odd harmonics. Several
analog audio effects incorporate a full-wave rectifier as part of a
larger signal processing chain, such as the Octavio Fuzz pedal [26].
It can also be found as a stand-alone effect in modular synthesizer
units, e.g. the Malekko 8NU8R [27].

Fig. 10(a) shows the continuous-time waveform for a rectified
sine wave. Figs. 10(b) and 10(c) show the first and second deriva-
tives of this waveform, respectively. In this case, the magnitude
of the discontinuities that appear in the first derivative are defined
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Figure 8: (a) Half-wave rectified continuous-time sine wave, (b)
its first and (c) second derivatives.
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Figure 9: Waveform and magnitude spectrum of a (a)-(b) 1660-Hz
trivial half-wave rectified sine wave, and (c)-(d) the same signal
after four-point polyBLAMP correction.

as twice the slope of the original signal at the zero-crossings. As
with hard clipping, both types of rectification also introduce dis-
continuities in subsequent derivatives of the signal, hinting at the
possibility that further correction could be achieved using higher-
order bandlimited integral functions.

The polyBLAMP method can be used in the same fashion as
with half-wave rectification by scaling the slope parameter by fac-
tor 2. The bottom two rows of Table 2 show the measured SNRs
for the two sinusoidal test signals discussed in the previous sub-
sections. Once again, the polyBLAMP method outperforms over-
sampling by factors 2 and 4, offering a nearly 20-dB improvement
in SNR with reduced computational costs (cf. Table 3).
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Figure 10: (a) Full-wave rectified continuous-time sine wave, (b)
its first and (c) second derivatives.

Lane et al. [28] have proposed to use a full-wave rectified sine
wave (after further linear filtering) to approximate the sawtooth
waveform. Välimäki and Huovilainen analyzed this approxima-
tion showing that, while it contains considerably less aliasing than
the trivial sawtooth, the aliasing can be still be audible at high fun-
damental frequencies [12]. The polyBLAMP method could now
be used to further enhance this sawtooth generation method.

Additionally, to demonstrate that the BLAMP method is ap-
plicable to nonlinearly processed arbitrary signals and not just sine
waves, Fig. 11 shows the waveform and magnitude spectrum for a
synthetic string sound recording before and after full-wave rectifi-
cation without and with polyBLAMP correction. Overall, aliasing
components have been reduced by nearly 20 dB on average.

5. CONCLUSIONS

The corner-rounding capabilities of the polynomial approximation
of the BLAMP function, or polyBLAMP, were studied. In addi-
tion to alias-free synthesis of triangular waveforms, it can enhance
certain nonlinear waveshaping methods, which introduce discon-
tinuities in the first derivative of the signal waveform. The frac-
tional delay and slope at each corner need to be estimated, and
then this method can correct a few samples in the neighborhood of
each corner. The polyBLAMP method helps implementing alias-
free versions of hard-clipping and rectification for arbitrary signals
without oversampling, and thus enables enhanced nonlinear audio
effects processing.

Supplementary material, including MATLAB code and sound
examples, can be found in http://research.spa.aalto.
fi/publications/papers/dafx16-blamp/.
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ABSTRACT

The synthesis of sound textures, such as flowing water, crackling
fire, an applauding crowd, is impeded by the lack of a quantita-
tive definition. McDermott and Simoncelli proposed a perceptual
source-filter model using summary statistics to create compelling
synthesis results for non-tonal sound textures. However, the pro-
posed method does not work well with tonal components. Com-
paring the residuals of tonal sound textures and non-tonal sound
textures, we show the importance of residual modeling. We then
propose a method using auto regressive modeling to reduce the
amount of data needed for resynthesis and delineate a modified
method for analyzing and synthesizing both tonal and non-tonal
sound textures. Through user evaluation, we find that modeling
the residuals increases the realism of tonal sound textures. The re-
sults suggest that the spectral content of the residuals has an impor-
tant role in sound texture synthesis, filling the gap between filtered
noise and sound textures as defined by McDermott and Simoncelli.
Our proposed method opens possibilities of applying sound texture
analysis to musical sounds such as rapidly bowed violins.

1. INTRODUCTION

Sound textures are signals that have more structure than filtered
noise, but, like visual textures, not all of the details are perceived
by the auditory system. Saint-Arnaud [1] gives a qualitative def-
inition of sound textures in terms of having constant long term
characteristics that, unlike music or speech, do not carry a message
which can be decoded. Figure 1 illustrates the relative information-
bearing potential of music, speech, sound textures, and noise, show-
ing how sound textures lie between music/speech and noise. Ex-
amples of sound textures include natural sounds such as water
flowing, leaves rustling, fire crackling, or man-made sounds like
the sound of people babbling, a crowd applauding or sounds of
machinery such as drills. There can be textural components in mu-
sical sounds such as fast violin-bowing or guitar-string scraping.

A better understanding of sound textures can provide insights
into our auditory process, and what information we extract from
auditory inputs. Furthermore, such knowledge can be used to find
sparse representations and applied to analysis/synthesis of envi-
ronmental sounds, sound texture identification, data compression,
and gap-filling.

Since Saint-Arnaud’s work on sound texture, there has been
a gradual increase of interest in this area and various approaches
have been explored [2, 3]. One approach that has been extensively
used is granular synthesis [4, 5, 6, 7, 8, 9]. In most cases, the gen-
eral approach is to parse the audio during analysis, usually into
sound events and background din, and then recompose the com-
ponents according to a stochastic rule. The advantage of these

approaches is that the original source is used for resynthesis, re-
sulting in output quality as good as the source. This also means,
however, that the method is bound by the source signal and that
the methods may not be generalizable. Other approaches include
applying various metrics and theories such as polyspectra [10],
wavelets [11], dynamic systems [12] and scattering moments [13]
to analyze sound textures.

Another approach is that of source-filter modeling. One source-
filter approach is time-frequency linear predictive coding (TFLPC)
also called cascade time-frequency linear prediction (CTFLP) [14,
15]. In TFLPC, time domain linear prediction, which captures the
spectral content, is followed by frequency domain linear predic-
tion, which models the temporal envelope of the residuals.

McDermott and Simoncelli [16] propose a source-filter ap-
proach using perceptual multiband decomposition, looking at the
long term statistics of the multiband signal and its modulations. To
evaluate the proposed model, the extracted statistics are imposed
onto subband envelopes using an iterative method. The subband
envelopes are multiplied with a noise signal to create the synthe-
sized signal. An advantage of this approach is that there are no
assumptions regarding the nature of the sound source, as it models
how the auditory system processes the sound.

A limitation of the method proposed by McDermott and Si-
moncelli is that it does not work well for tonal sounds. The resyn-
thesized results of sounds with tonal components such as wind
chimes and church bells were perceived to have low realism.

Liao et al.[17] applied McDermott and Simoncelli’s approach
directly to a short-time Fourier transform (STFT), where marginals
and subband correlations are extracted from the STFT of source
signal, then iteratively imposed onto a new STFT for resynthesis.

Although there are a set of sounds that are generally accepted
as sound textures, such as water flowing, fire crackling, and babble
noise, there is not yet a generally quantitative definition for sound
textures. Moreover, how sound texture is defined or rather defin-
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Figure 1: Potential information content of a sound texture vs. time
(from Saint-Arnaud[4])
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Figure 2: Sound texture decomposition. The schematic illustrates the sound texture decomposition process for a single subband.

ing the scope of sound textures, i.e., specifying which sounds are
included in a given class of sound textures, in turn affects the ap-
proach to analyzing and synthesizing sound textures in that class.

In this paper, we limit our definition of sound textures to what
can be synthesized using structured noise, that is, sounds that can
be reproduced by shaping noise in a structured way. Despite the
limiting definition, this approach can cover a broad range of sounds,
as demonstrated by the aforementioned source-filter models. With
this definition, sounds with pitch inflections, such as the sound of
a baby crying or cars accelerating, will likely not fall into this cate-
gory and thus will not be considered. Such a definition works well
in conjunction with sines+noise synthesis [18] in which sinusoidal
modeling handles any tonal components while texture classifica-
tion, analysis, and synthesis can be applied to the residual signal
after the tonal components are removed.

In the following sections, we examine sound textures with
tonal components, compare it to non-tonal sound textures, and ap-
ply the insights gained from the comparisons to the developement
of an analysis/synthesis model that includes tonal components.

2. SOUND TEXTURE DECOMPOSITION

We begin by formulating a method to decompose a sound tex-
ture into its subband sideband modulations, which we will call
envelopes, and its residuals.1 The decomposition process is illus-
trated in Figure 2.

The source sound texture x[n] is first separated into subbands
xi[n] with a subband filter bank equally spaced on an equivalent
rectangular bandwidth (ERB) scale hi[n] [19]. We choose hi[n]
such that its Fourier transform Hi[k] satisfies,

∑
i

∣∣Hi[k]
∣∣2 = 1. (1)

Thus, {hi} forms an FIR power-complementary filter bank [20].
The filter bank hi[n] is applied to the signal for both the analysis
and synthesis steps. The analysis step gives

xi[n] = hi[n] ∗ x[n]. (2)

For subband xi[n], we first apply an analysis window w[n]
with 50% overlap on the signal at frame rate fenv . The length
of the window is L = 2R = 2/fenv . We choose w[n] to have

1This follows McDermott and Simoncelli’s terminology. The term
“modulation” is used to describe the frequency components of the en-
velopes.

constant overlap-add (OLA), i.e.,∑
m

w2[n+mR] = 1. (3)

The window w[n], like hi[n], is applied to the signal for the
analysis and synthesis steps. We define the m-th windowed seg-
ment of xi[n] as

xim[n] = w[n]xi[n−mR]. (4)

For each subband segment xim[n], we derive the uncompressed
envelope of the segment ei[m] by taking the power within the win-
dowed segment and normalizing it by the squared sum of the win-
dow w[n],

ei[m] =

{∑L−1
n=0 (xim[n])2∑L−1
n=0 (w[n])2

} 1
2

(5)

Finally, a compression, simulating basilar membrane compres-
sion, is applied to ei[m] to obtain the subband envelopes si[m].

si[m] = fcomp(ei[m]) = (ei[m])0.3 (6)

Once we have the subband envelopes, we calculate the statis-
tics for the envelope mean, variance, skewness, kurtosis, cross cor-
relation, the envelope modulation power, between subband (C1)
modulation correlation and within subband (C2) modulation cor-
relation. The variance of each subband, which is equivalent to the
subband power, is also saved.

The residual of segment xim[n] is derived by dividing the seg-
ment by the envelope value.

rim[n] = xim[n]/ei[m] (7)

The segment residuals are merged to obtain the subband resid-
ual ri[n] and the subband residuals are summed to obtain the signal
residual r[n].

ri[n] =
∑
m

w[n+mR]rim[n+mR] (8)

r[n] =
∑
i

hi[n] ∗ ri[n] (9)

While this decomposition process differs from McDermott and
Simoncelli [16], the resulting envelope si[m] is very similar. The
envelope statistics imposing algorithm from McDermott and Si-
moncelli can be applied with little modification. The advantage
of this formulation is that all the residuals are aggregated into one
signal r[n].
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Figure 3: Examples of sound texture decomposition and residual power spectral density. The first row shows the subband envelopes si[m]
of each signal. The second row shows the spectrogram of the residual r[n]. The third row is the power spectral density of the residual
obtained using Welch’s method. The y-axis of the envelope plot and the residual plot is different. (ERB scale vs. linear scale)

3. RESIDUAL ANALYSIS

The envelopes and residuals from the sound texture decomposi-
tion can be viewed to have a carrier-modulation relation where
the subband envelopes si[m] are the amplitude modulations and
the residual signal r[n] is a temporally stable carrier signal. The
subband envelopes, the spectrogram of the residual signal and the
power spectral density (PSD) of the residual signal for example
sound textures are shown in Figure 3.

The residual of crackling fire and flowing water is very close to
pink (1/f) noise [21]. This is the result of normalizing the subband
power over an ERB scale. Replacing the residual with pink noise
for synthesis works well.

However, for a tonal sound like wind chimes (Figure 3c), the
power spectral density is spiky due to the tonal components. Re-
placing the residual with pink noise would diffuse the tonal com-
ponents, exciting the whole subband instead of focusing the signal
power on a narrow band.

Inspecting the spectrogram of the residual in Figure 3c, the
subband residuals do not look temporally stable, contrary to our
assumption of carrier stability. Comparing the carrier spectrogram
to the subband envelopes, we see that the subband envelopes have
a small value where the tonals are missing. Thus, replacing the
residual in Figure 3c with a temporally stable residual would not
change the perceived output when merged with the subband en-
velopes.

Welch’s method was used to estimate the power spectral den-
sity of the residual signal. We found that the shape of the tonal
components is well captured when the averaging period is longer
than 0.5 seconds. For the examples in this paper, an averaging
period of 1 second was used at a sampling rate of 20 kHz.

4. RESIDUAL MODELING

We can impose the power spectral density directly onto the residu-
als during the synthesis process to improve the results. Moreover,
this will allow synthesis of sounds with tonal components. How-
ever, the amount of data for directly imposing the PSD is very
large. For our example, 1 second at 20 kHz results in 10001 sam-
ples for the PSD. Much of the data is noise, we only need the
contour of the PSD. One method of reducing the amount of data
needed is by modeling the audio using high order auto-regressive
(AR) modeling. High order AR modeling has been used for gap-
filling and spectral modeling [22, 14]. The advantage of this ap-
proach is that we get high quality results without handling sinusoid
components and noise components separately. A similar approach
to tonal noise modeling has been covered by Polotti and Evange-
lista [23].

For non-tonal sounds, a good approximation can be obtained
using low order AR models. However, for tonal sounds, it is im-
portant to model the tonal components well, especially the peak
sharpness. If a tonal peak is modeled too broadly, that tonal com-
ponent will sound diffused.

In Figure 4a, the residual is modeled evenly at both AR orders
100 and 200. In Figure 4b, the tonal components around 1kHz are
not modeled well at an AR order of 100. Increasing the AR order
to 200 improves the results.

To find a reasonable AR order, we plot the standard deviation
of the magnitude errors against the AR order. For the stream ex-
ample, there is little improvement with higher orders. For the wind
chime example, we see a noticeable improvement between AR or-
der 100 and 200. Examining more examples, an AR order of 200
was sufficient to model the tonal examples used for this paper.
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Figure 4: Residual AR modeling. In the first two columns, the frequency response of an AR model (black) is overlaid on the residual PSD
(gray). Below each power spectrum, the error between the actual response and the AR approximation is plotted. In the third column, the
standard deviation of the modeling errors is plotted for different AR orders. There is little improvement when increasing the AR order for
the stream example. However, for the windchime example, we see a noticeable improvement between AR order 100 and 200.

5. SOUND TEXTURE RESYNTHESIS

In this section, the process of extracting statistics and features from
a source sound texture is covered with a detailed explanation of
how the extracted statistics are used for resynthesis. The analysis
and synthesis process is illustrated in Figure 5.

5.1. Extracting Sound Texture Statistics

After separating the source into subbands, the variance of each
subband is saved. The subband variance is equivalent to the power
of each subband signal. The human auditory system has acute
sensitivity to the power in each subband, thus imposing the sub-
band power correctly is important. The subband variance is used
to “equalize” the subbands when resynthesizing.

Each subband is decomposed into its envelope and residual
components as formulated in §3. The subband envelopes are then
used to extract a subset of the statistics described in McDermott
and Simoncelli [16]. We include modulation statistics in enve-
lope statistics since the modulation statistics are all derived from
the subband envelopes. One noticeable difference is that the en-
velopes are not windowed, windowing is inherently applied in the
decomposition step. A detailed description of the statistics used is
provided in §9.

The subband residuals are merged back into a full-band single
channel residual signal as explained in equation (9). The AR co-
efficients are estimated from the residual signal (§4) and the AR
coefficients are saved for use as an all-pole filter to synthesize a
new residual signal.

5.2. Synthesizing from Sound Texture Statistics

For resynthesis, starting with white noise, the envelopes and resid-
uals are synthesized in parallel using the statistics from the anal-
ysis process. The two are then merged into subbands which are
then equalized using the subband variances. The equalized sub-
bands are then summed to form the final output signal.

5.2.1. Envelope Synthesis

After decomposing the subbands from the white noise signal into
envelope and residual components, the residuals are discarded and
only the envelopes are used for this step. The statistics imposing
method was adapted from McDermott and Simoncelli [16]. For
the target envelope statistics Tenv extracted from the source sound
texture and the current envelope statistics Senv , the L2 norm of
Tenv − Senv is minimized using conjugate gradient descent.

Because the envelope mean is not normalized, it is not im-
posed in the gradient descent (See statistics formulas in §9). In-
stead, the envelope mean is imposed separately by adjusting the
envelope means afterwards. It is worth noting that the uncom-
pressed envelope ei[m], defined in equation (5), is proportionate to
the power of the windowed segment xim[n] and thus the envelope
mean is closely related to the subband power. However, because
the synthesized residuals may not be spectrally flat, the subband
variances are enforced after composing the synthesized residuals
and envelopes to ensure the subband powers are correctly equal-
ized.

This process is iterated until the difference between the target
statistics and the current statistics is below a certain threshold or
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Figure 5: Schematic of the sound texture analysis and synthesis procedure. The subband variance, envelope statistics and residual
coefficients are measured and saved, then used for residual synthesis, envelope synthesis and subband equalization.

the number of iterations pass a set limit. The process is not guar-
anteed to converge.

5.2.2. Residual Synthesis

The residual synthesis is straight forward. The input white noise
signal is filtered with an all-pole filter composed of the AR coeffi-
cients from the analysis process. The synthesized residual is then
decomposed into subband residuals and envelope components. The
envelope components are discarded and the subband residuals are
used for merging with the synthesized envelopes into subbands.

5.2.3. Equalization and Subband Rendering

Before merging the subbands, we adjust the variance of each sub-
band. The equalization has a noticeable effect on the perception of
the sound. In the recomposing step and collapse subband step the

windoww[n] and the subband filters hi[n] are applied as synthesis
windows and filters.

6. RESULTS

To test the effectiveness and validity of our model, we ran a user
test where the participants were asked to rate the realism of resyn-
thesized sound textures on a continuous scale from 1 to 7 with
1 being highly unrealistic and 7 being highly realistic.2 Twelve
subjects participated, 9 male, 3 female with a median age of 35.
The participants were presented with the reference audio clip from
which the statistics were extracted, along with 1 sample audio clip
and 3 resynthesized audio clips, presented in random order. All
audio clips were 4 seconds long.

2Sound samples used for the user tests are provided at https:
//ccrma.stanford.edu/~hskim08/soundtextures/
residual.html.
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(a) Non-tonal Sound Textures
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(b) Tonal Sound Textures

Figure 6: User test realism ratings. The median for each sample is shown with a thick black line in within the box. The box covers the first
to third quartile (25% to 75%). The whiskers cover about 99%. The + symbols represent the outliers. The realism scale provided to the
users is 1-Highly unrealistic, 2-Unrealistic, 4-Acceptible, 6-Realistic, 7-Highly Realistic.

The sample clip was taken from a different part of the same
audio file as the reference audio. The three methods of resynthesis
were 1) white noise filtered to match the PSD of the source audio,
2) white noise with only the envelope synthesized, and 3) white
noise with both envelope synthesis and residual synthesis. The
first method simulates residual only resynthesis, while the second
case only uses the envelope statistics for resynthesis.

For the non-tonal sound textures, both the envelope only case
and the case with both envelope and residual synthesis were per-
ceived to have high realism. Filtered noise was perceived to con-
tain low realism. For these examples, it seems most of the per-
ceived information is in the envelopes and thus synthesizing the
envelopes was sufficient to create realistic samples.

For sound textures with tonal components, the effect of the
residual synthesis becomes visible. For violin sounds, filtered noise
scaled higher realism than the envelope synthesis case, implying
that the spectral information was more dominant in the perception
of those sounds. In all cases, using both envelopes and residual for
synthesis was perceived to be more realistic those that used only
one.

Two examples worth noting are that of fire and violin. Despite
having no tonal component, the fully resynthesized sample of fire
was perceived to have lower realism than the other non-tonal ex-
amples. The fully resynthesized sample of violin on the other hand
was perceived to have very high realism compared to other tonal
examples. We believe this is due to the limitations of the temporal
subband shaping modeled with the within subband (C2) modula-
tion correlation. The crackling in fire as well as the attacks of the
tonal examples have a noticeable temporal effect. However, we
have found that the effects of enforcing the C2 correlation seemed
to be limited. When the C2 correlation is easy to match, as in the
violin example, we see that our method creates very compelling
results.

7. CONCLUSIONS

We presented a method of decomposing a sound texture into its en-
velope and residual components. Examining the residuals for dif-
ferent examples, it was observed that non-tonal sound textures had
residuals with power spectral densities close to pink noise, while
that was not the case for tonal sound textures. Thus, the need for

residual modeling. Applying high order auto-regression modeling
to the residual, it was possible to reduce the data needed by a mag-
nitude of two with little perceived differences. We presented a sys-
tem for extracting the statistics from a source sound texture and the
system for using the statistics to resynthesize new examples. The
importance of both the residuals and envelopes was verified by a
user test. For non-tonal sounds, a good envelope model was suffi-
cient to synthesize realistic sounds. Adding the residual modeling
did not affect the realism. However, for tonal sounds, modeling
both the residuals and envelopes gave more realistic results than
modeling just the residuals or the envelopes.

Taking a higher point of view, our approach fills the gap be-
tween filtered noise and the sound texture analysis presented by
McDermott and Simoncelli [16]. Filtered noise captures the short
term statistics in the form of power spectral distribution, includ-
ing tonal components. Meanwhile summary statistics capture the
modulations on the order of seconds.3 Revisiting Saint-Arnaud’s
comparison of speech, music, noise, and sound textures in Figure
1, our model provides an explanation for the intuition behind the
relation between potential information and time. The spectral dis-
tribution for noise can be estimated in a few milliseconds, while
the subband modulations can be estimated on the order of sec-
onds. The structure of speech and music is defined over a time
span greater than that of seconds, usually minutes or longer.

The original objective of the study was to improve the sound
texture model of McDermott and Simoncelli to cover tonal sound
textures such as wind chimes. Over the course of time, we found
that the model could be applied to constant pitch sounds such as
a single note on a violin or guitar. We could model the textu-
ral aspect of the instrument sound such as fast bowing or tremolo
picking. This suggests that the analysis of modulations could be
applied to instrument modeling to add textural timbres.

While AR modeling was used to reduce the amount of data
needed to synthesize the residuals, a sines+noise like approach
could futher reduce the data. We were able to model the resid-
uals of non-tonal sound textures sufficiently using AR orders of
10. By separately modeling the tonal peaks of the PSD, then using
AR modeling only on the remaining residuals, it seems possible to
reduce the amount of data by another order.

3The lowest modulation band used is 0.5Hz. See §9.
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During the user test, the limited effectiveness of within sub-
band (C2) modulation correlation enforcement for temporal mod-
eling was observed. Improvements in temporal modeling seems
to be an important factor in increasing the realism of the proposed
sound texture synthesis method.

For this study, we limited the tonal sound textures to those that
do not have variable pitch trajectories. This excludes most cases
of vocalizations including bird songs, babies crying and speech.
These sounds may require a completely different approach as there
may be tonal components that move between subbands which may
be challenging to model. Once more a sines+noise decomposition
may prove to be useful for such cases, where the tonal components
are modeled separately and the noise component, din, could be
modeled by our proposed method.

Finally, there is a lack of evaluation metrics for sound textures.
Evaluating the samples with PQevalAudio [24], all samples scored
a very low objective difference grade, -3.5 or less, on a scale of 0
to -4 where 0 is imperceivable and -4 is very annoying. This seems
to be caused by the fact that PQevalAudio compares the audio on a
frame to frame basis meaning that it compares short term statistics
whereas the synthesis for sound texture enforces long term statis-
tics and as such the short term statistics can be very different. This
is likely the case for other perceptual audio evaluation metrics. The
short term measurements for sound textures may vary, yet the per-
ception of the sounds are similar [25], suggesting that a different
metric would be needed to programatically evaluate the perceived
quality of resynthesized sound textures. Validating sound texture
models with improved analysis/synthesis results should help make
better perceptual evaluation metrics.
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9. APPENDIX: ENVELOPE STATISTICS

The envelope statistics are adapted from McDermott and Simon-
celli [16], with minor changes to accommodate the differences in
how the subband envelopes si[m] were derived. The most notice-
able difference is the replacement of the window function w(t)
with 1/N . We formulate the statistics here for completeness.

The envelope statistics can be categorized into subband en-
velope statistics and envelope modulation statistics. The subband
statistics are directly measured from the subband envelopes, whereas
the modulation statistics are measured after the subbands are fil-
tered into modulation bands through a constant Q filter bank f̄u[m]
for the modulation power and an octave spaced filter bank fu[m]
for the C1 and C2 correlations.

9.1. Subband Envelope Statistics

We start by defining the envelope moments. Defining the moments
help simplify the definitions of the marginals. Precalculating the
moments can reduce computation times. For the i-th subband en-
velope si[m], the envelope moments are defined as,

m1[i] = µi =
1

N

N∑
m=1

si[m]

mX [i] =
1

N

N∑
m=1

{si[m]− µi}X , X > 1

The standard deviation σi is also useful to precalculate.

σi =
√

m2[i]

9.1.1. Envelope Marginals

The envelope marginals, except for the envelope mean M1i, are
normalized. This makes the statistics independent from any scal-
ing factors. This is also important when imposing the statistics
using optimization. Because the envelope mean is not normalized
and tends to have smaller values than all other statistics used, it
needs to be enforced separately after the optimization. The enve-
lope marginals help shape the general distribution of the envelopes.

M1i = m1[i] = µi

M2i =
m2[i]

(m1[i])2
=
{σi

µi

}2
M3i =

m3[i]

(m2[i])3/2
=

1

N

∑N
m=1(si[m]− µi)

3

σ3
i

M4i =
m4[i]

(m2[i])2
=

1

N

∑N
m=1(si[m]− µi)

4

σ4
i

9.1.2. Envelope Cross-band Correlation

This is the correlation coefficient of two subband envelopes si[m]
and sj [m].

Cij =
1

N

N∑
m=1

(si[m]− µi)(sj [m]− µj)

σiσj

The envelope cross-band correlation helps enforce the comodula-
tion of the subbands.

9.2. Envelope Modulation Statistics

Each subband envelope is further decomposed into its modulation
bands through another filter bank. The modulation bands cover
frequencies from 0.5Hz to fenv = 400Hz. Two different filter
banks are used for the modulation power and the C1/C2 modu-
lation correlations. The modulation power is calculated using a
constant Q filter bank f̄u[m].

b̄i,u[m] = f̄u[m] ∗ si[m]

The C1/C2 modulation correlations are calculated using an octave
band filter bank fu[m]. An octave band is chosen because of the
formulation of the C2 correlation.

bi,u[m] = fu[m] ∗ si[m]

9.2.1. Modulation Power

The modulation power Mi,u is the root-mean-square of the modu-
lation band normalized by the variance of the whole subband σ2

i .
The modulation power can be viewed as the distribution of the
subband power within the modulation bands.

Mi,u =
1

N

∑N
m=1(b̄i,u[m])2

σ2
i

9.2.2. Between Band Modulation (C1) Correlation

The C1 correlation is the correlation coefficient of two subband
modulations bi,u[m] and bj,u[m] where i and j are the subband
numbers and u is the modulation band number.

C1ij,u =
1

N

N∑
m=1

bi,u[m]bj,u[m]

σi,uσj,u

where,

σi,u =

√√√√ 1

N

N∑
m=1

bi,u[m]

The C1 correlation helps enforce the comodulation of subbands
within the same modulation band.

9.2.3. Within Band Modulation (C2) Correlation

The C2 correlation enforces the temporal shape of a subband by
imposing phase of modulation bands within a subband. To com-
pare the phase of adjacent subbands, the modulation bands are
transformed to its analytic signal ai,u.

ai,u[m] = bi,u[m] + jH{bi,u[m]}

Next, the lower octave signal is expanded an octave by squaring
the values, then normalized.

di,u[m] =
(ai,u[m])2

‖ai,u[m]‖
The correlation coefficient of the two bands is calculated for the
C2 correlation.

C2i,uv =
1

N

N∑
m=1

d∗i,v[m]ai,u[m]

σi,uσi,v
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ABSTRACT
Nonlinear waveshaping is a common technique in musical signal
processing, both in a static memoryless context and within feed-
back systems. Such waveshaping is usually applied directly to
a sampled signal, generating harmonics that exceed the Nyquist
frequency and cause aliasing distortion. This problem is tradi-
tionally tackled by oversampling the system. In this paper, we
present a novel method for reducing this aliasing by constructing a
continuous-time approximation of the discrete-time signal, apply-
ing the nonlinearity to it, and filtering in continuous-time using an-
alytically applied convolution. The presented technique markedly
reduces aliasing distortion, especially in combination with low or-
der oversampling. The approach is also extended to allow it to be
used within a feedback system.

1. INTRODUCTION

Nonlinear waveshaping has been part of the toolbox of musical
signal processing since the 1960s, when overdrive and fuzz pedals
became popular for treating the sound of the electric guitar. Its ap-
plication in the digital signal processing domain began in the 1970s
with exploration of synthesis methods employing waveshaping us-
ing Chebyshev polynomials [1,2]. In more recent times, investiga-
tion of waveshaping has mainly been pursued within the domain of
virtual analog modelling. A particularly active area of research has
been filters with embedded nonlinearities, including the Moog lad-
der filter [3–7], the diode ladder filter [5, 8] and Sallen-Key based
filters [9, 10]. Much work has also been done on the digital emu-
lation of analog overdrive and fuzz pedals [11,12] and tube ampli-
fiers [13,14]. Other nonlinear analog devices have been modelled,
including the ring-modulator [15,16] and bucket-brigade based ef-
fects [17, 18]. Recent work has applied correction functions usu-
ally used for oscillator antialiasing to the problem of antialiasing
signals processed by a hard clipper [19], and has also considered
more abstract applications of nonlinear waveshaping [20, 21].

One of the primary problems encountered when dealing with
nonlinearities is that of aliasing distortion. Aliasing distortion is
present in many types of digital signal processing algorithm, and
is generally perceived to be disturbing or unpleasant [22]. In this
paper, we describe a method for reducing the aliasing produced
by processing a signal with a memoryless nonlinearity, as well
as describe how the same method can be applied inside a filter.
This method is based on forming a continuous-time approximation
of the signal, applying the nonlinearity, and analytically deriving
the result of applying convolution with a continuous-time lowpass
filter kernel. The application of the filtering process in the con-
tinuous domain is crucial to working of the method, as it allows
suppression of components even beyond the original Nyquist fre-
quency of the system. The method is related to the Differentiated

Polynomial Waveform (DPW) approach to antialiasing oscillator
waveforms [23–25], which also applies filtering in the continuous-
time domain. There is also some relation to methods of antialias-
ing wavetable playback using integrated wavetables [26, 27].

In Sec. 2, we describe the simplest formulation of the tech-
nique. Sec. 3 describes how the method can be extended to use
any piecewise polynomial filter kernel, with the example of the tri-
angular or linear interpolation kernel given. In Sec. 4, we discuss
some drawbacks of the method—specifically its delay, and filter-
ing effects below Nyquist. Examples of applying the method to a
number of nonlinearities are given in Sec. 5. In Sec. 6, we broaden
the method to apply to feedback systems, where the delay of the
antialiased nonlinearity can be directly compensated by removal of
equivalent parts of the filter structure. Finally, in Sec. 7 we draw
conclusions about the presented work.

2. APPROXIMATION OF CONTINUOUS DOMAIN
NONLINEAR WAVESHAPING

Nonlinear waveshaping in a digital signal processing context is
generally applied directly to a discrete-time signal:

y[n] = f(x[n]) (1)

where y denotes the output, x the input, n the discrete-time sample
index, and f is an arbitrary nonlinear function. The waveshap-
ing process is not bandlimited, and therefore depending on the
input can generate frequency components exceeding the Nyquist
frequency of the system (in many cases, even an infinite series of
components). The components are reflected around the Nyquist
frequency, and appear within the output spectrum as aliasing dis-
tortion. This is a well-known and common problem in musical
digital signal processing. The most prominent method of reduc-
ing aliasing is to oversample the processing of the signal through
the nonlinearity. This raises the Nyquist frequency, and hence the
point at which the generated harmonics alias. However, this ap-
proach is still far from ideal given that the sequence of harmonics
can be infinite.

The ideal result of the process, that of applying the nonlin-
earity to the input signal without any generated aliasing, can be
thought of as perfect sampling of the same nonlinearity applied in
continuous-time:

y(t) = f(x̃(t)) (2)
where x̃ is a continuous-time reconstruction of our input signal,
y is the continuous-time output signal, and t is the time variable.
Given that we are working within a purely discrete-time context
and presumably don’t want to pass our signal out to the continuous
domain for nonlinear processing, the challenge is to approximate
this expression as accurately as possible whilst staying within the
discrete-time domain.
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2.1. Approximating a continuous-time input signal

The first challenge is to devise a version of the discrete-time input
signal which can be treated in the same way as its continuous-time
reconstruction. In the case of a known input signal, for example a
sinusoid, this can be done trivially. In the case of an arbitrary sig-
nal, the problem is more complicated—we need to draw a function
through the known sample-points of the input signal. One way of
approaching this problem is to utilise a standard interpolation tech-
nique to ‘fill in the gaps’ between sample points—resulting in a
piecewise approximation of the ideal continuous-time input signal.
In the case of linear interpolation, and assuming a unit sampling
interval, this would result in the following:

x̃(t) =


x1 + τ(x0 − x1), 0 ≤ t < 1
x2 + τ(x1 − x2), 1 ≤ t < 2

...
xn + τ(xn−1 − xn), (n− 1) ≤ t < n

(3)

where xn ≡ x[n] is shorter notation for the samples of the discrete-
time input signal, and τ = 1 − (t mod 1), a time variable that
runs 1 . . . 0 between each sample.

Higher-order interpolation methods could be applied here, with
the result of better suppression of the image spectra that repeat in-
finitely above the original Nyquist frequency. However, approxi-
mating the input signal as locally linear allows an analytic solution
of the method to be derived, as will be seen in the following sec-
tion.

2.2. Returning to the discrete-time domain

Now, given an expression for x̃(t), we are able to calculate y(t) at
any specific t via (2). This can be considered to be sampling the ap-
proximated continuous-time signal at an arbitrary point. However,
if we want our discrete-time output signal to be free of aliasing,
we need to apply some kind of filtering to the continuous-time sig-
nal before it is sampled to remove components above our original
Nyquist frequency. This can be done by applying a continuous-
time convolution with some filter kernel h to y(t):

ỹ(t) =

∫ ∞
−∞

h(u)y(t− u)du (4)

where ỹ(t) is the approximately bandlimited continuous-time out-
put. ỹ(t) can then be trivially sampled at the original sampling
times (again assuming unit sample interval):

y[n] = ỹ(n) (5)

A very simple example of a lowpass kernel is a rectangular
function of unit width:

hrect(t) =

{
1, 0 ≤ t ≤ 1
0, otherwise (6)

Fig. 1 shows the amplitude response of this kernel, along with its
time-domain form. From the amplitude response, we can see that
the convolution will significantly attenuate any harmonics which
exceed the original Nyquist frequency.
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Figure 1: Rectangular and linear continuous-time convolution ker-
nels and their continuous time amplitude responses.

We can now write an expression for the output y[n]:

y[n] = ỹ(n) =

∫ ∞
−∞

hrect(u)y(n− u)du

=

∫ 1

0

y(n− u)du

=

∫ 1

0

f(x̃(n− u))du

using (3), and noticing that over this interval u = τ , we can write:

y[n] =

∫ 1

0

f(x̃)dτ (7)

=

∫ 1

0

f(xn + τ(xn−1 − xn))dτ

From integration by substitution, we can write:∫ 1

0

f(x̃)
dx̃

dτ
dτ =

∫ xn−1

xn

f(x̃)dx̃

The piecewise linear nature of x̃ now becomes useful as it means
that dx̃

dτ
is constant over the extent of the τ integration, and can be

factored out of the integral to produce:

y[n] =

∫ 1

0

f(x̃)dτ =
dτ

dx̃

∫ xn−1

xn

f(x̃)dx̃

=
1

xn−1 − xn

∫ xn−1

xn

f(x̃)dx̃ (8)

Finally, by applying the fundamental theorem of calculus, we pro-
duce:

y[n] =
F0(xn)− F0(xn−1)

xn − xn−1
(9)

where F0 is the antiderivative of f .

2.3. Precision and ill-conditioning concerns

In a digital context with finite precision arithmetic, (9) becomes
ill-conditioned when xn ≈ xn−1 due to a 0/0-type uncertainty,
resulting in precision loss or even a division by zero. Assum-
ing floating point numeric representation the precision loss occurs
from the subtraction of two values of the same sign and compara-
ble magnitude. This kind of precision loss in the numerator can be
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minimized by choosing the integration constant for F0 such that
F0(0) = 0. In this case the precision loss in the entire formula is
determined by that in the denominator.

According to the derivation given in Appendix A:

F0(xn)− F0(xn−1)

xn − xn−1
= f

(xn + xn−1

2

)
+O((xn − xn−1)2)

(10)
where O(. . . ) denotes the order of the neglected terms, and hence
the order of the error. This value can then be substituted for (9)
when the value of xn − xn−1 becomes very small.

3. EXTENSION TO HIGHER-ORDER FILTER KERNELS

The filter kernel described in (6) is the simplest possible kernel
that can be used in this technique. A more complex kernel can
be used, as long as the convolution can be performed analytically.
The triangular or linear-interpolation kernel is an example of such
a kernel:

hlin(t) =

 t, 0 ≤ t < 1
2− t, 1 ≤ t ≤ 2

0, otherwise
(11)

Substituting this into (4), and following the same procedure as pre-
viously, we obtain:

ỹ(n) =

∫ ∞
−∞

hlin(u)y(n− u)du

=

∫ 1

0

uy(n− u)du+

∫ 2

1

(2− u)y(n− u)du

=

∫ 1

0

τf(xn + τ(xn−1 − xn))dτ+∫ 1

0

(1− τ)f(xn−1 + τ(xn−2 − xn−1))dτ (12)

The two integrals can be evaluated by noting that over the interval
we’re considering τ = x̃−xn

xn−1−xn
. Therefore, by again applying

integration by substitution, we have:

ỹ(n) =

∫ xn−1

xn

x̃− xn
(xn − xn−1)2

f(x̃)dx̃+∫ xn−2

xn−1

xn−2 − x̃
(xn−1 − xn−2)2

f(x̃)dx̃ (13)

As before, we can use the fundamental theorem of calculus to write
this expression in terms of antiderivatives of f . Additionally, the
antiderivative of xf(x) is needed. We denote this as F1(x). After
some simplification, the expression for the output can be written
as:

ỹ(n) =
xn(F0(xn)− F0(xn−1))− (F1(xn)− F1(xn−1))

(xn − xn−1)2
+

xn−2(F0(xn−2)− F0(xn−1))− (F1(xn−2)− F1(xn−1))

(xn−2 − xn−1)2

(14)

The frequency response of the triangular kernel can be seen in
Fig. 1. As expected, the suppression of harmonics above Nyquist
will be improved compared to the rectangular kernel. However,
the expression needed to compute the anti-aliased output is more
complex than in the rectangular kernel case. This is ameliorated

somewhat by the fact that many terms can be calculated by storing
and re-using the values calculated at previous time steps. Conse-
quently, there should only be one evaluation of F0 and of F1 per
sample.

The same derivation can be followed for any higher order ker-
nel which consists of piecewise polynomial sections, for example a
Hermite interpolator. However as the polynomial order of the ker-
nel grows, the higher-order counterparts of the analytical convolu-
tion expressions (9) and (14) become more ill-conditioned. There-
fore the precision requirements of the computation grow and so
potentially the computational load.

3.1. Precision and ill-conditioning concerns

As in the rectangular window case, when xn ≈ xn−1 or xn−1 ≈
xn−2, (14) becomes ill-conditioned. Again, this can be resolved
as described in Appendix A. In this case, we must deal with the
first and second terms of (14) separately. The first term becomes:

1

2
f

(
xn + 2xn−1

3

)
(15)

when xn ≈ xn−1. Similarly, the second term becomes:

1

2
f

(
xn−2 + 2xn−1

3

)
(16)

when xn−1 ≈ xn−2.

4. LINEAR RESPONSE AND GROUP DELAY OF
METHOD

The conversion to the continuous-time domain and back can be
seen as oversampling to an infinitely large sampling rate. The lin-
ear interpolation (3) and convolution (4) in that regard can be seen
as lowpass filters used in resampling.

Additionally, many nonlinearities of interest become transpar-
ent at very low signal levels: f(x) ≈ x. In this case the whole sys-
tem becomes a combination of an upsampler and a downsampler.
Therefore the system behaves as an LTI filter, where the overall
filtering effect is a combination of the lowpass filters (3) and (4)
and the aliasing occuring due to both filters being non-brickwall.

Using (41) of Appendix A we obtain the linear-case version of
(9):

y[n] =
xn + xn−1

2
(17)

Therefore at low signal levels (9) can be viewed as a half-sample
fractional delay using linear interpolation (i.e. its group delay is
0.5 samples).

In a similar fashion for (14) we obtain

y[n] =
xn + xn−2

6
+

2

3
xn−1 (18)

corresponding to a group-delay of 1 sample.
The respective amplitude responses of (17) and (18) are plot-

ted in Fig. 2. Higher-order kernels can be treated in a similar fash-
ion. Extension to the case with non-unity linear scaling at low
signal levels is also trivial.

5. EXAMPLES AND RESULTS

In the following section, we describe how the methods described
above can be applied to a number of nonlinearities.
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Figure 2: Low signal-level discrete-time frequency responses of the
method when using rectangular and linear continuous-time convo-
lution kernels.

5.1. Example: tanh()

One of the most common nonlinear functions used in music signal
processing is the hyperbolic tangent:

f(x) = tanh(x) (19)

the antiderivative is given by:

F0(x) = log(cosh(x)) (20)

therefore:

y[n] =
log(cosh(xn))− log(cosh(xn−1))

xn − xn−1
(21)

in the case where the rectangular kernel is used.
The antiderivative of x tanh(x) is given by:

F1(x) =
1

2

(
x
(
x+ 2 log

(
e−2x + 1

))
− Li2

(
−e−2x)) (22)

where Li2 is the dilogarithm function. The full expression for
y[n] can be obtained by substituting the expressions for F0(x) and
F1(x) into (14).

The expression (22) is rather expensive to compute. Therefore
it may be beneficial to tabulate it. Due to the ill-conditioned na-
ture of (14) the tabulation needs to be done with high precision.
Particularly, usage of piecewise segments of higher than linear or-
der may be advised for the table. Also, warping of the argument
scale (for example, making it logarithmic) can further reduce the
table size. The unbounded argument range for the tabulated func-
tion can be achieved by noting that tanh(x) ≈ sgn(x) within very
high precision for |x| � 1, thus F1(x) can be approximated by

F1(x) ≈ F1(x0 sgn(x))+
x2 − x20

2
sgn(x), |x| ≥ x0 � 1 (23)

for some sufficiently large x0. The tabulation approach also al-
lows us to deal with nonlinearities which cannot be analytically
integrated.

Fig. 3 shows spectrograms of a linear sine sweep, processed
by a tanh() nonlinearity with a linear input gain of 5, at two dif-
ferent sample rates, without and with the continuous-time convo-
lution applied. At both 44.1kHz and 88.2kHz, there is a significant
reduction in aliasing when the method is applied. At 44.1kHz a
small loss of high-frequency content is visible, due to the effec-
tive discrete-time frequency response of the method. This effect
is explained in Sec. 4. As can be seen, the triangular kernel pro-
duces noticeably greater suppression of aliased components than
the rectangular kernel. However, the difference is not as large as
that between no antialiasing and the rectangular kernel.
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Figure 3: Spectrogram of linear sine sweep from 0. . . 22kHz, pro-
cessed with tanh() function with an input gain of 5. The minimum
amplitude visible is -80dBFS.

5.2. Example: Hard Clipper

Another common saturating nonlinearity in music signal process-
ing is the hard clipper, defined by:

f(x) =

{
x, −1 ≤ x ≤ 1

sgn(x), otherwise (24)

Recent work has considered alias-suppression for this function by
applying a correction function to the transition between linear and
clipped regions [19].

The antiderivative of (24) is trivially calculated, taking care to
set the arbitrary constant of integration so that the function passes
through the origin:

F0(x) =

{
1
2
x2, −1 ≤ x ≤ 1

x sgn(x)− 1
2
, otherwise (25)

Similarly, the antiderivative of xf(x) can be calculated:

F1(x) =

{
1
3
x3, −1 ≤ x ≤ 1

( 1
2
x2 − 1

6
) sgn(x), otherwise

(26)

In order to illustrate the effectiveness of the technique, a test
was performed. A linear sine sweep wave processed by the non-
linearity with a very large input gain, in this case 10. The sample
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Figure 4: Spectrogram of linear sine sweep from 0. . . 22kHz, pro-
cessed with hard clipping function with an input gain of 10. The
minimum amplitude visible is -80dBFS.

rate of the cases was adjusted until roughly the same amount of
aliasing was present. Signal-to-noise ratio (SNR) was calculated
by creating an image mask denoting the non-aliased part of the
spectrogram and calculating the ratio of the power inside the im-
age mask to that outside the image mask. The mask is created
from the spectrogram of an ‘ideal’ version of the processed signal
(in this case calculated at Fs = 11.2MHz) by picking bins which
have a power greater than –30dB. The results are given in Table 1
and shown in Fig. 4.

Table 1: Oversampling required for similar aliasing level of hard
clipper with input gain of 10.

Kernel Fs(kHz) Fs/44.1kHz SNR(dB)
None 529.2 12 46.7

Rectangular 176.4 4 46.3
Triangular 132.3 3 46.6

6. APPLICATION TO SYSTEMS WITH FEEDBACK

As discussed above in Sec. 4, the antialiasing method introduces
delay into the signal path, which poses a problem in systems with
feedback. This becomes especially critical in the systems with
delayless feedback, which occurs in implicit time-discretization
schemes, most prominently in trapezoidal integration. In the fol-
lowing we propose an approach to address this problem.

6.1. Delay elimination

Equation (17) is equivalent to the equation of the FIR part of a DF1
(Direct Form 1) trapezoidal integrator, shown in Fig. 5. Consider a
serial connection of an antialiased nonlinearity Φ, as described in
(9), and a DF1 trapezoidal integrator. This configuration is shown
in Fig. 6. Since, according to (17), the nonlinearity (9) is already
implementing the FIR part of the integrator, we can drop this part
of the integrator from the structure, thereby eliminating the extra
delay. The resulting structure is shown in Fig. 7.

// •// +//

z−1//
OO
// +// •//

z−1 oo
OO

//

0.5ωc

Figure 5: Direct form 1 trapezoidal integrator (ωc is the embedded
cutoff control gain).

Φ// // •// +//

z−1//
OO
// +// •//

z−1 oo
OO

//

0.5ωc

Figure 6: A serial chain of an antialiased nonlinearity (9) (denoted
by Φ) and a DF1 trapezoidal integrator.

The nonlinearity and the integrator do not have to be located
immediately next to each other in the feedback loop. However, any
structural elements in the intermediate area must be considered.
For example, consider a serial chain of a nonlinearity and a 1-
pole lowpass filter, as shown in Fig. 8. In this case, as there is
a summation node in between the nonlinearity and the integrator
we must also introduce the same FIR part in the other path into
the summation. This structure is shown in Fig. 9. It is interesting
to note that the structure in Fig. 9 is equivalent to a naive 1-pole
lowpass filter with an adjusted cutoff, as shown in Fig. 10.

Such manipulations change the topology of the system, and
thus have the potential to change its time-varying behaviour. In
practice, these changes are not usually severe enough to be a prob-
lem, but care must be taken.

The approach of Fig. 7 can be used as long as nonlinearities
and integrators are interleaved in the feedback path. In the case
where a nonlinearity does not have an associated integrator to ab-
sorb its delay, we can insert a very high cutoff (close to Nyquist)
1-pole lowpass filter immediately following (or preceding) it. This
allows the delay to be absorbed, whilst hopefully having a min-
imal effect on the behaviour of the system. However, as the in-
serted lowpass has the potential to alter the linear (small signal)
frequency response of the filter, care must again be taken.

6.2. Solving the antialiased implicit equation

Topologies containing delayless feedback require an implicit equa-
tion to be solved in order to be computable. If the implicit equation
is transcendental, which is common with the types of saturating
nonlinearity often used in musical filters, then linearisation is usu-
ally performed. A common approach to this problem is to apply
the Newton–Raphson method. To this end, when the systems con-
tains antialiased nonlinearities we need to be able to differentiate
the antialiased nonlinearities with respect to their instantaneous in-

Φ// // +// •//

z−1 oo
OO

//
ωc

Figure 7: A version of Fig. 6 with eliminated antialiasing delay.

DAFX-141



Proceedings of the 19th International Conference on Digital Audio Effects (DAFx-16), Brno, Czech Republic, September 5–9, 2016

Φ// +//
∫// •//

−
OO

//

Figure 8: A serial chain of an antialiased nonlinearity (9) and a
1-pole low pass filter.

Φ// +// // +// •//
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0.5

Figure 9: Application of the delay elimination across a summation
node in Fig. 8.

put signal. Consider y[n] in (9), expressed as a function of xn:

y[n] = Φ(xn) =
F0(xn)− F0(xn−1)

xn − xn−1
(27)

Then

dΦ

dxn
=
f(xn) · (xn − xn−1)−

(
F0(xn)− F0(xn−1)

)
(xn − xn−1)2

(28)

Similarly to (9), the equation (28) becomes ill-conditioned when
xn ≈ xn−1 . The ill-conditioned case substitute for (28) can be
obtained by differentiating (10) with respect to xn resulting in:

dΦ

dxn
=

1

2
f ′
(xn + xn−1

2

)
+O(xn − xn−1) (29)

6.3. Example: Moog Ladder Filter

Consider the Moog-ladder-like structure [4, 28] in Fig. 11, using
trapezoidal integration. By folding the nonlinearity into the first
of the four 1-pole lowpasses (as shown in Fig. 9) we eliminate
the delay. Then we can apply Newton–Raphson to compute the
solution of the implicit equation.

The performance of the approach was tested by driving the fil-
ter in Fig. 11 at k = 8 (strong selfoscillation) with a 5kHz unit am-
plitude sine oscillator, while sweeping the filter cutoff from 1Hz to
21kHz. We have plotted the spectrograms for non-antialiased and
antialiased versions of filter, where we iterated Newton–Raphson
until the convergence reached −60dB or better.

The output is shown in Fig. 12, at 44.1kHz and 88.2kHz sam-
pling rates. The output at high sampling rate (576kHz) without
antialiasing is provided as a reference. As can be easily seen, the
antialiasing produces a noticeable reduction in aliasing. This has
a particularly strong effect on the dynamics of the filter as the fre-
quency is swept, as it prevents the resonant peak from locking
on to particular frequencies where aliased components coincide.
This change in dynamics is very clearly audible, with the non anti-
aliased versions sounding ‘steppy’ as their cutoff is swept.

Additionally, the extra lowpass method was tested in the same
filter topology. The extra lowpass filter’s normalized prewarped
cutoff was set to ωc = 30 (the corresponding unprewarped cutoff
ω ≈ 0.98π). The results are also shown in Fig. 12, and appear

f(x)// +// // +// •// //

z−1 oo•oo
OO

−
OO

ωc
1+ωc/2

Figure 10: Structure of Fig. 9 with resolved local delayless feed-
back.

+// tanhx// LP1// LP1// LP1// LP1// •// //

oo

−
OO

k

Figure 11: A Moog-ladder-like filter.
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Figure 12: Cutoff sweep of Moog-ladder-like filter with high res-
onance and 5kHz unit sinusoidal input. Shown without antialias-
ing, with antialiasing and integrator delay elimination, and with
antialiasing and extra lowpass delay elimination.

to be very similar to those given by the standard antialiasing tech-
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Figure 13: Effect of the extra lowpass on the amplitude response
of the Moog-ladder-like filter at k = 3. Dashed curves show the
amplitude response in the absence of the extra lowpass. The ω
axis is using the prewarped frequency scale (∞ is Nyquist, 2 is
half Nyquist frequency, 30 is the extra lowpass’s cutoff).

nique. However, the inserted lowpass increases the filter’s reso-
nance and lowers the resonant frequency at high cutoff settings, as
illustrated by Fig. 13. This effect is not strongly audible at sam-
pling rates of 88.2kHz or above.

7. CONCLUSION

In this work, we have described a new method of suppressing
aliasing when processing a digital signal with a nonlinear wave-
shaper. The method allows generated harmonics to be suppressed
above Nyquist, by constructing a continuous-time approximation
of the input signal, applying the waveshaping, and then analyti-
cally applying a convolution with a continuous-time filter kernel.
The method is especially effective in situations where the nonlin-
earity generates a large amount of harmonics, such as a saturating
nonlinearity with large input gain. In these situations, applying
the antialiasing can give a similar improvement to a much larger
level of oversampling. Techniques for applying the method within
feedback systems were also given.

Sound and code examples illustrating the techniques described
in this paper are available at the accompanying website1.
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A. DERIVATION OF RESOLVED OUTPUT IN
ILL-CONDITIONED AREA AND SYSTEM RESPONSE IN

LINEAR CASE

Let us consider one linear segment of x̃(t), the continuous-time
approximation of the input signal, being processed by the nonlin-
earity f :

y(τ) = f(xn + τ(xn−1 − xn)) (30)

In order to calculate the output of the continuous-time convolution,
we must calculate one or more integrals of the form:∫ 1

0

y(τ)h̄(τ) dτ (31)

where h̄ is one particular unipolar piecewise segment of the convo-
lution kernel. The analytical expressions for integrals (31) become

ill-conditioned at xn ≈ xn−1, therefore we wish to obtain alter-
native expressions that can be substituted for the ill-conditioned
case.

(31) can be seen as a weighted average of y(τ), where h̄(τ)
is the weight function. From the mean value theorem there exists
τ0 ∈ [0, 1] such that:∫ 1

0

y(τ)h̄(τ) dτ = y(τ0)

∫ 1

0

h̄(τ) dτ (32)

For xn ≈ xn−1, in principle any τ0 ∈ [0, 1] can be chosen for the
approximation. However, we wish to find the most optimal choice.
Introducing a normalized weight function:

w(τ) = h̄(τ)
/∫ 1

0

h̄(τ) dτ (33)

we rewrite (32) as: ∫ 1

0

y(τ)w(τ) dτ = y(τ0) (34)

For xn ≈ xn−1 the function y(τ) can be considered approxi-
mately linear on [0, 1]:

y(τ) = a+ bτ +O((xn − xn−1)2) (35)

where the error term is assuming the bounded second derivative of
f(x). From (34) we then have:

y(τ0) =

∫ 1

0

y(τ)w(τ) dτ

=

∫ 1

0

(a+ bτ +O((xn − xn−1)2))w(τ) dτ

=(a+O((xn − xn−1)2))

∫ 1

0

w(τ) dτ + b

∫ 1

0

τw(τ) dτ

=a+ bM1 +O((xn − xn−1)2)

=y(M1) +O((xn − xn−1)2) (36)

where

M1 =

∫ 1

0

τw(τ) dτ (37)

is the first moment of the weight function w(τ). That is

y(τ0) = y(M1) +O((xn − xn−1)2) (38)

and therefore we choose

τ0 = M1 =

∫ 1

0

τ h̄(τ) dτ
/∫ 1

0

h̄(τ) dτ (39)

Using this τ0 and (32), we can then compute the integrals (31) in
the ill-conditioned case.

Further, for f(x) = x the equation (30) turns into

y(τ) = xn + τ(xn−1 − xn)) (40)

while the term O((xn − xn−1)2) vanishes from (35) and the fol-
lowing equations. Using (40) and (39) we turn (32) into∫ 1

0

y(τ)h̄(τ) dτ = (xn + (xn−1 − xn)M1)

∫ 1

0

h̄(τ) dτ (41)

which allows us to calculate the response of the system in cases
where f(x) is approximately transparent.
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ABSTRACT

We present a strategy for static morphing that relies on the sophis-
ticated interpolation of the parameters of the signal model and the
independent control of high-level audio features. The source and
target signals are decomposed into deterministic, quasi-determini-
stic and stochastic parts, and are processed separately according to
sinusoidal modeling and spectral envelope estimation. We gain
further intuitive control over the morphing process by altering the
interpolated spectrum according to target values of audio descrip-
tors through an optimization process. The proposed approach leads
to convincing morphing results in the case of sustained or percus-
sive, harmonic and inharmonic sounds of possibly different dura-
tions.

1. INTRODUCTION AND RELATED WORK

Sound morphing plays an important role in many areas includ-
ing sound design for compositional applications and video games,
speech manipulation, and in generating stimuli with specific and
controllable acoustic parameters that are used in psychoacoustic
experiments [1, 2]. Despite the extensive literature on this topic,
there is no consensus on a single definition of audio morphing,
and an extensive discussion on different viewpoints can be found
in [3]. In this paper we present a strategy for stationary morphing,
as opposed to dynamic morphing, in which a source sound gets
continuously transformed over time into a target sound. We con-
sider static morphing as a process that hybridizes a source sound
with target sounds, or target audio features, through the indepen-
dent manipulation of acoustic parameters.

Additive synthesis is one of the most flexible techniques, and
as such many morphing strategies rely on interpolating the param-
eters of a sinusoidal model [4, 5, 6, 7, 8]. Tellman et al. [4] first
pair the partials of the two sounds by comparing their frequency
ratios to the fundamental frequency, and afterwards they interpo-
late their frequency and amplitude values. They also time-scale the
two sounds to morph between their tremolo and vibrato rates based
on assumptions that usually do not hold in the case of most natural
sounds. Osaka [5] first performs dynamic time warping (DTW),
and then he finds partials’ correspondences by dynamic program-
ming. The residual is modeled with short partials and is morphed
according to stochastic parameter interpolation with hypothesized
distributions. Fitz et al. [6] estimate the parameters of the “Band-
width Enhanced Model” [9] by reassigned spectrograms, and use
morphing envelopes to control the evolution of the frequency, am-
plitude, bandwidth and noisiness of the morph. Haken et al. [7]
use a similar technique to morph in real time between pre-analyzed
sounds that are placed in a three-dimensional timbre control space.
Boccardi and Drioli [8] use Gaussian Mixture Models (GMM) to

morph only the partials’ magnitudes, which are derived from Spec-
tral Modeling Synthesis (SMS) [10]. According to Boccardi and
Drioli, since the morphing is based only on magnitude transfor-
mations, the source and target signals should belong to the same
instrument family.

Other morphing strategies rely on interpolating the parameters
of a source-filter model. Slaney et al. [11] construct a multidimen-
sional space that encodes spectral shape and fundamental frequ-
ency on orthogonal axes. Spectral shape is derived through Mel-
Frequency Cepstral Coefficients (MFCC) and fundamental frequ-
ency by the residual spectrogram. The optimum temporal match
between the source and target sounds is found using DTW based
on MFCC distances. The smooth and pitch spectrograms are in-
terpolated separately. Ezzat et al. [12] argue that interpolating the
spectral envelopes by simple cross-fading, as in [11], does not ac-
count for proper formant shifting. They describe a method for find-
ing correspondences between spectral envelopes so as to encode
the formant shifting that occurs from a source to a target sound.
The morphing is based on interpolating the warped versions of the
two spectral envelopes, and morphing between the residuals is left
for future work.

Other authors claim to control synthesis parameters or to mor-
ph according to perceptual dimensions by using high-level audio
features. Hoffman and Cook [13] propose a general framework for
feature-based synthesis according to an optimization scheme that
maps synthesis parameters to target feature values. The results are
very preliminary: the source sound consists of stationary sinusoids
and noise that is spectrally shaped through MFCCs; the target fea-
tures are limited to spectral centroid, spectral roll-off and funda-
mental frequency histograms. Park et al. [14] treat single features
as modulation signals that are applied to a source sound. Accord-
ing to their proposed scheme, different features cannot be con-
trolled independently and thus the combination of multiple target
features leads to unpredictable results. Mintz [15] uses linear con-
strained optimization on audio descriptors to control the parame-
ters of an additive-plus-noise synthesizer. Williams and Brookes
[16] morph using SMS according to verbal attributes that corre-
late with audio descriptors and in [17] employ a similar technique
to morph between prerecorded sounds and sounds captured in real
time. Hikichi and Osaka [18] adjust the parameters of a physi-
cal model using the spectral centroid as a reference to morph be-
tween piano and guitar sounds, and Primavera et al. [19] focus on
the importance of decay time when morphing between percussive
sounds of the same family. Coleman and Bonada [20] derive an-
alytic relations for the spectral centroid and standard deviation to
control adaptive effects for resampling and band-pass equalization.
Caetano and Rodet in [21] investigate spectral envelope represen-
tations, which lead to linearly varying values of audio descriptors
when linearly interpolated according to a morphing factor, and in
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[22] use optimization techniques based on genetic algorithms to
obtain morphed spectral envelopes that approximate target audio
descriptor values.

Other approaches rely strictly on the time domain [23] or on
time-frequency representations [24, 25]. Röbel [23] models the
signals as dynamical systems using neural networks and morphs
by interpolating their corresponding attractors. According to the
author, the attractors of the two sounds should be topologically
equivalent for achieving a convincing morphing. Ahmad et al.
[24] propose a scheme for morphing between transient and non-
stationary signals using the discrete wavelet transform (DWT) al-
ong with singular value decomposition (SVD) for interpolating the
wavelet coefficients. Olivero et al. [25] propose a sound mor-
phing technique without making any presumptions about the na-
ture of the signal or its underlying model. The technique relies
on the interpolation of Gabor masks and its penalty-based ver-
sion is shown to encompass typical cross-synthesis strategies used
in computer music applications. Furthermore, the interpretation
of one of the strategies in terms of Bregman divergences allows
them to include constraints that force morphing intermediates to
exhibit a predesigned temporal sequence of centroids. This ap-
proach works well only as long as there is overlapping energy be-
tween the sounds and in our opinion, certain presumptions about
the nature of the signal are necessary for choosing an appropriate
morphing strategy.

Table 1 shows a brief comparison between the above-presented
methods that are applicable to static morphing and the current ap-
proach. In Section 2 we present an overview of our proposed ap-
proach. Section 3 describes in detail the morphing process based
on parameter interpolation, and Section 4 presents the optimiza-
tion scheme used for morphing based on higher-level audio fea-
tures. In Section 5 we present our concluding remarks and future
improvements of our method.

2. A HYBRID APPROACH TO SOUND MORPHING

The morphing scheme presented here requires a source sound, to
which we apply timbral transformations according to a morphing
factor “α” (0 ≤ α ≤ 1), and a target. A value of α = 0 corre-
sponds to the source sound and a value of α = 1 corresponds to
the target sound. The target could consist only of specific audio
descriptor values that are obtained according to a morphing factor
αd and applied to the source sound, or it could be a different sound
from which we extract the audio descriptors that we want to morph
accordingly, but we also interpolate between the spectrotempo-
ral fine structures of the two according to a morphing factor αp.
Depending on their spectral content, the source and target sounds
can be decomposed into three parts as in [5]: a deterministic part,
which is related to harmonic and inharmonic qualities; a quasi-
deterministic part, which is more related to transients and spec-
trotemporal irregularities; and a stochastic part, which is related
to noise color. The deterministic and quasi-deterministic parts are
estimated through sinusoidal modeling from which we obtain the
time-varying frequencies, amplitudes and phases of the partials.
The stochastic parts are derived by subtracting the deterministic
and quasi-deterministic parts from the original signals [10] and are
modeled by estimating their spectral envelopes.

In the next step, we compute the time-varying audio descrip-
tors on each of the three parts and for each analysis frame. Au-
dio descriptors that are applicable to the current approach are pre-
sented in detail in [26]. For the purposes of this study we have ex-

perimented with: spectral centroid and higher order statistical mo-
ments of the spectrum including the standard deviation (referred
to as spectral spread), spectral skewness, and spectral kurtosis;
spectral decrease; and spectral deviation, which is only computed
on the deterministic part of the signal. Descriptors that are ap-
plicable exclusively to harmonic (or slightly inharmonic) signals,
such as tristimulus values and the odd-to-even harmonic ratio, are
also applicable. Natural sounds, however, rarely exhibit such well-
defined properties, and thus such descriptors would be more suit-
able in the case of synthetic or simplified natural sounds. Once
we calculate the descriptors of the source and target sounds we
can compute intermediate values according to the morphing fac-
tor αd, and we interpolate the model parameters of the determini-
stic, quasi-deterministic and stochastic parts separately. The inter-
mediate values of audio descriptors are applied to the parameter-
interpolated signals using the optimization scheme described in
Section 4.

We chose to model differently the stochastic part, on the one
hand, and the deterministic and quasi-deterministic parts, on the
other hand, because not all sounds exhibit a strong formant struc-
ture. As such, spectral envelopes would be a poor estimation of
the signal, unless they are estimated by the tracked partials, as in
[10, 27, 28]. On the other hand, it is well known that if the signal
is stochastic-only, sinusoidal modeling usually leads to artifacts
and so a morphing scheme based exclusively on this model would
degrade the sound quality. The separation into deterministic and
quasi-deterministic parts is necessary for improving the estima-
tion of partial-to-partial correspondences, as we discuss in Section
3.1.1. In the following we assume that the source and target sounds
are equalized in loudness, have the same fundamental frequencies,
and can be of different durations.

3. PARAMETER INTERPOLATION

In this section we describe the interpolation schemes based on the
parameters of the sinusoidal model and the parameters that model
the spectral envelopes of the residuals.

3.1. Deterministic and quasi-deterministic parts

The following scheme is used for both the harmonic and quasi-
harmonic parts. Before interpolating the parameters of the sinu-
soidal model, it is necessary to find partial-to-partial correspon-
dences between the source and target sounds.

3.1.1. Estimating partial-to-partial correspondences

The deterministic part consists of partials that are long in duration,
with respect to the total duration of the analyzed sound, whereas
the quasi-deterministic part consists of shorter partials that are gen-
erally unstable in frequency (short chirps), have lower amplitude
values, and surround the harmonic or inharmonic partials of the
deterministic part. Such partials may also occur as artifacts of the
sinusoidal analysis algorithm, especially in cases where the sinu-
soids are of low amplitude and the tracking algorithm fails to per-
form a reliable peak-to-peak matching.

A one-to-one correspondence between the partials of the sour-
ce and target sounds is very unlikely to occur unless we limit the
number of tracked partials to the most prominent ones with respect
to their durations and amplitude thresholds. However, there are
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Table 1: A brief comparison of methods for static morphing.

Author(s) and papers Sound model & morphing
strategy

Partial matching High-level audio features

Osaka [5] Sinusoidal modeling. The
residual is modeled with short
partials according to hypothe-
sized distributions.

Yes No

Tellman et al. [4] Sinusoidal modeling. No treat-
ment of the residual.

Yes No

Haken et al. [7] Noise-enhanced sinusoidal
modeling.

No Amplitude and fundamental
frequency

Boccardi and Drioli [8] GMM applied to SMS. No
treatment of the residual.

No No

Caetano and Rodet [22] Spectral envelopes for the
deterministic and stochastic
parts.

No Spectral audio descriptors

Röbel [23] Dynamical systems. Not applicable No
Ahmad et al. [24] DWT with SVD. Not applicable No
Olivero et al. [25] Gabor transform with con-

strained Gabor masks.
Not applicable Arithmetic, harmonic and geo-

metric centroids
Kazazis et al. [present docu-
ment]

Sinusoidal modeling and spec-
tral envelopes.

Yes Spectral and harmonic audio
descriptors

cases in which even if there is a limit to the number of tracked par-
tials, the assumption of a one-to-one correspondence as described
in [21] could be problematic. For example, when morphing from
a sound that has odd and even harmonics to a sound that has only
odd ones, we would ideally interpolate only the frequency and am-
plitude values of the odd harmonics of the two sounds to avoid the
artifacts that would result from interpolating the odd with both the
odd and even harmonics of the two sounds.

For finding correspondences between the partials of the source
and target sounds, we use a k-nearest neighbors classifier (k-NN)
based on Euclidean frequency proximity, and under the condition
that the vector that is to be classified must have the same or a
smaller number of partials. Obviously, the k-NN classifier does
not return a one-to-one, but rather a many-to-one, mapping, so we
choose the closest neighbor in frequency, and we treat the rest of
the neighbors as unmatched partials. The unmatched partials retain
their original frequencies but are initialized with zero amplitude
levels, which gradually increase according to the morphing fac-
tor. After experimenting with different sounds, we concluded that
such treatment does not lead to perceptual stream segregation, but
rather to a seamless partial fade-in effect that facilitates the mor-
phing between inharmonic sounds or between sounds that consist
of unequal numbers of partials (see Fig. 1).

3.1.2. Interpolation of partials’ breakpoint values

We represent each partial according to its start and end times, and
with time breakpoints that are set according to its frequency and
amplitude variations. If the source and target sounds have a differ-
ent number of breakpoints, we simply interpolate the breakpoint
values of the shorter one in order to match the number of break-
points of the longer one. This representation enables us to inter-
polate the parameters at the level of events, which offers greater
control over the morphing process as opposed to parameter inter-
polation between time frames. If the partials of the source and
target sounds differ in duration, we are able to achieve intermedi-

ate durations by interpolating the breakpoint values of each partial
according to the morphing factor. Interpolating between the start
and end times of the partials also allows us to morph their onset
asynchrony. We use the following expressions for calculating the
interpolated values of partials’ frequencies and amplitudes, respec-
tively:

f(αp) = αpfs + (1− αp)ft (1)
log10(g(αp)) = αp log10(gs) + (1− αp) log10(gt) (2)

where the subscripts “s”, “t” denote the source and target, respec-
tively, and αp is the morphing factor related to parameter interpo-
lation. Though Fig. 1 does not show a typical harmonic spectrum
of the analyzed sounds because of the very low amplitude detec-
tion threshold (−90 dB) that was used in the partial-tracking al-
gorithm, and which subsequently gave rise to auxiliary harmonic
components, it clearly illustrates the estimation of partial-to-partial
correspondences and the interpolation of the partials’ breakpoint
values.

3.2. Stochastic part

For morphing the stochastic part, we first estimate for every anal-
ysis frame its spectral envelope using Linear Predictive Coding
(LPC), because we assume that the modeled signal is random,
which fits exactly the basic assumption of LPC. We then get a tem-
poral sequence of spectral envelopes (one for each frame), which
allows us to render a time-varying Power Spectral Density (PSD)
of the stochastic part. In order to morph, we interpolate for each
time between the spectral envelope of the source and the target at
this corresponding time. For a high-quality interpolation of the
spectral envelopes, it is necessary to convert the LPC transverse
coefficients to an alternative representation, because they do not in-
terpolate well and might lead to unstable filters. Line Spectral Fre-
quencies (LSF), Reflection Coefficients (RC) and Log Area Ratio
(LAR) have been shown to interpolate smoothly, lead to stable in-
termediate filters, and lead to linear variations of audio descriptors
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Figure 1: Partial-to-partial correspondences and parameter interpolation of the deterministic part. Morphing from a clarinet sound to a
bassoon with αp = 0.5. Gray-level values correspond to the partials’ amplitude values.

when linearly interpolated [21, 29]. We choose to interpolate the
LAR coefficients (Eq. 3) as they both guarantee the filter’s stabil-
ity and have a physical interpretation, which could be specifically
useful when trying to morph between sounds that were created by
physical modeling synthesis as in [5, 2]. The filters’ coefficients
are interpolated according to Eq. (2).

lar(rα) = αplar(rs) + (1− αp)lar(rt) (3)

where lar is a vector the coefficients of which read:

lar(r)[i] = ln

(
1− r(i)
1 + r(i)

)
, 1 ≤ i ≤ n (4)

and n is the number of reflection coefficients r. The morphed
residual is synthesized by filtered white noise after the inversion
of the LAR coefficients to LPC coefficients.

3.3. Temporal Energy Envelope

In the present approach, the temporal energy envelope is a conse-
quence of morphing. The parts of the signal that were morphed in-
dependently are added together to form the parameter-interpolated
signal and thus, the energy envelope is constructed from the time-
varying amplitudes of the partials and the gains of the filter.

4. FEATURE INTERPOLATION

The desired values of descriptors along with the interpolated spec-
trum form an underdetermined system because in theory there are
an infinite number of sounds that have the same audio descrip-
tor values. As previously described in Section 2, the target may
consist only of target descriptor valuesDa, in which case the mor-
phing is based exclusively on high-level features. Fig. 2 shows
an example of two sounds exchanging time-varying spectral cen-
troids, where αp = 0, since the source is the Timpani without any
parameter-based morphing, and αd = 1, because we apply to the
source spectrum the spectral centroid values of the Tuba, which
is the target. For each time frame, we match the audio descriptor
values obtained according to a specific αd to the interpolated spec-
trum by optimizing the amplitudes of the sinusoids or FFT bins
of the interpolated spectrum xj under the constraints of the target
values of descriptors Da. More formally this can be expressed as:

minx

N∑
j=1

|xj − gj | subject to D(x) = Da (5)

where gj are the parameter-interpolated amplitude values accord-
ing to αp, N is the total number of partials or FFT bins, and Da
is the target value of D(x), which can be one of the following
descriptors (Eq. (6) – (11)).
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Figure 2: The spectral centroid time series of a Tuba sound applied to a Timpani (the actual values of the time series are shown in Fig. 3.)

m1 =

N∑
j=1

fj · pj (6)

m2 = (

N∑
j=1

(fj −m1)
2 · pj)1/2 (7)

m3 = (

N∑
j=1

(fj −m1)
3 · pj)/m3

2 (8)

m4 = (

N∑
j=1

(fj −m1)
4 · pj)/m4

2 (9)

decr =
1∑N
j=2 xj

N∑
j=2

xj − x1
j − 1

(10)

dev =
1

N

N∑
j=1

(xj − SE(fj)) (11)

where pj are the normalized values of xj [27]:

pj =
xj∑N
j=1 xj

(12)

dev denotes the harmonic spectral deviation and SE(fj) is the
value of the spectral envelope at frequency fj , which is estimated
by averaging the values of three adjacent partials; decr denotes
the spectral decrease; m1,m2,m3 and m4 denote the spectral

centroid, spectral spread, spectral skewness and spectral kurtosis
respectively. The optimization is run in Matlab using the “fmin-
con” function along with the “sqp” method, which are suitable
for solving constrained and non-linear problems [30]. Since the
audio descriptors have different ranges, it is necessary to normal-
ize them for assessing the convergence of the algorithm. Using
this optimization scheme, we are able to set different morphing
factors for each descriptor independently, as long as a feasible so-
lution among these values exists. Furthermore, the choice of the
objective function (Eq. 5) forces the optimized spectrum to be as
close as possible to the interpolated one by keeping its frequency
content unchanged and by altering its amplitude values as little as
possible. Fig. 3 shows an example of morphing the parameter-
interpolated signal according to varying morphing values of spec-
tral centroid and spectral spread while preserving a constant value
for the rest. Using a sinusoidal model for the deterministic and
quasi-deterministic parts, the optimized values correspond directly
to the parameters of additive synthesis, and the residual reaches its
target values by altering the energy of the FFT bins. As in Section
3.1.2, if the source and target sounds are of different durations, we
simply interpolate the descriptor values of the shorter one in order
to match them to the analysis frames of the longer one.

5. CONCLUSIONS AND FUTURE WORK

We presented a hybrid approach to sound morphing based on sinus-
oid-plus-noise modeling and higher-level audio features. Dividing
the signal into deterministic, quasi-deterministic, and stochastic
parts and processing them separately allows for finer control of
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Figure 3: Morphing the parameter interpolated signal by audio descriptors. Spectral centroid and spectral spread vary according to the
morphing factor α. The rest of descriptors preserve constant target values according to their median when interpolated with αd = 0.5.

the synthesis parameters and also enables us to morph between
deterministic and quasi-deterministic signals of different durations.
The morphed sound is synthesized using additive synthesis for the
deterministic and quasi-deterministic parts and filtered white noise
for the stochastic part. The spectrum of the morphed signal is
further refined according to target audio descriptor values through
an optimization process. We have shown that this process allows
us to control accurately and independently several audio features,
provided that a feasible solution among them exists. Audio ex-
amples are available at: https://www.mcgill.ca/mpcl/resources-0/
supplementary-materials. The proposed scheme is more suitable
for sustained and percussive sounds, which can either be harmonic
or inharmonic, rather than textural sounds. Their residuals how-
ever, should be stationary (or pseudo-stationary) as opposed to
sound texture, the residual of which is usually non-stationary and
may consist of sharp transients. A refinement of our approach
would be to find sophisticated ways to interpolate between dif-
ferent tremolo and vibrato rates while preserving the overall spec-
trotemporal complexity of the partials. Finally, we by no means
claim that the use of high-level audio features enables a perceptu-
ally based sound morphing. Rather, it offers a more intuitive con-
trol over the morphing process, as in the case of adaptive effects
[31]. Up to now only spectral centroid and log-attack time have
been shown to be significantly correlated with perceptual dimen-
sions, cf. [1, 32]. If and how such audio features collapse to single
perceptual dimensions remains to be empirically determined.
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ABSTRACT

In this paper we propose a real-time sound synthesis method using
a force-based algorithm to control sinusoidal partials. This syn-
thesis method can generate various sounds from musical tones and
noises with three kinds of intuitive parameters, which are attractive
force, repulsive force and resistance. However, the implementation
of this method in real-time has difficulties due to a large volume
of calculations for manipulating thousands or more partials. In or-
der to resolve these difficulties, we utilize a GPU-based parallel
computing technology and precalculations. Since GPUs allowed
us to implement powerful simultaneous parallel processing, this
synthesis method is made more efficient by using GPUs. Further-
more, by using familiar musical features, which include MIDI in-
put for playing the synthesizer and ADSR envelope generators for
time-varying parameters, an intuitive controller for this synthesis
method is accomplished.

1. INTRODUCTION

A force-based sound synthesis [1] is an application of sinusoidal
partial editing techniques. This synthesis method can generate
various sounds from musical tones and noises with three kinds
of intuitive parameters, which are attractive forces to a reference
spectrum, repulsive forces between partials, and resistances for de-
creasing the speeds of the partials. However, this method requires
a large volume of calculations due to a need of some thousands or
more partials to control.

By recent developments of graphics processing units (GPUs)
[2] and APIs for handling these processors, an implementation
of an efficient simultaneous parallel processing has been realized.
GPUs are originally developed for computer graphics and visual
image processing, however, they have begun to be used for gen-
eral purpose due to a popularization of general-purpose comput-
ing on graphics processing units (GPGPU) [3]. And they recently
have been utilized for sound processing and syntheses [4, 5, 6].
A GPGPU framework is considered of value for a acceleration of
force-based sound synthesis, because this synthesis method needs
many simple calculations simultaneously.

In this paper we propose a process to accomplish a real-time
sound synthesis using a force-based algorithm by utilizing a GPU-
based parallel computing technique. All programs presented in
this paper are written in Swift [7] and use Metal API [8] for GPU
processing.

2. FORCE-BASED SOUND SYNTHESIS

The sound synthesis method presented in this paper uses a force-
based algorithm, which is commonly known as a graph drawing

algorithm [9, 10]. The fundamental process for the synthesis is
described in this section.

2.1. Analysis of a Reference Sound Source

The first step is the analysis of a reference sound source. The
Short-Time Fourier Transform (STFT) analysis [11] is used for
this step, where amplitudes A(k) for each frequency F (k) are de-
tected by

X(k) =

N−1X
n=0

x(n)e−2πikn/N (1)

A(k) = |X(k)| (2)

F (k) =
kR

N
(3)

where x(n) consists of N samples of a windowed waveform and
R represents the sampling rate.

2.2. Distribution of Partials

The synthesis phase for the proposed method begins by generating
partials in a specific range of frequencies. The amplitudes of the
partials are unchangeable. The user specifies the maximum num-
ber of partials and the number of active partials is determined in
proportion to the amplitude of the reference sound as (4).

ν = νmax

N−1X
k=0

αA(k) (4)

In this equation, α represents a constant number for scaling the
amplitude. The active or inactive partials are randomly chosen.
In this step, since the frequencies of the partials are random, an
unpitched sound is typically created.

2.3. Attractive Force

Attractive forces, which are applied to the partials, are generated
from the spectrum detected from the reference sound. A partial
is attracted to neighboring frequency components. The force is
inversely proportional to the square of the distance between the
target frequency component and the frequency of the partial.

fa(P (i)) =
X

0<|F (k)−PF (i)|<τ

sgn(F (k) − PF (i))gaA(k)

|F (k) − PF (i)|2 (5)

fa(P (i)) represents an attractive force for partial P (i) of which
the frequency is PF (i), ga is a constant value to adjust the strength
of the force, and τ corresponds to the range of the effective fre-
quency components.
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2.4. Repulsive Force

To avoid congestion of partials at a small peak in the spectrum,
repulsive forces are generated between every pair of partials. The
force is inversely proportional to the square of the distance be-
tween the partials.

fr(P (i)) =
X

PF (j) 6=PF (i)

sgn(PF (i) − PF (j))gr

|PF (i) − PF (j)|2 (6)

fr(P (i)) represents a repulsive force for partial P (i). By using all
pairs of partials for the calculation, partials depart from condensa-
tions.

2.5. Resistance

When the reference sound has a static frequency component, the
partials have the risk of periodic vibration around a spectral peak.
This is because the attractive forces convert back and forth be-
tween potential and kinetic energy. Therefore, the oscillations are
inhibited by implementing resistance.

f(P (n, i)) = fa(P (n, i)) + fr(P (n, i)) (7)

v(P (n, i)) = r(v(P (n − 1, i)) + f(P (n − 1, i))) (8)

In this equation, v(P (n, i)) represents a current speed for partial
P (i), n is the current time frame, and r is a resistance value be-
tween 0 and 1.

2.6. Synthesis

The forces, which are derived above, are applied to partials at every
frame by addition of the forces.

PF (n, i) = PF (n − 1, i) + v(P (n − 1, i)) (9)

The sound synthesis is accomplished using a common oscillator
bank synthesis technique [12, 13] which is realized by

y(t) =
X
∀i

A cos[2πPF (n, i)t + φi] (10)

where A represents a constant amplitude for each partial, and φi is
an initial phase.

3. GPU-BASED PARALLEL COMPUTING

3.1. General-purpose computing on graphics processing units

General-purpose computing on graphics processing units (GPGPU)
refers to the use of GPUs for general purpose parallel computing,
and performs computation in applications traditionally handled by
the central processing unit (CPU), outside of computer graphics
and image processing. GPU has ability to process multiple tasks
simultaneously by having thousands of cores. OpenCL [14] and
NVidia’s CUDA [15] are two popular frameworks to implement
general purpose computations on GPUs. The synthesis method
this paper proposes uses Apple’s Metal API [8] for low-overhead
access to the GPUs.

3.2. Metal API

Metal [8] is a graphics application programming interface (API),
which allows low-level and low-overhead access to GPUs. Metal
is developed and provided by Apple, and is available to use on
iOS and Mac OS X. The previous implementation of this syn-
thesis method was written in Objective-C and ran on Mac OS X.
The real-time version, which is proposed in this paper, is rewrit-
ten in Swift, and is still implemented for Mac OS, thus, Apple’s
Metal API is expected to deliver high performance and has good
prospects for the future. Furthermore, further possibilities of im-
plementation for mobile devices are expected, because Metal is
compatible with iOS.

By using Metal framework, a low-overhead interface, a mem-
ory and resource management, integrated support for both graphics
and compute operations, and precompiled shaders are provided.
For the force-based sound synthesis, the handling of the current
frequency, the resistance for speed, and the attractive/repulsive
forces are required for acceleration to manipulate each partial com-
ponent. Therefore, the current frequency and speed need to be
stored until the calculations for the next time frame are performed.

4. IMPLEMENTATIONS

We present implementations of GPU-based parallel computing tech-
nologies and conceptions for the efficiencies of calculations for
force-based sound synthesis.

4.1. Attractive and Repulsive Forces

The attractive force for a partial is proportional to the amplitude
for a target frequency component, and inversely proportional to
the square of the distance between the target frequency component
and the frequency of the partial. The repulsive force is inversely
proportional to the square of the distance between the partials.

These two forces are possible to calculate by using the con-
volutions of the functions below with the reference spectrum for
the attractive forces and the spectrum of current partials for the
repulsive forces.

ha(F ) =
−sgn(F )ga

F 2
(11)

F is a frequency, ga is a value to adjust the strength of the force.
and ha(F ) is a calculated function for attractive forces.

Figure 1: Function for calculating attractive forces.
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hr(F ) =
sgn(F )gr

F 2
(12)

F is a frequency, gr is a value to adjust the strength of forces. and
hr(F ) is a calculated function for repulsive forces.

Figure 2: Function for calculating repulsive forces.

The summation of these forces are described the following
equation 13.

α(F ) = ha(F ) ∗ Ad(F ) + hr(F ) ∗ Ac(F ) (13)

where α(F ) is a summation of the attractive and repulsive forces,
Ad(F ) is an amplitude for a frequency F from a reference source,
and Ac(F ) is an amplitude from current partials.

4.2. Updating of Frequencies of Partials

The speed of the frequency change v(P (n, i)) and the frequency
of a partial PF (n, i) for the newer frame are calculated by the
equasion 8 and 9 in section 2. Since these calculations are achieved
by using simple summations and multiplications, parallel comput-
ing is applied without difficulties.

5. MIDI INPUT

To use the force-based synthesis method for a musical performance,
MIDI note messages [16] are available to input. The fundamental
frequency for a reference source spectrum is calculated from the
“note number”, and the maximum number of partials is propor-
tional to the “velocity”.

5.1. Preset Reference Spectra

Efficient computations are accomplished by using GPU-based par-
allel computing presented in previous sections, however, the vol-
ume of calculations is still large. Therefore, a preparation of ref-
erence spectral sources and precalculations of the attractive forces
are valuable for the achievements of a stable real-time synthesis
environment.

The force-based synthesis is possible to generate a variety of
timbres by controlling the combination of attractive and repulsive
forces and a resistance, thus, simple harmonic series are useful
enough. By preparing the reference source, the attractive forces
ha(F ) ∗ Ad(F ) in equation 13 are also available to prepare.

5.2. ADSR Envelopes

This synthesis method can generate various sounds by adjusting
the parameters. In particular, the coefficients for attractive force
ga in the equation 5, repulsive force gr in the equation 6, and re-
sistance r in the equation 8 are important for controlling the simi-
larity to the reference sound and the quickness of transitions.

By implementing time-varying controls for these parameters,
users can dynamically synthesize various sounds. The synthe-
sis method allows users to assign attack time, decay time, sus-
tain value, and release time (ADSR) functions, and minimum and
maximum values to the three parameters. The ADSR envelope
generator model is generally used in existing synthesizers through
the ages, and familiar to musicians. These dynamic controls are
simultaneously activated with MIDI note messages and adjusted
with MIDI control messages.

5.3. Synthesized Result

In this section, we present a synthesized result of this method.
A spectrogram of a reference sound source for this example is

made from sawtooth waves as shown in Figure 4. In this source
sound, a fundamental pitch increase, and every overtones are con-
tained.

Figure 3: Input MIDI notes.

Figure 4: Reference sound source (sawtooth wave).

By applying ADSR envelopes in Figure 5 for 5000 partials, a
result as shown in Figure 6 is generated. This result shows that
a strong repulsive force at an attack makes noise and the partials
are gradually attracted to the reference source. At the first note,
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Figure 5: ADSR envelopes.

Figure 6: Synthesized result.

randomly distributed partials cannot converge on reference over-
tones during the short duration of 500ms. Since the second and
third notes start from partials with density fluctuation, which are
made by the previous note, they are easily attracted on the refer-
ence overtones.

6. CONCLUSIONS

In this paper, a real-time application for force-based sound synthe-
sis, which is accomplished by using GPU-based parallel comput-
ing, is proposed. The utilization of GPUs is powerful and efficient
for this synthesis method. Although it is difficult for off-the-shelf
personal computers to generate high-quality results in real-time in
this time, thus, some ideas for reducing the calculation cost are im-
plemented. In this section, we provide the process for the real-time
synthesis.

6.1. Preparations

1. Select one reference source sound which is previously de-
tected frequency components

2. Calculate attractive forces from the reference spectrum

3. Setup the maximum number of partials and prepare the cor-
responding shader

6.2. Real-Time Processing

1. Receive MIDI note message

2. Scale the attractive force function corresponding to the note
number.

3. Distribute partials corresponding to the velocity and ADSR
function.

4. Calculate attractive and repulsive forces for each partial

5. Calculate speeds and frequencies for each partial

6. Store the new speeds and frequencies of the partials

7. Synthesize the sound for the current frame by using inverse
fast Fourier transform (IFFT) [11]

6.3. Future works

The major limitation for this synthesis method is caused by the
limit of the frame-rate, which depends on the capabilities of GPUs.
GPUs are generally designed for manipulating visual data, there-
fore, the upper limit of the frame-rate is not enough for a high-
quality sound synthesis. We consider that the development of the
interpolation techniques between frames has value, though the im-
provement of these kind of processors are expected.
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8. APPENDIX: SOUND EXAMPLES

Sound examples are available online at the following address.

http://www.ryoho.com/software/sinfba/
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ABSTRACT

The vibration of strings in musical instruments depends not only
on their geometry and material but also on their fixing at the ends
of the string. In physical terms it is described by impedance bound-
ary conditions. This contribution presents a functional transforma-
tion model for a vibrating string which is coupled to an external
boundary circuit. Delay-free loops in the synthesis algorithm are
avoided by a state-space formulation. The value of the boundary
impedance can be adjusted without altering the core synthesis al-
gorithm.

1. INTRODUCTION

The vibrations of strings, bars and other sound generating objects
in musical instruments are a well studied subject. Based on the
fundamental laws of elasticity, their dynamic behavior is accu-
rately described by differential equations of different kinds.

There is a variety of methods to turn these differential equa-
tions into computational models by discretization in time and space
or by transformation into the respective frequency domains. The
procedure of deriving a real-time algorithm from a physical de-
scription of parts of a musical instrument is called physical mod-
eling sound synthesis.

The dynamics of a vibrating body depend not only on proper-
ties like shape and material but also on the contact conditions to
other parts of the musical instrument or the hands of the musician.
These are relatively easy to model if the ends of a string are fixed
by frets or bridges or if the ends of a bar in a xylophone are free
from external forces.

Other types of contact conditions need more careful consid-
eration. The touch and the movement of the musicians fingers
can be modelled only approximately with mathematical equations.
The interaction between the strings, the bridge, and the body of
a musical instrument requires careful measurement of parameters
like body resonances and bridge impedances. Since there is an
abundance of research in this field, only a few books and overview
articles with extensive references can be addressed here.

The corresponding boundary conditions are described in [1,
Chap. 2.12] by conditions for the deflection (fixed end) or its first
order space derivative (free end) or by complex impedances at the
boundaries. Also [2, Chap. 6.1.9] discusses not only the simple
cases of fixed and free ends but also lossy boundary conditions. In
finite difference models, the boundary conditions are often formu-
lated after spatial discretization by involving virtual spatial sample
points beyond the boundary [2, 3]. Waveguide methods model the
influence of the boundary on the reflection of waves by reflection

factors or reflection filters (bridge filters) [3, 4]. The string-bridge
interaction is described by a mechanical impedance (admittance)
in [5].

A particular physical modeling technique is the functional trans-
formation method [6]. It is based on the spatial eigenfunctions of
vibrating bodies, which are most easily determined for fixed and
for free ends. However [7] discusses also impedance boundary
conditions for frequency independent impedances. The more in-
volved case of frequency dependent impedances (typically bridge
impedances) is discussed in [8] by incorporating the boundary
impedance into the synthesis algorithm.

A conceptually simpler approach has been presented in gen-
eral terms in [9]. There the synthesis algorithm is kept separate
from the boundary model. This way, the impedance in the bound-
ary model can be adjusted during operation without affecting the
structure of the string model. The approach is motivated by the
plant-controller loop familiar from control theory.

How these adjustable boundary conditions can be applied to a
functional transformation model of a string is shown here in de-
tail. Sec. 2 presents the physical model of a string and the spatial
transformation is reviewed in Sec. 3. Boundary conditions are dis-
cussed in Sec. 4 with the impedance as an adjustable parameter.
The occurrence of delay-free loops can be avoided by a state space
approach in Sec. 5. Examples show the effect of the resulting syn-
thesis algorithm in Sec. 6. Although the results shown here involve
a frequency independent impedance, the state space approach can
be extended also to frequency dependent impedances as discussed
in Sec. 7.

2. PHYSICAL MODEL OF A STRING

This section describes the physical foundations of a single vibrat-
ing string. The partial differential equation describing the oscil-
lation of a string is reformulated to serve as a starting point for
the following Functional-Transformation method (FTM). The pre-
sentation is an abridged and modified version of the approach de-
scribed in [10].

2.1. Physical Description

The starting point for a computational model is the partial differ-
ential equation (PDE) of a single vibrating string [10, 11]. The
deflection y = y(x, t) depends on the position on the string x and
time t, ẏ represents the time- and y′ the space-derivative. Then the
PDE of a single vibrating string is given as

ρAÿ + EIy′′′′ − Tsy
′′ + d1ẏ − d3ẏ′′ = fe, (1)
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with the cross-section areaA, moment of inertia I and the length l.
The material is characterized by the density ρ and Young’s modu-
lus E. Ts describes the tension and d1 and d3 are non-frequency
and frequency dependent damping [11]. The excitation function is
defined as fe = fe(x, t).

The PDE (1) is reformulated into a vectorized form for subse-
quent transformations[

C
∂

∂t
− L

]
y(x, t) = fe(x, t), (2)

with the differential operator

L = A+ I
∂

∂x
(3)

and the vector of variables
y(x, t) =

[
ẏ y′ y′′ y′′′

]T
. (4)

The system matrices of Eq. (2) are

C =

 0 1 0 0
0 0 0 0
0 0 0 0
c1 0 c2 0

 A =

 0 0 0 0
0 0 −1 0
0 0 0 −1
a1 0 a2 0

 (5)

with the coefficients

a1 =
d1
EI

a2 = − Ts

EI
c1 = −ρA

EI
c2 =

d3
EI

. (6)

The equivalence between the scalar and the vector representation
follows by converting (2) back to the scalar form (1).

2.2. Boundary Conditions

The behavior of a vibrating string depends also on a set of bound-
ary conditions in addition to the PDE (1). They can be described
using a boundary matrix FH

b , which transforms the vector of vari-
ables y(x, t) into a vector of boundary excitations φ(x, t)

FH
b y(x, t) = φ(x, t) x = 0, l. (7)

The superscript H denotes the hermitian matrix. In a first simple
case it is assumed, that there are unknown boundary excitations φ
for deflection and bending moment at the boundaries of the string

y(x, t) = φ1(x, t) x = 0, l, (8)

y′′(x, t) = φ3(x, t) x = 0, l. (9)

Since the vector of variables in Eq. (4) contains the first time deriva-
tive, Eq. (8) is turned into ẏ(x, t) = φ̇1(x, t) by time differentia-
tion, such that

FH
b =

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 , φ(x, t) =


φ̇1(x, t)

0
φ3(x, t)

0

 . (10)

2.3. Laplace Transformation

For the following transformation of the string model a Laplace
transformation has to be applied to the vectorized PDE (2) and
to the boundary conditions (7), which leads to

[sC − L]Y (x, s) = Fe(x, s) (11)

FH
b Y (x, s) = Φ(x, s). (12)

The complex frequency variable is s and the Laplace transforms
of the time variables are denoted by uppercase letters. This model
is used for the further derivations of the FTM.

3. TRANSFORMATION OF THE STRING MODEL

In this section the FTM is applied to the string model. The foun-
dations of the transformation are described in [6, 10]. Therefore,
some of the derivations regarding the transformation are skipped
in the following.

3.1. Sturm-Liouville Transformation

The first step is the definition of a forward and inverse Sturm-
Liouville Transformation (SLT). The forward transformation is de-
fined as [10]

T {Y (x, s)} = Ȳ (µ, s) =

∫ l

0

K̃H(x, µ)CY (x, s)dx, (13)

and the inverse transformation can be written in terms of a sum as

T −1 {Ȳ (µ, s)
}

= Y (x, s) =
∑
µ

1

Nµ
Ȳ (µ, s)K(x, µ), (14)

with the scaling factor

Nµ =

∫ l

0

K̃H(x, µ)CK(x, µ)dx. (15)

The vectorsK(x, µ) and K̃(x, µ) are the kernel functions (eigen-
functions) of the transformation, which depend on the problem.
The kernel functions fulfill different properties which are shown
in [10]. The eigenfunctions K̃(x, µ) are adjoint to the primal
eigenfunctions K(x, µ). Additionally, the two sets of eigenfunc-
tions are biorthogonal. The integer index µ can be regarded as a
discrete spatial frequency variable.

3.2. Application to the PDE

The transformation from Eq. (13) is now applied to Eq. (11). The
properties of the eigenfunctions from Sec. 3.3 lead to the result

sȲ (µ, s)− sµȲ (µ, s)− Φ̄(µ, s) = F̄e(x, s), (16)

with the transformed boundary and excitation term

Φ̄(µ, s) =
[
K̃H(x, µ)Φ(x, s)

] ∣∣∣∣l
0

x = 0, l, (17)

F̄e(µ, s) =

∫ l

0

K̃H(x, µ)Fe(x, s)dx, (18)

where the values sµ represent the spatial eigenfrequencies. Solv-
ing Eq. (16) for the transformed output signal gives

Ȳ (µ, s) =
1

s− sµ
[
Φ̄(µ, s) + F̄e(µ, s)

]
. (19)

3.3. Eigenvalue Problems

The two kernel functions of the forward and inverse SLT have to
fulfill their eigenvalue problems and boundary conditions, so that
the transformation is applicable in Eq. (16)

LK(x, µ) = sµCK(x, µ) FH
b K(x, µ) = 0, (20)

L̃K̃(x, µ) = s∗µC
HK̃(x, µ) F̃H

b K̃(x, µ) = 0, (21)
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with the adjoint differential operator and boundary matrix

L̃ = AH − I ∂
∂x

F̃H
b = I − FH

b . (22)

Indeed, Eq. 16 follows by applying the SLT from (13) to the PDE (2),
observing the properties (20) and (21) and integration by parts.
From these eigenvalue problems the primal and the adjoint eigen-
functions are calculated, see Sec. 3.6.

3.4. Kernel functions

To calculate the eigenfunctions K(x, µ) and K̃(x, µ) from the
eigenvalue problems, Eqs. (20) and (21) are reformulated as

∂xK(x, µ) = QK(x, µ), (23)

∂xK̃(x, µ) = Q̃K̃(x, µ), (24)

with

Q = sµC −A, (25)

Q̃ = AH − s∗µCH = −QH. (26)

The solution of the primal eigenvalue problem for the eigenfunc-
tions can be formulated in terms of a matrix exponential

K(x, µ) = eQxK(0, µ), (27)

where K(0, µ) is the boundary vector of the eigenfunctions. The
matrix exponential can be calculated using the method from [12],
or by any other suitable method. The solution for the adjoint kernel
function K̃(x, µ) is formulated analogously.

3.5. Eigenvalues and Eigenfrequencies

To calculate the kernel functions with Eq. (27) the eigenvalues λ
of matrix Q and the eigenfrequencies sµ of the string model have
to be derived. Therefore the characteristic polynomial pQ(λ) of
the matrixQ is calculated. It follows from Eq. (25) as

pQ(λ) = λ4 − q2λ2 − q1sµ, (28)

with the coefficients

q1 = c1sµ − a1 q2 = c2sµ − a2. (29)

With relation between the eigenvalues

λ2 = −λ1 λ4 = −λ3, (30)

follows for the eigenvalues of the matrixQ

λ2
1/3 =

1

2

(
q2 ±

√
q22 + 4q1sµ

)
. (31)

By evaluating the boundary conditions for the eigenfunctions in
Eqs. (23) and (24), it can be shown that the eigenvalues λ can only
adopt values of the form

λ = λµ = jµ
π

l
= jγµ. (32)

Setting Eq. (28) to zero and solving for the eigenfrequencies sµ
leads to the dispersion relation

s2µ +

(
a1
c1
− λ2 c2

c1

)
sµ −

λ2

c1

(
λ2 + a2

)
= 0. (33)

The eigenfrequencies sµ are the solutions of the dispersion rela-
tion (33) for λ from (32). For each value of γµ the dispersion
relation yields two complex conjugate eigenfrequencies sµ.

3.6. Solution for the kernels

Using the derivations from the previous sections the eigenfunc-
tions can be calculated from Eq. (27). Skipping many explicit cal-
culations, the eigenfunctionK(x, µ) results in

K(x, µ) =


sµ
γµ

sin(γµx)

cos(γµx)
−γµ sin(γµx)
−γ2

µ cos(γµx)

 , (34)

and similar for the adjoint eigenfunction function

K̃(x, µ) =


q∗1 cos(γµx)

− s
∗
µq

∗
1

γµ
sin(γµx)

−γ2
µ cos(γµx)

γµ sin(γµx)

 . (35)

These solutions can be verified via inserting them into the eigen-
value problems from the Eqs. (23) and (24).

3.7. Output Signal

The results from the previous sections can now be used to construct
the synthesis equation for the string, which is based on the inverse
SLT from Eq. (14). As mentioned in Sec. 3.5 for one µ-value a
complex conjugated pair of eigenfrequencies sµ arises in Eq. (33).
Setting the excitation function fe(x, t) to zero for brevity, the syn-
thesis equation turns into

Y (x, s) =
∑
µ

1

Nµ
K(x, µ)Ȳ (µ, s) =

=
∑
µ

1

Nµ
K(x, µ)

1

s− sµ
Φ̄(µ, s).

(36)

The resulting synthesis system is pictured in Fig. 1. The output
Y (x, s) is a superposition of many first-order systems – oscil-
lating with the eigenfrequencies of the system and weighted with
the eigenfunctions K(x, µ). For a more suitable implementation,
each pair of complex conjugate first-order systems may be merged
into one real-valued second-order system.

3.8. Discrete-time equivalent

This synthesis structure can be transformed into the discrete-time
domain to achieve a difference equation for computer implemen-
tation. Using e.g. impulse-invariant-transformation [6] turns the
transfer function from Eq. (19) into

Ȳ (µ, z) =
z

z − zµ
Φ̄(µ, z), (37)

where Ȳ (µ, z) and Φ̄(µ, z) are the z-domain equivalents of Ȳ (µ, s)
and Φ̄(µ, s). The poles zµ are defined as

zµ = exp (sµT ) , (38)

with the sampling time T .
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String model

First-Order Block
K(x,µ)
Nµ

K̃H(x, µ)

Fe(x, s)

K(0,µ)
Nµ

Y (0, s)

K̃H(0, µ)
Φ(0, s)

µ+ 1

µ− 1

Y (x, s)

Figure 1: Block diagram of the synthesis system; Φ(0, s),
Y (0, s): Vector of boundary excitations/observations at x = 0,
Y (x, s): vector of output signals at any position x, Fe(x, s): Ex-
citation function.

4. ADJUSTABLE BOUNDARY CONDITIONS

The boundary conditions of a PDE are essential for the transfor-
mation with the FTM, but the more complex the boundary condi-
tions are, the more complex becomes the transformation. Using
adjustable boundary conditions means to transform the PDE in-
cluding a simple set of boundary conditions and later adjust them
to fulfill any kind of boundary condition [8, 9].Über-

arbeiten

4.1. Simple Boundary Conditions

As starting point, the simple set of boundary conditions from Sec. 2.2
are revisited. The boundary behavior at x = 0 as described by
Eqs. (8) and (9) in terms of the boundary matrix FH

b and a vector
of boundary excitations Φ(0, s) reads in the frequency domain

FH
b Y (0, s) =

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0


 sY (0, s)
Y ′(0, s)
Y ′′(0, s)
Y ′′′(0, s)

 =


Φ̇1

0
Φ3

0

 . (39)

In addition an observation matrix FH
o is defined. It transforms

the vector of variables Y (x, s) into a vector of boundary observa-
tions Yo, which can be written as

FH
o Y (0, s) =

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1


 sY (0, s)
Y ′(0, s)
Y ′′(0, s)
Y ′′′(0, s)

 =

 0
Yo2

0
Yo4

 . (40)

The boundary behavior of the variables of the string model can be
formulated in terms of the boundary and the observation matrix

Y (0, s) =
(
FH

b + FH
o

)
Y (0, s), (41)

and is pictured at the position x = 0 in Fig. 2. It shows that the
boundary excitations Φ can be interpreted as input variables and
the boundary observations as output variables at the boundary of
the string.

String Model

Yo4

Yo2

Φ3

Φ̇1

x = 0

Figure 2: Schematic of the boundary behavior of the string model
referring to Eqs. (39) - (40). Yo: Boundary Observations, Φ:
Boundary Excitations.

4.2. Impedance Boundary Conditions

In this section, impedance boundary conditions at x = 0 are in-
vestigated (see e.g. [6]). They connect the velocity of the string
(ẏ(0, t)) at the boundary to a force f(0, t) via the mechanical
impedance Zs [13]. The force can be exerted e.g. by pressing
the ball of the thumb on the bridge to damp the string vibration.

The relation between force and velocity can be formulated in
the frequency domain with the Laplace transforms of the velocity
sY (0, s) and of the force F (0, s) with the admittance Ys = Z−1

s

sY (0, s)− Ys F (0, s) = ΦZ1, (42)

Y ′′(0, s) = ΦZ3, (43)

ΦZ1 and ΦZ3 are the boundary excitations. The force F can be
written in the terms of the variables in Eq. (4)

F (0, s) = Ts Y
′(0, s)− EI Y ′′(0, s). (44)

The boundary conditions from Eqs. (42) – (43) are rearranged into
a boundary matrix, which transforms the variable vector into a vec-
tor of boundary excitations

FH
bZY (0, s) = ΦZ, (45)

with

FH
bZ =

1 −YsTs 0 YsEI
0 0 0 0
0 0 1 0
0 0 0 0

 . (46)

4.3. Adjustable Boundary Conditions

Using different sets of boundary conditions would mean to recal-
culate the eigenfunctions from Eqs. (20) and (21) with different
boundary conditions and to re-apply the corresponding transfor-
mations according to Sec. 3. Furthermore, the determination of the
eigenfunctions for impedance boundary conditions does in general
not lead to closed form solutions.

A different approach is to use the eigenfunctions for simple
boundary conditions from Eqs. (34) and (35) and to feed the bound-
ary observations Yo from (40) back into the boundary excitations
Φ̇1 and Φ3 from (39) via the impedance condition (45). This ap-
proach had been discussed in general terms in [9] and is now ap-
plied to string vibrations.
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Starting point is Eq. (45), which can be reformulated using
Eq. (41) as

FH
bZY (0, s) = FH

bZ

(
FH

b + FH
o

)
Y (0, s)

= FH
bZF

H
b Y (0, s) + FH

bZF
H
o Y (0, s) = ΦZ. (47)

With Eqs. (39) - (40) follows

FH
bZΦ = −FH

bZYo + ΦZ. (48)

This equation leads to a rule for the transformation of the simple
boundary excitations Φ from Eq. (39) into impedance boundary
conditions [

Φ̇1

Φ3

]
= Ys

[
Ts −EI
0 0

] [
Yo2

Yo4

]
+

[
ΦZ1

ΦZ3

]
. (49)

The boundary behavior of the string model at x = 0 is pictured
in Fig. 3. It can be seen that the impedance boundary conditions
result in a boundary circuit, which adjusts the simple boundary
values to fulfill the impedance conditions, according to the trans-
formation rule (49).

String Model

ΦZ1

ΦZ3

Φ̇1

Φ3

Yo2

Yo4

YsTs −YsEI

x = 0

Figure 3: Schematic of the boundary behavior of the string model
referring to Eq. (49). Yo: Boundary observations, Φ: Boundary
excitations.

With the adjustment of the boundary conditions, one can use a
simple model of the string and later adjust the boundaries to match
a more complex set of conditions. The adjustment is realized by
an external feedback loop between the boundary observations Yo

and the boundary excitations Φ̇1 and Φ3.

4.4. Input-Output model for the boundary

This section explains how the output of the string model from
Eq. (36) is connected to the boundary circuit from Eq. (49). For
the position x = 0 follows for the eigenfunctions

K(0, µ) =
[
0 1 0 −γ2

µ

]T
, (50)

K̃H(0, µ) =
[
q1 0 −γ2

µ 0
]
. (51)

Therefore the two non-zero output values of Eq. (41) follow from
the z-domain equivalent of (36) as

Yo(z) =

[
Yo2(z)
Yo4(z)

]
=
∑
µ

1

Nµ
Ȳ (µ, z)

[
1
−γ2

µ

]
, (52)

where Ȳ (µ, z) is connected to Φ̄(µ, z) via Eq. (37).

The boundary term Φ̄(µ, z) depends on the boundary condi-
tions Φ(0, z) and Φ(l, z) similarly to the continuous-time formu-
lation in (17). Assuming at x = l simple and homogeneous bound-
ary conditions, i.e. Φ(l, z) = 0 and at x = 0 adjustable boundary
conditions according to Eq. (49) with Φ3 = 0 leaves only a depen-
dency on Φ̇1. Then Φ̄(µ, z) can be expressed using (51) as

Φ̄(µ, z) = −K̄H(x, µ)Φ(0, z) = −q1Φ̇1(0, z). (53)

Now an input-output model for the quantities shown in Fig. 3 can
be set up by combining (37) and (52)

zȲ (µ, z) = zµȲ (µ, z)− q1zΦ̇1(0, z), (54)

to obtain the internal variable Ȳ (µ, z) from the boundary input Φ1

and by using (52) to obtain the boundary output Yo from Ȳ (µ, z).
However, following the signal flow in (49), (54) and (52) un-

veils the existence of a delay-free loop. The next section describes
how this delay-free loop can be avoided.

5. STATE SPACE MODEL

As described before the adjustment of the boundary conditions ac-
cording to Eq. (49) causes a delay-free loop in the system. Delay-
free loops can be resolved using iterative methods described in
[14, 15]. In this paper the delay-free loop is avoided altogether by
transformation into a state space model.

5.1. State Equations

At first a state equation is established with the definition of the
state variable

W̄ (µ, z) = Ȳ (µ, z) + q1Φ̇1(0, z). (55)

Since the excitation function fe(x, t) does not contribute to the
boundary feedback and thus to a possible delay-free loop, it is set
to zero for brevity.

Rewriting (54) and (52) with the state variable W̄ (µ, z) and
collecting the terms depending on µ into vectors and matrices gives
finally

zW̄ (z) = AW̄ (z) + b Φ̇1(0, z), (56)

Yo(z) = CoW̄ (z) + doΦ̇1(0, z). (57)

The state and output vectors are given as

W̄ (z) =


...

W̄ (µ, z)
...

 , Yo(z) =

[
Yo2

Yo4

]
, (58)

and the state matrices follow as

A = diag (. . . , zµ, . . . ) , (59)
b = [. . . , zµq1(sµ), . . . ] , (60)

Co =

[
. . . ,

1

Nµ

[
1
−γ2

µ

]
, . . .

]
, (61)

do =
∑
µ

q1(sµ)

Nµ

[
1
−γ2

µ

]
. (62)
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5.2. Feedback Loop

To fit the boundary behavior in Fig. 3 into the state space equa-
tions (56) - (57), the boundary equation (49) is reformulated (with
ΦZ1 = ΦZ3 = 0) as

Φ̇1(0, z) = Ys r
TYo(z), (63)

with the vector

rT = [Ts − EI] . (64)

It is part of a delay-free loop, where the remaining part is formed
by the direct path in (57).

To avoid this delay-free loop, Eq. (63) is inserted into (57) and
solved for the output vector Yo(z)

Yo(z) =
(
I − Ys dor

T
)−1

CoW̄ (z). (65)

Now the boundary input can be expressed directly in terms of the
state vector W̄ (z) with the help of (63) and (65)

Φ̇1(0, z) = Ysr
T
(
I − Ysdor

T
)−1

CoW̄ (z) = rTb W̄ (z).

(66)

The vector rb contains the influence of the admittance Ys at the
boundary and can be reformulated using the Sherman-Morisson
identity [16, eq. (160)]

rTb = Ysr
T
(
I − Ysdor

T
)−1

Co =
1

Zs − rTdo
rTCo. (67)

5.3. Simulation Model

The final simulation model for adjustable boundary conditions fol-
lows from the state space representation (56) and (57) and the de-
scription of the outer feedback loop by (66). The structure of the
model is shown in Fig. 4.

b z−1

A

rT
b

W̄ (z)

Φ1(0, z)

Figure 4: Signal flow of the state space equations from (56) and
(57) including the boundary feedback loop of Eq. (66).

There are two loops and both include a time delay z−1. The
inner loop is closed by the diagonal matrix A from Eq. (59) and
is easy to implement. The outer loop contains the boundary ad-
mittance Ys or impedance Zs according to (63). So the delay-free
loop arising in Sec. 4.4 is avoided using the state space structure.
The output-equation (57) calculates the output of the model for the
position x = 0 (Feedback path in Fig. 4).

The output signal at any other position x = xa on the string is
calculated by a second output equation

Ya(z) = CaW̄ (z) + daΦ̇1(0, z), (68)

which is basically the same as for x = 0. Only two matrices and
vectors have to be recalculated

Ca =

[
. . . ,

1

Nµ
K(xa, µ), . . .

]
, (69)

da =
∑
µ

q1(sµ)

Nµ
K(xa, µ). (70)

The other matrices are independent of the pick-up position xa, so
they can be directly taken from Eqs. (59) - (60). The complexity of
the feedback loop at the position x = 0 is hidden in the vector rTb ,
which is independent of any pick-up point on the string. Thus the
feedback path is variable by adjusting the value for the impedance
Zs in (67), see Fig. 4.

6. EXAMPLES

The following section presents simulation results, which are based
on the theory from previous sections. The simulation uses the
string model from Sec. 3 with a simple set of boundary condi-
tions, which are adjusted to fulfill the impedance boundary condi-
tions using the concept from Sec. 4.3. The model is implemented
with the state space representation from Sec. 5 to avoid delay-free
loops.

6.1. Basic Parameters

The string model for the simulation is based on the transformation
of the PDE of a vibrating string and the subsequent state space
representation from Eqs. (56) - (57). The boundary conditions of
the string are pictured in Fig. 5. The string has a supported end at
x = l, which results in homogeneous boundary conditions refer-
ring to (7)

Y (x, s) = 0, Y ′′(x, s) = 0 x = l. (71)

At the position x = 0 the string is placed on the bridge and is
influenced by an admittance, which results in impedance boundary
conditions from Eqs. (42) - (43). The boundary excitations ΦZ1

and ΦZ3 are set to zero since there are no external forces. The
mechanical admittance Ys is used as an adjustable parameter and
is considered as frequency independent.

For the simulations a nylon guitar B string was used. The
physical parameters of the string are taken from [6, 17] and are
listed in Table 1.

ρ Density 1140 kg/m3

E Young’s modulus 5.4 GPa
l Length 0.65 m
A Cross section area 0.5188 mm2

I Moment of inertia 0.141 mm4

d1 Freq. indep. damping 8 · 10−5 kg/(ms)
d3 Freq. dep. damping −1.4 · 10−5 kgm/s
TS Tension 60.97 N

Table 1: Physical parameters of a nylon guitar B string.
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y

xx = 0 x = l

F (0, s)

Ys

Figure 5: Guitar string influenced by an impedance/admittance
caused e.g. the ball of players hand at bridge position x = 0 and a
supported end at x = l.

6.2. Simulation Results

The following section presents the results of the simulation of the
string model based on the previous chapters. At first, the influence
of the admittance Ys on the bending y′(0, t) at the position x = 0
is shown. Then the influence on the velocity ẏ(xa, t) at a specific
pick-up point x = xa is presented. In each case the signal is
pictured for three admittance values between Ys = 0 and Ys =
0.125 s

kg
. The string is excited by a single impulse at the position

xe = 0.5 m

fe(x) =

{
50 mN x = xe

0 x 6= xe
. (72)

The results are presented by the normalized amplitude spectra of
the velocity and bending. At first results for a zero admittance
(Ys = 0) are presented, then the admittance is varied and also a
non-zero pick-up position is considered.

Results for zero admittance

In this part the string model from Eq. (36) using µ = 1 . . . 100
complex eigenfrequencies with the simple set of boundary condi-
tions from Sec. 4.1 is considered. For the implementation the state
space representations from Eqs. (56) - (57) is used with Φ1 = 0.
Fig. 6 shows the variation of the bending y′(x, t) over time and
pick-up position for a mechanical admittance Ys = 0 s/kg.
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Figure 6: Variation of the bending y′(x, t) over time at different
pick-up positions on the string for Ys = 0 s/kg.

The excitation function in Fig. 6 is an impulse according to
Eq. (72). It causes the propagation of waves on the string. The
results show that the derived string model matches the behavior of
a real string for simple boundary conditions [6–8, 10].

Results for non-zero admittance

The following experiments show the behavior of the spring model
using the impedance boundary conditions from Sec. 4.2. The im-
plementation uses the state space representation from Eqs. (56) -
(57), with boundary term Φ̇1 from Eq. (66). The admittance is var-
ied between Ys = 0 and a maximum value of Ys = 0.125 s/kg,
which is taken from [7].
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Figure 7: Amplitude spectra of bending y′(x, t) at the bridge po-
sition x = 0.

Fig. 7 shows the amplitude spectra of bending y′(x, t) at the
position x = 0 for different admittance values. For an admittance
value of Ys = 0 results the spectrum of a string with simple bound-
ary conditions, as the lower feedback path in Fig. 4 is zero. For an
admittance value Ys = 0.125 · 10−5 s/kg the damping influence
of the admittance on the bending can be seen clearly, especially in
the low-frequency region. For the maximum value of admittance
Ys = 0.125 s/kg the whole spectrum is damped and is much flat-
ter. Thus the increase of the admittance value leads to the well
known effect of a decreased oscillation time of the system. This
reproduces the sound of a palm muted playing style.

With the increasing value of mechanical admittance, the poles
zµ of the simple string model are shifted towards the origin of the
unit circle by the impedance boundary condition feedback loop.
Thus the Euclidean distance of the poles is reduced and the single
frequency components of the signal are damped depending on the
value of the admittance.

Fig. 8 shows the spectra of velocity ẏ(x, t) at the pick-up po-
sition xa = 0.4 m for the same three values of admittance Ys. The
general behavior of the spectra is similar to the behavior in Fig. 7.
But especially the influence of the feedback loop for the mid-value
of Ys is not so strong at x = 0.4 m as for x = 0 in Fig. 7. This
makes sense, as the pick-up point is removed by x = 0.4 m from
the bridge position of the guitar, so the damping influence is not
as strong as for the bridge position. For the maximum value of the
admittance, the spectrum is similarly flat as before at the position
x = 0.
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Figure 8: Amplitude spectra of velocity ẏ(x, t) at the position x =
0.4 m.

For both pick-up positions the influence of the admittance damps
the harmonics of the output signal. According to different values
of the admittance, the signals sounds fully or partially muted.

7. CONCLUSIONS AND FURTHER WORK

This paper proposes a complex string model with general bound-
ary conditions. It is realized by standard state space methods based
on the functional transformation method. Then the simple bound-
ary conditions for supported ends are adjusted to impedance bound-
ary conditions, without the need for a recalculation of the eigen-
functions. Using this principle, the simple string model is con-
nected to an admittance at the bridge position.

Here a frequency independent admittance is adopted. It is
suitable for modeling a palm muted playing style where the ball
of the players hand damps the strings. Other types of boundary
conditions require frequency dependent admittances. For exam-
ple it is well known that the connection of a string to a sound
board exhibits strong resonances [17]. They are described by a
bridge impedance with multiple poles [4]. Frequency dependent
impedances of this type can be modeled with an arrangement sim-
ilar to Fig. 4, where the feedback path includes a digital filter with
complex poles. Another way is to exploit the parallel resonator
structure of the functional transformation method by merging the
impedance feedback path with the A matrix of the state space
representation. Then each diagonal entry of the matrix A can be
weighted by a different impedance value as proposed in [8].
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ABSTRACT
A number of musical instruments (electric basses, tanpuras, si-
tars...) have a particular timbre due to the contact between a vibra-
ting string and an obstacle. In order to simulate the motion of such
a string with the purpose of sound synthesis, various technical is-
sues have to be resolved. First, the contact phenomenon, inher-
ently nonlinear and producing high frequency components, must
be described in a numerical manner that ensures stability. Second,
as a key ingredient for sound perception, a fine-grained frequency-
dependent description of losses is necessary. In this study, a new
conservative scheme based on a modal representation of the dis-
placement is presented, allowing the simulation of a stiff, damped
string vibrating against an obstacle with an arbitrary geometry. In
this context, damping parameters together with eigenfrequencies
of the system can be adjusted individually, allowing for complete
control over loss characteristics. Two cases are then numerically
investigated: a point obstacle located in the vicinity of the bound-
ary, mimicking the sound of the tanpura, and then a parabolic ob-
stacle for the sound synthesis of the sitar.

1. INTRODUCTION

In many musical instruments, across various cultures, the interac-
tion between a vibrating structure and an obstacle is a key feature
leading to amplitude-dependent timbral modification, and is es-
sential in order to replicate the resulting sound. This contact may
arise due to the excitation of the instrument [1, 2], in which case
the exciting mechanism may be considered as lumped, or during
its consequent vibrations [3]. In the latter case, the contact can be
pointwise (e.g. the case of string/fret contact in an electric bass) or
distributed (e.g. string/bridge contact in a sitar). Such interactions
are strongly nonlinear, which complicates significantly its numer-
ical study.

Following analytical studies of the contact between a string
and a rigid obstacle [4, 5, 6], a number of numerical methods have
been developed in order to simulate the interaction between a vi-
brating string and an obstacle. Waveguides are used in [7, 8, 9, 10],
coupled with finite difference schemes in [11], where the string is
ideal, and [12], where the string is damped and stiff and the ob-
stacle is located at one end of the string. A modal description is
presented in [13] for modelling an ideal string vibrating against
a parabolic obstacle at one boundary and in [14] for a dispersive
lossy string where an obstacle consolidated at the bridge of a tan-
pura is considered. This instrument is also modelled in [15, 16],
where the motion of a stiff damped string against an obstacle is
obtained by discretising Hamilton’s equations of motion. Finally,
a finite difference method is developed in [3], also allowing the

simulation of a stiff, damped string with an obstacle having an ar-
bitrary shape. The case of the interaction between a string and a
fretboard is in particular described in [17]. This obstacle is also
considered in [18] where the Functional Transformation Method
is used. However, in these models, eigenfrequencies and damping
parameters cannot be arbitrary, but must follow a distribution spec-
ified by a small number of tuning parameters.

In this study, we present a conservative numerical scheme to
model a stiff damped string vibrating against an arbitrarily shaped
obstacle. The key features of the scheme are as follows. A modal
expansion is used as a starting point for the linear case (i.e., in the
absence of contact). By using an equal number of modes and dis-
cretization points, a linear transformation relates the spatial dis-
placement and the modal coordinates, so that the contact force
is treated directly with the displacement. Finally a regularized
contact force together with an energy-conserving time-stepping
scheme are implemented. Eigenfrequencies and damping parame-
ters of the string can be adjusted at ease, and in particular accord-
ing to experimental measurements so that sound synthesis can be
more realistic.

Numerical results of the scheme are illustrated by considering
two different obstacles for synthesizing the sounds produced by a
string vibrating against a point obstacle and a distributed obstacle,
mimicking the bridge of the tanpura and a flat bridge respectively.
Sound examples are available at
www.lam.jussieu.fr/Membres/Issanchou/Sounds_DAFx16.html.

2. MODEL SYSTEM

Consider a stiff string of length L (m), tension T (N/m), and with
linear mass density µ (kg/m). Stiffness effects in the string are
characterised by Young’s modulus E (Pa ) of the material, and the
moment of inertia I = πr4/4, where r is the string radius, in m.
The string vibrates in the presence of an obstacle assumed not in
contact with the string at rest and described by a fixed profile g(x),
x ∈ [0, L]. See Figure 1. Under the assumption of small displace-
ments, the dynamics of the string is described by the following
equation of motion:

µutt(x, t)− Tuxx(x, t) + EIuxxxx(x, t) = f(x, t), (1)

where u(x, t) is the transverse displacement of the string in a sin-
gle polarisation perpendicular to the barrier. Partial differentiation
with respect to time t and coordinate x are indicated by multi-
ple subscripts. Simply supported boundary conditions at the string
endpoints are assumed:

u(0, t) = u(L, t) = uxx(0, t) = uxx(L, t) = 0, ∀t ∈ R+.
(2)
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No damping is considered as yet, and a detailed model of loss
will be introduced once modal analysis has been perfomed. See
Section 3.1.

u(x,t)

z

y
x

0 Lg(x)

Figure 1: A string of length L vibrating against an obstacle g(x).

f(x, t) represents the contact force of the barrier upon the
string. In general, it should be positive at times and locations
along the string for which the string and barrier are in contact. A
power-law expression is selected for the contact force. This choice
has already been shown to be successful in the realm of musical
acoustics [3, 17, 16, 19, 20]. The interaction force thus reads:

f(x, t) = f(η(x, t)) = K [η(x, t)]α+ , (3)

where α ≥ 1 is a constant value, η(x, t) = g(x) − u(x, t) is
a measure of interpenetration of the string into the barrier, and
[η]+ = 0.5 (η + |η|) is the positive part of η [3]. Such a power-
law model of a repelling force due to a collision may be interpreted
as a compression of the medium in the case of flexible objects
(such as, e.g., a piano hammer [21]). In the present case, it is
best thought of as a regularized (smooth) force penalising such
interpenetration [22]. As such, the constant K ideally will take
on a very large value. This regularized approach contrasts with
nonsmooth methods for which no penetration is allowed [23, 24].

One particular advantage of the present choice relies in the fact
that the force f derives from a potential ψ:

f =
dψ

dη
, with ψ(η) =

K

α+ 1
[η]α+1

+ . (4)

This property is of special interest in the design of energy-con-
serving numerical methods. See Section 3.3.

2.1. Energy Balance

Energy techniques play an important role in the construction of
numerical methods for highly nonlinear systems, as in the present
case of the string in contact with a barrier. For instance, it is used
in the present case of distributed collisions in [3], in the case of
finite difference schemes. The basic strategy is to associate, with
a given numerical method, a numerical conserved or dissipated
energy quantity, which is itself a positive semi-definite function of
the state. As such, it can be used to bound the dynamics of the
system, and to find sufficient numerical stability conditions.

The continuous energy expression associated with (1) is obtai-
ned by multiplying (1) by ut and then employing integration by
parts over the spatial domain. It may be written as:

H =

∫ L

0

[
µ

2
(ut)

2 +
T

2
(ux)2 +

EI

2
(uxx)2 + ψ

]
dx. (5)

It satisfies H ≥ 0 and the following equality:

dH

dt
= 0, (6)

implying that energy is conserved. The first three terms in the ex-
pression correspond to stored energy due to the effects of inertia,
tension and stiffness, respectively. The final term denotes the en-
ergy stored in the collision mechanism. Note that, as losses have
not yet been introduced, the system is Hamiltonian. When losses
are introduced, one should expect a balance of the form

dH

dt
+ Q = 0, (7)

for some function Q(t) ≥ 0, with the interpretation of power loss,
implying that

0 ≤H (t) ≤H (0) (8)

for t ≥ 0. It is not easy to give a simple expression for Q in
the case of realistic models of loss in strings, which are usually
expressed in the frequency domain [14], and not in terms of a spa-
tiotemporal PDE system. Thus our expression for power loss is
postponed until a modal analysis has been carried out. See Sec-
tion 3.1.

3. NUMERICAL SCHEME FOR A STRING VIBRATING
AGAINST AN OBSTACLE

The main characteristics of the numerical scheme are the follo-
wing:
1. An exact scheme for a lossy linear oscillator without obstacle,
as described in in [19], is used as a building block.
2. Each mode of the string can be described, in isolation, with
such an oscillator. Therefore we apply the exact scheme to each
mode, ensuring a fine description of frequencies and losses, ad-
justed for each mode. Then we add a force term F (corresponding
to a modal representation of f in equation (1)). At this point, we
obtain an equation in terms the modal coefficients of u.
3. Taking as many modes as interior points of the spatial mesh, we
can rewrite the equation on u directly, through Fourier transforma-
tion. Then the force term is expressed as in [3], in order to obtain
a conservative scheme.

3.1. Modal analysis

The modal expansion for the displacement of the string is as fol-
lows:

u(x, t) =

∞∑
j=1

qj(t)φj(x), with φj(x) =

√
2

L
sin

(
jπx

L

)
(9)

for simply supported boundary conditions.
Inserting the expansion of u in (1), one obtains:

µ(q̈ + Ω2q) = F, (10)

where q is a vector containing modal coefficients, and Ω is a di-
agonal matrix such that Ωj,j = ωj = 2πνj .
Eigenfrequencies are given by νj = j c

2L

√
1 +Bj2, where B =

π2EI
TL2 describes the inharmonicity created by taking into account

the stiffness of the string. Finally the vector F represents the modal
projection of the contact force, with Fj =

∫ L
0
f(x, t)φj(x)dx.
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Equation (10) describes a lossless string, where the linear part
corresponds to the description of a lossless oscillator for each mode.
Therefore, losses can now be introduced by associating each mode
with a lossy oscillator. Then (10) becomes [19]:

µ(q̈ + Ω2q + 2Σq̇) = F, (11)

where Σ is a diagonal matrix such that Σj,j = σj . A damping
parameter σj is now associated to each modal equation, and can
be tuned at ease in order to consider any frequency dependence.

Let us now introduce the theoretical model for losses proposed
in [14], which will allow us to determine realistic values to damp-
ing parameters in (11). This model takes into account the three
main dissipation mechanisms in musical strings, namely friction
with surrounding air, viscoelastic and thermoelastic behaviour of
the material as internal losses. The following expression of the
quality factor Qj =

πνj
σj

has been given as:

Q−1
j = Q−1

j,air +Q−1
j,ve +Q−1

te , (12)

where subscripts ve and te refer to viscoelastic and thermoelastic
losses, and:

Q−1
j,air =

R

2πµνj
, R = 2πηair + 2πd

√
πηairρairνj ,

Q−1
j,ve =

4π2µEIδve
T 2

ν2
j .

In these expressions, ηair and ρair are, respectively, the dynamic
viscosity coefficient and the air density. In the rest of the paper,
they are set to the following values, assumed constant: ηair =
1.8 × 10−5 kg m−1s−1 and ρair = 1.2 kg m−3. Finally this
loss model depends on two parameters that can be fitted from
e.g. experimental measurements, as performed for example in
[14, 25, 20]: the viscoelastic losses angle δve, and the constant
value Q−1

te characterizing the thermoelastic damping. It results in
a frequency-dependent loss model which accurately takes into ac-
count the damping mechanism present in musical string vibrations
[14, 25, 20].

3.2. Spatial discretization

The spatial discretization is defined as xi = iL
N

, i ∈ {0, ..., N}.
Boundary conditions are u(x0, t) = 0 and u(xN , t) = 0 ∀t ∈
R+. In the following, only the values of u on the grid with i ∈
{1, 2, ..., N − 1} are thus needed in any calculation.

Considering N − 1 modes, the following relationship is ful-
filled, ∀i ∈ {1, 2, ..., N − 1}:

ui(t) =

N−1∑
j=1

qj(t)φj(xi) =

N−1∑
j=1

qj(t)

√
2

L
sin

(
jπi

N

)
. (13)

This can be written in matrix form as u = Sq, where Si,j =
φj(xi), ∀(i, j) ∈ {1, ..., N − 1}2. The inverse of S can easily be
calculated: S−1 = L

N
ST . This linear relation between u and q

will be useful in the following analysis.

3.3. Time discretization

Some notations are first introduced:

uni = u(n∆t, xi)

δt−un =
un − un−1

∆t

δt+un =
un+1 − un

∆t

δt.u
n =

un+1 − un−1

2∆t

δttu
n =

un+1 − 2un + un−1

∆2

〈u,v〉 = ∆x
∑

j∈{1,...,N−1}

ujvj .

Let us now consider the following time discretization of (11):
µ

∆t2
(qn+1 −Cqn + C̃qn−1) = Fn, (14)

where C, C̃ are diagonal matrices such that :

Ci,i = e−σi∆t
(
e
√
σ2
i−ω

2
i ∆t + e−

√
σ2
i−ω

2
i ∆t
)

C̃i,i = e−2σi∆t.

When the contact force is not present, the modal approach may
be viewed as an assembly of independent linear oscillators. This
temporal integration scheme gives an exact solution in this case, as
shown for example in [19], ensuring that at least the linear part is
well-approximated (indeed, perfectly). The contact force, through
which modes are coupled, remains to be determined. In order to
avoid the difficulty linked to this coupling, the dynamical equation
for the modal displacements vector q is rewritten for the physi-
cal displacement vector u. Thanks to the linear relationship stated
above between u and the modal displacement q, the discrete equa-
tion on u can be written as:

µ

∆t2
(un+1 −Dun + D̃un−1) = fn, (15)

where D = SCS−1 and D̃ = SC̃S−1. The contact force ex-
pression used in the present approach is the same as in [3]: fn =

− δt−ψ
n+1

2

δt.un , where ψn+ 1
2 = 1

2
(ψn+1 + ψn) and ψn = ψ(ηn).

This formulation allows for a conservative scheme when there is
no loss, and a dissipative one otherwise.

Therefore, at each time step, the following equation must be
solved:

r + b +m
ψ(r + a)− ψ(a)

r
= 0, (16)

where r = un+1 − un−1 is the unknown, a = un−1, m = ∆t2

µ

and b = −Dun + D̃un−1 + un−1. The Newton-Raphson algo-
rithm may be used to this end [3].

Compared to a finite difference approach, the major advantage
is the consideration of damping parameters and frequencies that
can be adjusted mode by mode. However, the matrices D, D̃ are
full in the modal case, as opposed to sparse in the case of local
finite difference approximations, and computation time increases
accordingly (see section 4.2).

Numerical energy analysis and stability conditions for the sche-
me are provided in the next section.
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3.4. Stability analysis

The numerical scheme (15) is in a form close to actual implemen-
tation. However, in order to derive the discrete energy associated
to the scheme, it is more convenient to rewrite it in terms of dis-
crete temporal operators. Following the given in the case of an
oscillator in [19] to get an equivalent scheme, one obtains:

µ
[
Č1δttq

n + Č2qn + Č3δt.q
n] = Fn, (17)

with Č1, Č2 and Č3 diagonal matrices satisfying:

Č1ii =
1 + (1− γi)ω

2
i ∆t2

2

1 + (1− γi)
ω2
i ∆t2

2
+ σ∗i ∆t

Č2ii =
ω2
i

1 + (1− γi)
ω2
i ∆t2

2
+ σ∗i ∆t

Č3ii =
2σ∗i

1 + (1− γi)
ω2
i ∆t2

2
+ σ∗i ∆t

.

The coefficients γi and σ∗i may be written as

γi =
2

ω2
i∆t2

− Ai
1 + ei −Ai

σ∗i =

(
1

∆t
+
ω2
i∆t

2
− γi

ω2
i∆t

2

)
1− ei
1 + ei

where

Ai = e−σi∆t
(
e
√
σ2
i−ω

2
i ∆t + e−

√
σ2
i−ω

2
i ∆t
)

and ei = e−2σi∆t.

(18)
The scheme for the displacement u thus may be written as:

µ
[
Ď1δttu

n + Ď2un + Ď3δt.u
n] = fn, (19)

where Ď1 = SČ1S−1, Ď2 = SČ2S−1 and Ď3 = SČ3S−1.
The force term is expressed as previously.

A discrete energy balance can be obtained by taking the inner
product between equation (19) and δt.un:

δt−Hn+ 1
2 = −µ

〈
δt.u

n, Ď3δt.u
n〉 . (20)

where:

Hn+ 1
2 =

µ

2

〈
δt+un, Ď1δt+un

〉
+
µ

2

〈
un+1, Ď2un

〉
+
〈
ψn+ 1

2, 1
〉
.

(21)
Ď3 is positive semi-definite, so that the scheme is strictly dis-

sipative. Therefore it is stable if the energy is positive.

Since the force potential is non-negative, the stability condi-
tion is given by:〈

δt+un, (Ď1 −
∆t2

4
Ď2)δt+un

〉
≥ 0. (22)

It is therefore sufficient to have (Ď1 − ∆t2

4
Ď2) positive semi-

definite, which is true if (Č1 − ∆t2

4
Č2) is positive semi-definite.

Consequently, the condition that must be satisfied may be written
as:

1 + ei +Ai
1 + ei −Ai

≥ 0 ∀i. (23)

Equation (23) is satisfied if 1 + ei ± Ai > 0.This is always true,
and hence the scheme is unconditionally stable. The same conclu-
sion is obtained in the limiting case σi = 0 ∀i, using the same
reasoning leading to 22 with a reduced expression of γi.

3.5. Contact losses

Nonlinear losses due to contact can be added in the presented
framework, following the considerations developed in [26, 3]. The
contact force given by (3) may be modified as:

f =
dψ

dη
− du

dt
Kβ[η]α+, (24)

with β ≥ 0.

The energy (5) of the system (with no loss inherent to the
string) then satisfies [3]:

dH

dt
= −Qcontact (25)

where

Qcontact =

∫ L

0

(ut)
2Kβ[η]α+dx. (26)

The additional damping term may be discretised using the fol-
lowing expression [3]: δt.unKβ[ηn]α+.

Instead of (16), the equation to be solved at each time step is
then:

(1 + c)r + b +m
ψ(r + a)− ψ(a)

r
= 0, (27)

where c = ∆t
2µ
Kβ[g−un]α+. The discrete energy balance is given

by:

δt−Hn+ 1
2 = −µ

〈
δt.u

n, Ď3δt.u
n〉− 〈δt.un, δt.unKβ[ηn]α+〉 .

(28)
Since 〈δt.un, δt.unKβ[ηn]α+〉 ≥ 0, the dissipation in the system
is then increased.

4. APPLICATION TO MUSICAL INSTRUMENTS AND
SOUND SYNTHESIS

In this section, the numerical scheme presented previously is used
to simulate the motion of a string vibrating against an obstacle.
The cases of a point obstacle and a distributed obstacle are consid-
ered.

The string to be considered here is of length L = 1.002 m,
under tension T = 180.5 N and with linear mass density µ =
1.17×10−3 kg/m. Musical strings are known to have a very small
stiffness. Consequently, the inharmonicity coefficient B intro-
duced in Section 3.1 is chosen to beB = 1.78×10−5, correspond-
ing to measured values according to the protocol described in [20].
In order to show the ability of the model to incorporate a complex
damping law, the theoretical loss model introduced in section 3.1
is used. The values δve = 0.0045 and Q−1

te = 0.000203 have
been chosen, and correspond to experimental data, obtained using
the method exposed in [20]. This model has a complex frequency
dependence and accounts for the main loss mechanisms present in
strings.

First, a time step, or sample rate has to be chosen. To this
end, a convergence study has been undertaken, as elaborated in
the following section.
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4.1. Convergence study

Contact problems lead to the spontaneous generation of high fre-
quencies in the system, due to the very short timescales resulting
from collisions between very stiff objects, as in the present case.
This implies, at least in theory, a need for a high sampling rate
in order to obtain accurate results, which should decrease as the
contact stiffness does. The presence of damping, particularly at
high frequencies, is expected to be an ameliorating factor. In order
to highlight such accuracy issues, as they relate to the time step,
convergence results are presented here.

Consider a point obstacle located at x = 6 mm (see Section
4.3). In Figure 2, time history and spectrograms of simulation out-
put are shown, where output is taken as the velocity at the bridge.
For the contact restoring force, K = 1013 and α = 1.3 in order
to obtain a stiff contact, limiting penetration of the string in the
obstacle to the range of 1× 10−8 m. With K = 109 for instance,
the penetration attains about 1 × 10−5 m and the resulting sound
richness is significantly altered. The string is initially plucked at
x = L/2, with a maximal displacement of 1.8 mm.
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Figure 2: At left : time-domain output signals. At right : spec-
trograms. From top to bottom : Fs = 128, 256, 512 and 1024
kHz.

Figure 2 clearly highlights that for a sample rateFs = 1/∆t =
128 kHz, the simulated sound is far from convergence (it is sub-
stantially different from the result with Fs = 1024 kHz), and thus
not reliable. From Fs = 256 kHz, the general shape of the time
history, together with the spectral dynamics, seems to be correctly
reproduced. However, detailed view inside the signal and auditory
comparisons definitely evidenced that the high frequencies com-

ponents are not well reproduced, such that this sample rate is still
insufficient. Finally, careful inspection crossed with listening tests
shows that a sample rate of at least Fs = 1 MHz is necessary
for convergence of numerical results. To be confident with the ac-
curacy of the simulations presented below, the sampling rate has
been fixed for all the simulations to Fs = 2 MHz. Note also that
careful comparisons with experimental results have been presented
in [20], for which a sample rate of 2 MHz was also necessary to
obtain very satisfactory results over long simulation times.

4.2. Computation cost

In this part, computation times of the numerical scheme are dis-
cussed. The computations have been realized with MATLAB on
a single CPU with a clock at 2.4 GHz, and time costs are given
in table 1 for the computation of one second of sound, rounded
up to the nearest minute when N = 1001. Steps which are con-
trolled are the Newton-Raphson loop, the computation of b,a, rn

in (16), the computation of the energy given in (21) and finally the
total time is given. It clearly appears that the most costly steps are

N − 1 = 500
Fs 44.1 kHz 88.2 kHz 176 kHz 1 MHz

Newton-Raphson 0.7 1.3 2.6 9.8
b,a, rn in (16) 1.5 3.1 6 31.4

Energy 0.8 1.7 3.5 16.8
Total time 3.1 6.4 12.5 59.5

N − 1 = 1001
Fs 44.1 kHz 88.2 kHz 176 kHz 1 MHz

Newton-Raphson 1 2 4 14
b,a, rn in (16) 5 7 14 119

Energy 3 6 12 54
Total time 10 16 30 189

Table 1: Computation times, in minutes, for N − 1 = 500 and
N − 1 = 1001.

the computation of b,a, rn and the energy, i.e. products of matri-
ces and vectors, most probably because involved matrices are full.
Therefore, the computation time is mostly driven by N , so that a
judicious way of reducing computation cost may be to adapt the
spatial grid to the obstacle, making the space grid finer around the
obstacle and larger elsewhere.

4.3. Point obstacle: case of the tanpura

The tanpura is an Indian instrument which is played by plucking
open strings. The strings are connected to a curved bridge over
which a thread is carefully installed makes the sound very specific
to this instrument. This bridge and its thread (fully modelled in
[15]) can mostly be described as a two point bridge [14]. Therefore
in this part, this two point bridge is considered: assuming that the
bridge is at x = 0, a point obstacle is located at x = 6 mm.
Two initial conditions are considered, by plucking the string at
x = L/5 and x = 4L/5, and the velocity of the string is computed
at the bridge.

Parameters of the contact force are K = 1013 and α = 1.3 as
in Section 4.1, and the spatial grid is such that N = 1001. At the
initial time a smoothed triangle with a maximal amplitude of about
1 mm is imposed as the initial displacement, with no velocity. This
small value has been chosen in order to show that even for very

DAFX-171



Proceedings of the 19th International Conference on Digital Audio Effects (DAFx-16), Brno, Czech Republic, September 5–9, 2016
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Figure 3: Spectral evolution of velocities at the bridge (a) no obstacle, plucking at x = L/5 (b) point obstacle, plucking at x = L/5
(c) point obstacle, plucking at x = 4L/5.

small displacements, the contact can introduce strong nonlinear
effects which are clearly audible and visible on signals.

When there is no obstacle, one can observe rejection of modes
which are not excited by the initial condition, as well as a faster
damping of high frequencies compared to low frequencies (see
Figure 3). When the obstacle is added, all modes are present and
energy is transmitted from modes to others. Spectrum tendencies
are similar to those encountered in [15] (numerical results) and
[14] (experimental results).

The velocity signal for the string with an obstacle is mostly
positive (see Figure 4), this is due to the close position of the mea-
sure position to the obstacle. Moreover, the effect of the string
stiffness implies dispersion which is clearly visible on temporal
signals, and constitutes a precursor. When the plucked point is at
x = 4L/5 rather than x = L/5, the precursor needs more time
to reach the obstacle, therefore it is much more developed when
arriving, which explains the high frequencies richness of the tem-
poral signal in Figure 4.

Moreover, according to [14], the frequency sliding depends on
the plucking position, which is also observed here.

The temporal evolution of energy Hn+ 1
2 is presented in Fig-

ure 5. It decreases faster when there is an obstacle, probably
because energy is transmitted to higher modes, which are more
damped. For a plucking point at x = 4L/5, the energy decreases
faster than at x = L/5, since more high frequencies are generated
by the bridge.

4.4. Distributed obstacle

In this part, a distributed parabolic obstacle is considered at one
end of the string, that could mimic the case of a sitar. Its shape is
as follows:

g(x) = −ax2, (29)

where we set a = 0.0065. The length of the obstacle is 19 mm
(see Figure 6). Such a value, small compared to realistic ones (see
for instance [13], where a measure gives a = 0.5778), is chosen
in order to make the contact between the string and the full length
of the bridge arise. No particular adjustment is made in terms of
inclination, however interesting observations can already be made.

Numerical parameters K, α and the initial condition are the
same as previously. Temporal and spectral evolutions are presen-
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Figure 4: Temporal evolution of velocities at the bridge for a point
obstacle mimicking the case of the tanpura (a) no obstacle, pluck-
ing at x = L/5 (b) point obstacle, plucking at x = L/5 (c) point
obstacle, plucking at x = 4L/5.

ted in Figures 7 and 8, as well as the energy of the signal. Because
of the obstacle, the velocity signal at the bridge as a minimum
value close to 0.

Similarly to the case of the point obstacle, a precursor is vi-
sible from the first periods and high frequencies are highly excited
by the contact, which results in narrow peaks on temporal signals
(Figure 7). As mentioned in [12] for experimental results on a
complete instrument, the absence of rejection and a descending
formant can clearly be observed in Figure 8. Moreover, as in the
point obstacle case, the energy decrease is faster than when there
is no obstacle, which may be due to the transfer of energy from
lower to higher modes, combined with larger damping at high fre-
quencies.
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5. CONCLUSION

A numerical method combining a modal approach and an energy-
conserving scheme for the case of the string in contact with a bar-
rier has been introduced. Due to the modal approach, the linear
parameters of the strings (eigenfrequencies and damping coeffi-
cients) can be set independently for each mode, allowing for flex-
ible control over frequency-dependent loss. In particular, linear
characteristics of a measured string can be used in order to obtain
very realistic sounds, as proposed in [20]. Such complete con-
trol over damping rates for the string constitutes one of the major
advantages of a modal approach to synthesis. The scheme itself,
though with modal characteristics, operates ultimately in the spa-
tial domain, much like a finite difference scheme, though with the
special property of being exact under linear conditions. Such a
method can thus be viewed as a type of spectral method [27], ac-
companied by a time-stepping method which is tuned according
to the modal frequencies (unlike, e.g., more typical methods such
as leap-frog, or members of the Runge-Kutta family). As with
spectral methods, though the updates are no longer sparse, as in
the case of FD schemes, it may be possible to employ fast trans-
forms (such as a variant of the FFT) in order to perform the updates
(which in this case, follows directly from the sinusoidal structure
of the matrix S).

It has been shown that a high sample rate is necessary in or-
der to obtain reliable results for simulations over a long duration.
Computation time, which does not allow a real-time simulation at
present on a standard machine, could be improved by considering
a variable spatial step, finer in the region surrounding the obsta-
cle, and possibly a variable time step [28], since high temporal
precision is only necessary when the string is in contact with the
obstacle. In audio applications, though, such algorithmic refine-
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Figure 8: Spectral evolution of the velocity at the bridge, dis-
tributed obstacle

ments must be treated with care—the use of a variable grid spacing
will entail a loss of structure in the resulting update matrices, and
the use of a variable time step must necessarily be accompanied by
some form of on-line sample rate conversion which is perceptually
transparent.

The next steps of this research will consider more closely the
comparison between the outcomes of these numerical methods and
measurements realized on a real string and/or on real instruments.
To this end, and also in the interest of higher quality synthesis, a
parametric study on the contact force parameters should be car-
ried out, and the incorporation of various additional features of the
string/barrier system would be of interest. One such feature is the
extension of string vibration to two polarisations, as recently ex-
plored in the context of bowed string synthesis [29] and in case
of the tanpura [30]. At present, there is not a model of an excita-
tion mechanism, and a refined plucking model could be included,
perhaps modeling the dynamics of the player’s fingers [31]. Ulti-
mately, a complete instrument will require a model of coupling to
the instrument body, acoustic radiation, and possibly sympathetic
strings [32].
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ABSTRACT

Physics-based synthesis of tanpura drones requires accurate sim-
ulation of stiff, lossy string vibrations while incorporating sus-
tained contact with the bridge and a cotton thread. Several chal-
lenges arise from this when seeking efficient and stable algorithms
for real-time sound synthesis. The approach proposed here to
address these combines modal expansion of the string dynamics
with strategic simplifications regarding the string-bridge and string-
thread contact, resulting in an efficient and provably stable time-
stepping scheme with exact modal parameters. Attention is given
also to the physical characterisation of the system, including string
damping behaviour, body radiation characteristics, and determi-
nation of appropriate contact parameters. Simulation results are
presented exemplifying the key features of the model.

1. INTRODUCTION

Among mechanically-induced sound effects naturally afforded by
musical instruments, the generation of overtones in tanpura drone
playing is one of the more spectacular and intriguing examples. In
Indian musical tradition, the phenomenon is known as jvari (mean-
ing ‘life-giving’), and arises from the impactive interaction of the
vibrating string with a hard-surfaced bridge. The player fine-tunes
the effect by carefully positioning a thin thread between the bridge
and the string (see Fig. 1).

As a vibrational phenomenon, the jvari effect has attracted
scientific interest for almost a century, starting with the musical
acoustics poineering work by Raman [1]. Several ways of analy-
sing and modelling the vibrations of the tanpura and other ‘flat-
bridge’ instruments such as the sitar, veena, and biwa have been
proposed since, with the aims ranging from theoretical understand-
ing (usually relying on simplifying assumptions regarding the na-
ture of the interaction [2, 3, 4]) to more practical discrete-time sim-
ulation [5, 6] including several synthesis oriented studies [7, 8].
The problem also naturally bears some resemblance to various
other cases involving collisions, including string-fingerboard con-
tact in the guitar [9, 10], violin [11], and bass guitar [12, 13, 14].

Despite these advances, efficient and realistic synthesis of the
sound of flat-bridge string instruments appears to have remained a
somewhat elusive goal. One of the original difficulties, namely that
of potential instability when incorporating collision forces, has re-
cently been addressed more widely within a finite-difference con-
text, by construction of time-stepping schemes that respect the en-
ergy balance inherent to the underlying continuous-domain model
[15, 16, 17, 18]. Tanpura models based on such energy meth-
ods can reproduce the jvari effect by simulating distributed string-
bridge collisions [17, 19, 20]. However the algorithms that im-
plement these tanpura models are not particularly suited to sound
synthesis because of the high computational burden resulting from

tuning
bead

bridge

finger

nut

cotton
thread

0 xc xb xe L→ x

Figure 1: Schematic depiction of the tanpura string geometry (with
altered proportions for clarity). The string termination points of the
model are indicated with the vertical dashed lines.

the reliance on iterative solvers and from the high sample rates
needed to alleviate numerical dispersion.

This paper aims to formulate a leaner discrete-time tanpura
string model requiring significantly reduced computational effort,
but retaining much of the key sonic features of the instrument.
Two aspects that distinguish this challenge somewhat from other
cases of string-barrier interaction are (a) the sustained nature of
the impactive interaction (with a high potential for audible high-
frequency artefacts, including aliasing) and (b) the sensitivity of
the jvari to some of the system parameters and to discretisation er-
rors. The key features of the proposed model, presented in Section
2, can be summarised as follows:

• the spatially distributed string-bridge collision forces are sup-
pressed to a single variable, which - in conjunction with neglect-
ing contact damping and using a unity exponent in the contact
law - allows updating the numerical system without the use of
an iterative solver;

• the thread interaction, which effects a ‘softer’ string termina-
tion, is explicitly modelled as a local spring-damper connection;

• a modal expansion approach is utilised, which allows formulat-
ing a numerical model with exact modal frequencies and damp-
ing;

• discretisation is performed on a first-order partial derivative form
of the modal differential equations, which facilitates the use of a
two-point discrete gradient for discretisation of the bridge con-
tact force;

• numerical stability is independent of the system parameters and
the temporal step; the only numerical constraint is that the mode
series is truncated at Nyquist in order to avoid mode aliasing.

For realistic synthesis of tanpura drones, one also needs to de-
termine appropriate system parameters, including those related to
string damping, bridge and thread contact, and sound radiation;
this is discussed in Section 3. Exemplifying simulation results are
then presented and discussed in Section 4, followed by concluding
remarks and perspectives in Section 5.
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2. TANPURA STRING MODEL

2.1. Model Equations

The transversal displacement y(x, t) of the string depicted in Fig.
1, with the spatial domain defined as x ∈ [0, L] and t denoting
time, may be described by:

ρA
∂2y

∂t2
= T

∂2y

∂x2
− EI ∂

4y

∂x4
− γ(β)

∂y

∂t

+ Fc(x, t) + Fb(x, t) + Fe(x, t), (1)

in which ρ, A, T , E, and I are mass density, cross-sectional area,
tension, Young’s modulus, and moment of inertia, respectively.
Assuming simply supported ends, the boundary conditions are

y(x, t)
∣∣∣
x=0,L

= 0,
∂2y

∂x2

∣∣∣
x=0,L

= 0. (2)

Frequency-dependent string damping is incorporated by defining
the parameter γ(β) in (1) as:

γ(β) = 2ρA
[
σ0 +

(
σ1 + σ3β

2) |β| ], (3)

where β is the wave number and σ0,1,3 are fit parameters. The
interactions with the cotton thread, the bridge and a plucking fin-
ger are modelled using the force densities Fc(x, t), Fb(x, t) and
Fe(x, t), respectively. These are defined here in a simplified form
by pre-determining their spatial distributions, hence modelling each
as (z = c,b, e):

Fz(x, t) = ψz(x)Fz(t), (4)

where ψz(x) are spatial distribution functions of the form

ψz(x) =

{
π

2wz
cos
[
π
wz

(x− xz)
]

: x ∈ Dz
0 : otherwise

(5)

in which Dz = [xz−1
2
wz, xz−1

2
wz] denotes a spatial domain of

width wz and centre position xz . Equation (5) is a good approx-
imation to the force profile typically observed in the initial vibra-
tions as computed with distrubuted contact models (see the left
plot of Fig. 2). In addition this form provides a convenient way of
exciting mainly the first mode of the string (by setting xe = 1

2
L,

we = L). The impactive contact with the bridge is modelled here
using a lossless contact law with unity exponent and elasticity con-
stant kb:

Fb(t) = kbbhb − yb(t)c, (6)

in which byc denotes u(y) ·y, where u(y) is the unit step function.
Given that the string never detaches from the cotton thread, this
interaction can be modelled as a simple spring-damper connection

Fc(t) = kc [hc − yc(t)]− rc
∂yc

∂t
, (7)

where rc is a damping parameter. The term yz(t) (z = b, c) in
equations (6) and (7) represents a spatially averaged value of the
string displacement at xz:

yz(t) =

∫ xz+wz/2

xz−wz/2

ψz(x) y(x, t)dx. (8)

The contact potential energies are

Vc(yc) =
kc

2
[hc − yc]2 , Vb(yb) =

kb

2
bhb − ybc2, (9)
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Figure 2: Left: string motion snapshot obtained with a model sim-
ulating distributed bridge contact [28]. The profile of the orange
surface indicates force density, and the dash-dot line indicates the
corresponding instantaneous central contact point. Right: Varia-
tion of the central contact point over the first 12ms. The flat dashed
lines indicates periods of no contact.

where both height constants hc and hb are normally zero to en-
sure grazing contact at equilibrium. From the second equation it is
straightforward to derive that

Fb(t) = −∂Vb

∂yb
. (10)

The forces exerted by the string at the left-end termination (‘o’)
and the nut end (‘n’) are

Fo(t) = T
∂y

∂x

∣∣∣
x=0
− EI ∂

3y

∂x3

∣∣∣
x=0

, (11)

Fn(t) = −T ∂y
∂x

∣∣∣
x=L

+ EI
∂3y

∂x3

∣∣∣
x=L

. (12)

Since Fo(t) is generally much smaller than Fc(t) and Fb(t), the
total force exerted by the string on the bridge can be calculated as

Fd(t) = −Fc(t)− Fb(t). (13)

Approximations to the emitted sound can be found by filtering
Fd(t) and Fn(t), where the filters have transfer functions that ap-
proximate measured body radiation responses (see Section 3.3).

The plucking force is specified here in highly simplified form:

Fe(t) =

{
ae sin2 [(π/τe)he(t− te)] : t ∈ Te

0 : otherwise
, (14)

where Te = [te, te + τe] and with

he(t) =
1

2

[
t+

τe sinh(βet/τe)

sinh(βe)

]
. (15)

As seen in Fig. 3, the parameter βe > 0 controls the attack and
release slopes of the plucking function, which allows mimicking
the gentle style in which tanpura strings are generally plucked.
The other control parameters are the amplitude ae and the over-
all pluck signal timespan τe. More sophisticated plucking models
have been proposed (see, e.g. [9]) but may not be needed given
that the characteristics of the tanpura sound are heavily dominated
by the nonlinearity of the string-bridge interaction, with relatively
little dependence on the intricacies of the finger-string interaction.
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Figure 3: Normalised plucking force signal for four values of βe.
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2.2. Modal Expansion

The solution of (1) can be expressed as a superposition of the nor-
mal modes of the string (indexed with i):

y(x, t) =

M∑
i=1

vi(x) ȳi(t), (16)

where ȳi(t) denotes the mode displacement and vi(x) = sin(βix)
is the corresponding mode shape (spatial eigenfunction) for the
boundary conditions given in (2), with βi = iπ/L. After substi-
tution of (16) into (1), then multiplying with vi(x) and applying
a spatial integral over the length of the string, one obtains that the
dynamics of each of the modes is governed by:

m
∂2ȳi
∂t2

= −kiȳi(t)− ri ∂ȳi
∂t

+
∑

z=c,b,e

F̄z,i(t), (17)

in which m = 1
2
ρAL is the modal mass (which is the same for all

modes), and where ki = 1
2
L
(
EIβ4

i + Tβ2
i

)
and ri = 1

2
Lγ(βi)

are the elastic and damping constants of the mode, respectively.
Within the constraint ri < 2

√
kim, the modal frequencies are

ωi =
√
ki/m− α2

i , where (in accordance with (3))

αi = ri/(2m) = σ0 + σ1βi + σ3β
3
i (18)

are the modal decay rates. The force terms in (17) are

F̄z,i(t) =

∫ L

0

vi(x)ψz(x)Fz(t)dx = gz,iFz(t), (19)

where1:

gz,i =
π2 sin(βixz) cos(βiwz/2)

π2 − β2
iw

2
z

. (20)

In modal form, the spatially averaged string displacement at x =
xz (z = c,b) is

yz(t) =

∫ xz+wz/2

xz−wz/2

ψz(x)

M∑
i=1

vi(x)ȳi(t)dx =

M∑
i=1

gz,iȳi(t),

(21)
and the nut force can be expanded as

Fn(t) =

M∑
i=1

[
− Tv′i(L) + EIv′′′i (L)

]
ȳi(t), (22)

where v′i(x) and v′′′i (x) denote the first and third spatial derivative
of vi(x), respectively.

2.3. Discretisation in Time

We may re-formulate (17) in first-order form as follows:
∂ȳi
∂t

=
p̄i
m
, (23)

∂p̄i
∂t

= −kiȳi − ri ∂ȳi
∂t

+
∑

z=c,b,e

gz,iFz(t), (24)

in which p̄i represents the modal momentum. Gridding time by
denoting yn ≡ y(n∆t), where ∆t = fs

−1 is the temporal step,
we introduce the difference and sum operators

δyn = yn+1
2 − yn−12 ≈ ∆t

∂y

∂t

∣∣∣
t=n∆t

, (25)

µyn = yn+1
2 + yn−12 ≈ 2 y

∣∣∣
t=n∆t

. (26)

1Note that care has to be taken in evaluating (20) for βi = wz/π, using
limβi→wz/π gz,i =

π
4
sin(βixz).

The mid-point-in-time discretisation of equations (23) and (24)
can then be written as

δȳ
n+1

2
i

∆t
=
µp̄

n+1
2

i

2m
, (27)

δp̄
n+1

2
i

∆t
= −ki µȳ

n+1
2

i

2
− ri δȳ

n+1
2

i

∆t
+

∑
z=c,b,e

gz,iF
n+1

2
z , (28)

which is equivalent to applying the trapezoidal rule. The exter-

nal force is calculated as 1
2
µF

n+1
2

e , and the cotton thread force is
obtained by discretising (7):

F
n+1

2
c = kc

(
hc − 1

2
µy

n+1
2

c

)
− rc

δy
n+1

2
c

∆t
. (29)

Special care has to be taken regarding stability in discretising the
bridge contact force, due to its non-analytic form [15, 16]. A suit-
able numerical term is obtained by discretising (10), which yields
the two-point discrete gradient:

F
n+1

2
b = −δV

n+1
2

b

δy
n+1

2
b

= −Vb(yn+1
b )− Vb(ynb )

yn+1
b − ynb

. (30)

Using the scaled momentum value q̄ni = (∆t/(2m))p̄ni , the sys-
tem equations (27,28) can be written more conveniently as

δȳ
n+1

2
i = µq̄

n+1
2

i , (31)

δq̄
n+1

2
i = −aiµȳn+1

2
i − biδȳn+1

2
i + ξ

∑
z=c,b,e

gz,iF
n+1

2
z , (32)

where ξ = ∆t2/(2m), ai = 1
4
ki∆t

2 m
−1, and bi = 1

2
ri∆tm

−1.

Once the force termsF
n+1

2
z are known, the dynamics of each mode

can be simulated by solving for ȳn+1
i and q̄n+1

i at each time step.
However, unless a very small temporal step is used, this procedure
would lead to severe numerical dispersion. Therefore the coeffi-
cients in (31,32) are replaced by the values (a∗i , b

∗
i ) below, which

ensures that the modes have exact modal frequencies and damping:

a∗i =
1− 2RiΩi +R2

i

1 + 2RiΩi +R2
i

, b∗i =
2
(
1−R2

i

)
1 + 2RiΩi +R2

i

, (33)

where Ri = exp(−αi∆t) and Ωi = cos(ωi∆t). This is readily
verified by testing the (31,32) without the force terms for the ansatz

ȳni = exp(sdn∆t), q̄ni = C exp(sdn∆t), (34)

where sd = jωd − αd is the complex resonance frequency of the
discretised mode, with j=

√
−1, and C is a complex constant. This

leads to a characteristic equation in zd= exp(sd∆t):

z2
d − 2

(
1− ai

1 + ai + bi

)
zd +

(
1 + ai − bi
1 + ai + bi

)
= 0. (35)

After substituting (33) this becomes

z2
d − 2Ri cos(ωi∆t)zd +R2

i = 0, (36)

which has the solution zd = Ri exp(ωi∆), from which it follows
that sd = jωi − αi, i.e. the discrete system has exact modal fre-
quency and damping. The above coefficient replacement can be
thought of in terms of the following adapted elasticity and damp-
ing values:

ki → k∗i =
4ma∗i
∆t2

, ri → r∗i =
2mb∗i
∆t

. (37)
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An accompanying restriction - necessary to avoid aliased modes -
is that none of mode frequencies exceeds the Nyquist frequency,
i.e. ωi < π/∆t, which defines the largest possible truncation of
the modal series expansion in (16). A seemingly simpler way to
avoid numerical dispersion is to discretize (17) using the impulse
invariant transform and defining (30) in three-point form. However
the resulting model would not be provably stable due to mode de-
pendency of the modal force coefficients, which precludes defining
an energy balance with non-negative energy.

2.4. A Vector-Matrix Update Form

If we stack the variables in column vector form, for M modes we
may write the system equations as

δȳn+1
2 = µq̄n+1

2 , (38)

δq̄n+1
2 = −Aµȳn+1

2 −Bδȳn+1
2 + ξ

∑
z=c,b,e

gzF
n+1

2
z , (39)

where A and B are diagonal matrices with diagonal entries Aii =
a∗i and Bii = b∗i , and where column vectors gz hold the values
defined with (20). A convenient vector update is then found by
using (38) to define s̄ = δȳn+1

2 = µq̄n+1
2 , and substituting

ȳn+1 = s̄ + ȳn, q̄n+1 = s̄− q̄n, (40)

in (39), which allows solving for s̄ with

s̄ = ū + ebF
n+1

2
b + ecF

n+1
2

c , (41)

where eb = ξJ
−1
gb and ec = ξJ

−1
gc, with J = I + A + B, and

where
ū = J

−1
[
2 (q̄n −Aȳn) + ξgeF

n+1
2

e

]
. (42)

Hence once the contact forces F
n+1

2
b and F

n+1
2

c are known, eq.
(41) immediately yields the step s̄, after which both ȳn+1 and
q̄n+1 can be updated using (40). A further update comprises eval-

uating the nut force F
n+1

2
n with the vector form of (22). Note that

since the matrices J and A are diagonal, the matrix operations in
(42) can be implemented very efficiently via componentwise mul-
tiplication/division.

2.5. Solving for the Contact Forces

In order to solve for the forces F
n+1

2
b and F

n+1
2

c , (41) is pre-
multiplied with gTb, which (also using sb = yn+1

b − ynb ) yields
the scalar equation

sb = ub + θbbF
n+1

2
b + θbcF

n+1
2

c , (43)

where ub = gTbū, θbb = gTbeb and θbc = gTbec. Similarly, one
can pre-multiply (41) with gTc , giving

sc = uc + θbcF
n+1

2
b + θccF

n+1
2

c , (44)

with uc = gTc ū and θcc = gTcec. Setting φc = kc/2 + rc/∆t, the
numerical thread force in equation (29) can be written in terms of
sc as

F
n+1

2
c = kc (hc − ync )− φcsc. (45)

Combining with (44) to eliminate sc then gives

F
n+1

2
c = vc − βcF

n+1
2

b , (46)

∆yn ≤ 0?

u ≤ −∆yn?

yes

no

yes

no

sb=−u

yes

no

sb=
2ϕ∆yn− u−

√
u2−4ϕ∆yn(u+∆yn)

2(1 + ϕ)

sb=
2ϕ∆yn − u

1 + ϕ

sb=− 1
2
u+ 1

2

√
u2 + 4ϕ(∆yn)2u ≥ ∆yn(ϕ− 1)?

Figure 4: Analytic solution of equation (48), where ϕ = θkb/2
and ∆yn = hb − ynb .

where

vc =
kc (hc − ync )− φcuc

1 + φcθcc
, βc =

φcθbc

1 + φcθcc
. (47)

Now substituting this into (43) and evaluating the bridge force term
with (30) one obtains the nonlinear scalar equation

sb + u+ θ
Vb(sb + ynb )− Vb(ynb )

sb
= 0, (48)

where θ = θbb − βcθbc and u = −ub − θbcvc. This equation is
analytically solvable according to four distinct cases [18] as shown
in Fig. 4. Once sb is known the bridge force can be calculated
accordingly and the thread force is updated with (46).

2.6. Numerical Energy Balance and Stability

The energy of the numerical model can be calculated for any time
instant n by summing up the mode energies and adding the poten-
tials of the bridge and thread interaction:

Hn =

M∑
i=1

[
1

2m
(p̄ni )2 +

k∗i
2

(ȳni )2

]
+ Vc(ync ) + Vb(ynb )

=
(q̄n)Tq̄n + (ȳn)TAȳn

ξ
+
kc

2
[hc−ync ]2 +

kb

2
bhb−ynb c2.

(49)

Multiplying the left-hand side of (39) with (µq̄n+1
2 )T and the right-

hand side with (δȳn+1
2 )T yields, after a few further algebraic ma-

nipulations, the energy balance

δHn+1
2

∆t
= Pn+1

2 −Qn+1
2 , (50)

where
Pn+1

2 = 1
2
∆t−1gTeδȳ

n+1
2 µF

n+1
2

e (51)

is the input power and

Qn+1
2 =

(δȳn+1
2 )TBδȳn+1

2

ξ∆t
+
( rc

∆t2

)(
δy
n+1

2
c

)2

(52)

is the dissipated power. From inspecting (33), it follows that the
diagonal matrices A and B can only contain real-valued positive
elements and are thus positive definite. This implies unconditional
numerical stability, as both Hn and Qn+1

2 are consequently guar-
anteed to be non-negative (i.e. the total energy can increase only
through external force excitation). It is worthwhile pointing out
that the energy balance in (50) relies not only on the use of the
discrete gradient in (30), but also on the fact that equations (4) and
(8) utilise the same spatial distribution function, which ensures that
the vector terms gb are eliminated in the calculation process.
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3. PHYSICAL CHARACTERISATION

3.1. String Parameters

The string parameters L, A, E and ρ are readily available for a
given string, and the tension T can be set accordingly such that
the correct fundamental frequency results. The moment of inertia
is calculated directly from the string radius r as I = 1

4
πr4. The

damping coeffcients σ0,1,3 in (18) can be estimated from a plucked
string signal measured with a freely vibrating string (i.e. no bridge
contact), for example as in [21]. Given the importance of the role
of string damping in the jvari effect, it is worthwhile noting that
these coefficients can be expressed directly in terms of the phys-
ically motivated fit parameters used by Woodhouse in eq. (8) of
[21] for characterising guitar strings:

σ0 ≈ 1
2
ηA, σ1 ≈ 1

2
c ηF , σ3 ≈ 1

2
c λ ηB , (53)

with c =
√
T/(ρA) and λ = EI/T , and where ηA, ηF , and

ηB represent “air”, “friction”, and “bending” damping, respec-
tively. Woodhouse’s modal decay rate form, which was adapted
from [22], generally allows an excellent low-parameter fit to mea-
sured string data over a wide frequency range [22, 21]. For this
reason equation (18) is preferred here over the even-order form
αi =

∑
j σjβ

2j
i often used in sound synthesis.

Table 1: Physical parameter values used for a C3 string.

string parameters contact parameters
L 1.0 [m] xb 10×10−3 [m]
ρA 4.83 ×10−4 [kg/m] wb 2.0×10−3 [m]
T 33.1 [N] kb 4.39×108 [N/m]
EI 6.03 ×10−5 [Nm2] xc [4.0 - 8.0]×10−3 [m]
σ0 0.6 [s−1] wc 1.2×10−3 [m]
σ1 6.5 ×10−3 [m/s] kc 1.2×105 [N/m]
σ3 5.0 ×10−6 [m3/s] rc 1.2 [kg/s]

3.2. Contact Parameters

The rationale for using a contact law with unity exponent is based
on an analogy to contact between two cylinders with parallel axes.
From Hertzian contact theory, the force F is proportional to the
depth of indentation d for this case [23]:

F =
π

4
E∗l d, (54)

where l is the contact length, with the contact modulus given as

E∗ =

(
1− ν2

1

2E1
+

1− ν2
2

2E2

)−1

(55)

for materials with Young’s moduli E1, E2 and Poisson’s ratios
ν1, ν2. This law is independent of the radii of the two cylinders and
thus is applicable also to contact between a cylindrical string and
a nearly flat surface. By loosely equating d and ∆y = hb − yb an
estimate of the elastic constant in (6) is found as kb = 1

4
πE∗wb,

with E∗ evaluated using the values for steel (or bronze when ap-
plicable) and ivory in eq. (55). The cotton thread contact param-
eters are not as easily determined and are empirically set here as
kc = wc · 108 N/m and rc = kc · 10−6 N/m. The parameters used
for a one metre long male tanpura string (steel, radius = 0.14mm)
when tuned to the note C3 (f1 = 130.81Hz) are listed in Table 1.
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Figure 5: Tanpura body magnitude response measured with an im-
pact hammer applied at the bridge (top) and the nut (bottom), and
with a microphone positioned at 80cm from the instrument. For
clarity, the responses have been offset by 50dB. The grey shaded
area indicates the range in which the fundamental frequency of a
tanpura string would normally fall.

3.3. Body Radiation Filters

Fig. 5 shows the body magnitude responses of a tanpura as ob-
tained with impact hammer experiments. The fundamental fre-
quency of a tanpura string will generally fall in the range between
that of a C2 string (f1 = 65.4Hz) and a C4 string (f1 = 198Hz).
As the plot shows, the body radiates less powerfully in this fre-
quency range, to a first approximation acting as a high-pass filter.
The black thin solid lines in Fig. 5 indicate the responses of 2048-
tap FIR filters obtained by truncating the measured body impulse
responses. Significantly more efficient body filters models can be
achieved in IIR form (see, e.g. [24]).

4. SIMULATION RESULTS

4.1. Simulation of a C3 String

Fig. 6 shows a small selection of string profile snapshots obtained
with the simulation of a C3 string, using the parameters listed in
Table 1, with xc = 5mm. To exemplify the role of the bridge and
the thread, the string was excited using ae = −0.4N, τe = 50ms,
βe = 30, xe = L/2 and we = L, effectively initialising the string
approximately to the first mode shape. As seen in Fig. 6(a) the
string motion becomes progressively Helmholz-like, as also found
in earlier studies [22, 19]. The zoomed view in Fig. 6(b) shows
that a small level of string motion is allowed at the thread position.
The bridge on the other hand is far less compressive, approximat-
ing a one-sided constraint. The role of the cotton thread connection
can be summarised as follows: the thread damping provides addi-
tional attenuation of the high-frequency standing waves along the
string length between the left termination and the bridge, which
in combination with the lower elasticity constant effects a ‘soft’
termination (somewhat similar to a violin string stopped by a fin-
ger rather than the nut). This avoids the harsher sound that would
result with a (near) rigid termination.

Fig. 7 shows how the displacement at the bridge evolves over
time. The string-bridge compression is extremely small (less than
3 × 10−8m over the whole duration). The plots demonstrate the
emergence of a high-frequency wavepacket in the waveforms. Due
to string stiffness this precursive wave arrives back at the bridge
before the lower frequencies, thus escaping the periodic closing of
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the gap between the string and the bridge [3]. Running the simu-
lation with EI = 0 confirms that the precursor, which is the prin-
cipal oscillatory manifestation of the jvari effect, disappears in the
absence of string stiffness. As can be gleaned from the plots, the
spectral centroid of the precursor gradually diminishes over time,
which is due to the string damping being frequency-dependent.
The rate at which the centroid descends also depends on the dis-
tance between the bridge and the thread [3]; this is one of the sonic
features that tanpura players control when, in preparation of a per-
formance, they adjust the thread position in search of a desired
jvari.

Fig. 8(a) shows the global evolution of the driving forces Fd

and Fn. Comparison with the corresponding pressure signals pd

and pn shown in Fig. 8(b) highlights the difference in terms of
the initial attack transient, which is almost completely absent from
the radiation signals; this is because they contain much less of
the low-frequency excitation components and are dominated by
the frequencies that make up the precursor. The aural impres-
sion is therefore that the sound grows in amplitude over the ini-
tial 500ms, which is contrary to our normal experience of plucked
strings. These results suggest that the high-pass nature of the body
responses (explained earlier in Section 3.3) is a key ingredient in
producing this effect, which is further enhanced by the frequency-
dependent sensitivity of human hearing [3].
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(a) and the corresponding radiation pressure signals (b).
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Figure 9: Spectral envelopes of the bridge radiation pressure signal
(a) and the nut radiation signal (b), for different sampling frequen-
cies. In each plot, the magnitude spectrum obtained with eight
times oversampling (fs =352.8kHz) is plotted in light grey.

4.2. Convergence

In a sound synthesis context, it is natural to use a standard audio
rate. However mainly due to the nonlinear phenomena, the model
will not give exactly the same result as for higher sampling fre-
quencies, even when the number of modes is kept the same. Fig. 9
shows the magnitude spectra (light grey line) of the radiation sig-
nals pd and pn, as obtained with for a C3 string using eight times
oversampling. In each of the plots the thin black line represents the
corresponding spectral envelope while the thicker, red line indi-
cates the envelope of the spectrum obtained using fs = 44.1kHz.
For both sampling frequencies, the number of modes was set to
133, which corresponds to truncating the mode series at 20kHz.
The plots show that while there is little difference between the nut
radiation signals, the 44.1kHz model bridge signal is artificially
strong in amplitude at high frequencies (f > 15kHz). Percep-
tually, the discrepancy is very small but nevertheless noticeable.
Informal listening experiments indicated that oversampling by a
factor two (i.e. using fs = 88.2kHz) is sufficient to reduce any
differences to almost unnoticeable levels.
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4.3. Algorithmic Efficiency

The Matlab runtime for one second of simulation (see Fig. 10)
is only mildly dependent on the number of modes included and
does not exceed 2.5 seconds for any practical string (compared
to 2 minutes with the model in [19], which requires four times
oversampling in order to alleviate numerical dispersion). A signif-
icant speed-up is achievable with an optimised C implementation,
bringing the proposed model in range for real-time application on
standard processors. Note that the filtering of the nut and bridge
driving signals is not included in the computational operations that
are time-measured. As is evident from the plot, more than half of
the computational effort comprises updating equation (42), while
solving for the contact forces takes up an almost negligible frac-
tion.

4.4. Drone Synthesis

In order to get a first glimpse of what a virtual-acoustic tanpura
would sound like, four separate string models were tuned to pro-
duce a panchamam raga pattern of G2-C3-C3-C2. The total bridge
and nut driving forces are now

F̂d = −
4∑
j=1

(Fc,j + Fb,j) , F̂n =
4∑
j=1

Fn,j , (56)

where subscript j indexes the strings. These are filtered as before
with the body radiation filters, with the filter outputs pd and pn

assigned to the left and right channel of an audio signal; a sound
example can be found on the accompanying webpage2 alongside
further supporting material. Fig. 11 shows the spectrogram of the
total bridge force F̂d for a single drone cycle. The plot illus-
trates the migration of energy from the lower partials to higher
frequency components. The precursors are manifested in the time-
frequency representation as formants with descending centre fre-
quencies. Also noticeable is that the precursors generated with the
C3 and C2 strings together construct a joint, seamless jvari pattern,
which adds to the sense of continuity of the drone [3].

5. CONCLUDING REMARKS AND PERSPECTIVES

The proposed model permits simulation of tanpura drones with
significantly increased efficiency compared to previous models,

2www.socasites.qub.ac.uk/mvanwalstijn/dafx16a/

Figure 11: Spectrogram of a four-string tanpura bridge driving
force signal. The strings were excited at te = 0, 1.2, 1.8, and 2.4s.

as such opening up possibilities for real-time implementation on
standard processors. The modal approach taken results in spectral
accuracy of the string resonance behaviour, and also facilitates ef-
ficient implementation due to the diagonality the system matrices.

Modal expansion is, of course, not a new concept in sound
synthesis, originating some decades ago as modal synthesis [25].
It also underpins the more formalised functional transformation
method [26, 13] and other modular approaches [27]. What is dif-
ferent in the approach presented here is that collision forces are
incorporated in a provably stable manner, which is of particular
importance in a real-time sound synthesis context.

The model could also be formulated in finite difference form,
for example using a parametric implicit three-point scheme for the
string [18] which can be tuned to closely approximate spectral ac-
curacy. However for the relatively simple model proposed here this
approach holds no efficiency advantages, since matrices would be
sparse rather than diagonal. In addition, the three-point form of
(30) is a less accurate approximation of the bridge contact force.

Among several possible model extensions, either in modal or
finite difference form, probably the most important ones are (a) the
simulation of sympathetic vibrations by also modelling the string-
body coupling and (b) the re-introduction of distributed bridge col-
lisions [28]. Because the latter effects a periodic modulation of the
central contact point between the string and the bridge (see Fig.
2(b)), it would be sensible to consider this in conjunction with ten-
sion modulation, which is potentially relevant given that tanpura
strings are loosely strung. The literature already contains vari-
ous techniques for incorporating tension modulation into modal
schemes [26, 29, 27] and finite difference formulations [30], but
the proposed two-point scheme requires a re-formulation. Such ex-
tensions would pave the way for a rigorous evaluatory comparison
between the proposed model, more complete models, and mea-
surement data. However they will also increase the complexity
and computational load of the model, meaning real-time synthesis
may be viable only via hardware acceleration, such as graphical
processing units [31] or field programmable arrays [32].

Besides model refinements and extensions, the most pertinent
advance may be the implementation of a real-time virtual-acoustic
tanpura that affords real-time control options. This would allow
fine-tuning of the jvari effect by ear through on-line adjustment of
the parameters of the string, thread, and bridge, much in the same
way as real-world tanpura players set up their instrument.
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ABSTRACT

Applause signals are the sound of many persons gathered in one
place clapping their hands and are a prominent part of live mu-
sic recordings. Usually, applause signals are recorded together or
alongside with the live performance and serve to evoke the feel-
ing of participation in a real event within the playback recipient.
Applause signals can be very different in character, depending on
the audience size, location, event type, and many other factors.
To characterize different types of applause signals, the attribute of
‘density’ appears to be suitable. This paper reports first investi-
gations whether density is an adequate perceptual attribute to de-
scribe different types of applause. We describe the design of a lis-
tening test assessing density and the synthesis of suitable, strictly
controlled stimuli for the test. Finally, we provide results, both on
strictly controlled and on naturally recorded stimuli, that confirm
the suitability of the attribute density to describe important aspects
of the perception of different applause signal characteristics.

1. INTRODUCTION

Recordings of applause signals can be very different in their sound
character, depending on many factors including audience size, lo-
cation, event type, recording setup, etc. Several publications in the
past have shed some light on the nature of applause signals, pro-
viding a basic clap anaysis [1], attempting to synthesize applause
through physical modeling of individual claps [2,3], through sound
texture synthesis [4–7] or morphing of granular sounds [8]. Also
the phenomenon of rhythmic applause [9, 10] was already subject
of scientific curiosity. Yet, to our best knowledge, nobody has ac-
tually looked into how to perceptually characterize different types
of applause signals. We propose to use the attribute ’density’ to
capture the predominant character of different applause signals.

To subjectively assess the suitability of the attribute density,
we designed a dedicated listening test that is presented in this paper
in the evaluation section.

To achieve a controlled variation of density within different
applause stimuli without changing other factors like timbre, spa-
tial properties, etc., we generated all test stimuli through layering

∗ A joint institution of the Friedrich-Alexander-Universität Erlangen-
Nürnberg (FAU) and Fraunhofer IIS, Germany

from dry studio recordings of individual persons applauding. To
mimic the geometric and physical conditions of a gathered audi-
ence, we applied a simple model of the same while layering. This
is discussed in the next sections.

2. APPLAUSE DENSITY

Existing, well established perceptual attributes like loudness, pitch
and timbre do not describe applause properties very well. To char-
acterize different types of applause signals, the novel attribute of
‘density’ appears to be suitable. The concept of density might be
rightfully attributed to all kinds of sounds and sound textures that
predominantly consist of sufficiently dense transient events being
distributed in a pseudo-random way like rain and fireworks.

In previous work, the idea of defining an ‘impact rate’ to fur-
ther characterize environmental sound textures has already been
roughly sketched, e.g., for describing the sound of falling rain-
drops [11]. However, the author concludes that such an impact rate
appears to be more of a physical measure than a psychoacoustic
one. Notwithstanding, the author suggests to further conduct psy-
choacoustic experiments to clarify this assumption. In our present
paper, we are presenting the results of such experiments.

Kawahara, for example, measured a set of simple parameters
of different applauses at a recording site in order to efficiently
recreate similar applause sounds at a receiver site, controlled by
the proposed set of transmitted parameters. These parameters in-
clude, among other things, the average time interval between two
clapping events [12]. Again, the proposed parameters are related
much closer to a physical measure than to a perceptual quality.

For sure, the perception of applause signals is influenced by
several factors, whereas the most obvious one is certainly the num-
ber of people clapping simultaneously. Still, we suggest that the
sensation of density is an abstract psychoacoustic quantity in its
own right albeit closely coupled to the actual physics behind the
generation of such sound textures. Additionally, parameters like
spatial properties, room acoustics, and distance of a listener to the
applauding crowd have an impact on the resulting applause im-
pression: the amount of reverb determines how much individual
claps get smeared and possibly blended, whereas the distance to
the crowd influences the perceived near-by to far-off clap ratio,
i.e., the ratio of individually distinguishable foreground claps and
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Figure 1: Illustration of the basic applause model: virtual clap-
ping people with widthwP at rows with the inter-row distancedrow

anddmic denoting the distance between the microphoneM and the
first row.

the more homogenous background noise floor resulting from many
claps being superimposed. Applause density appears to be a suit-
able choice for an attribute which accommodates all mentioned
properties additional to the impact rate. Consequently, we inves-
tigate in this paper if there is a perceptual attribute like applause
density and if it is consistently perceived.

3. SYNTHESIZING APPLAUSE SIGNALS

To assess applause density perception, it is necessary to have con-
trol over as many parameters of the applause signals as possible.
For that reason, we came up with a simple model which allows to
synthesize applause signals using layering of individual recordings
of single people clapping. Note that the layering approach is not
aiming at synthesizing the most realistic applause signals but pro-
viding a tool producing sufficiently natural and plausible applause
to investigate density as a suitable perceptual attribute. In this sec-
tion, the basic physically motivated applause model and some as-
sumptions which are used to synthesize the applause signals are
described. Furthermore, the algorithm will be introduced.

3.1. Basic Applause Model

Figure 1 depicts the assumed physical model for the applause syn-
thesis. In the model, the virtual applauding peoplePr,p are ar-
ranged on concentric circles, which will be called rows, around
a virtual microphoneM in the center, wherer andp denote the
one-based row and person indices. Every virtual person produces
a corresponding clap signalCr,p. The distance between the micro-
phone and the first row of virtual people is given bydmic, and the
inter-row distance, i.e., the distance between consecutive rows is
given bydrow. Varyingdmic will result in different near-by to far-
off clap ratios, i.e., a smalldmic will result in many intensive and

individually distinguishable near-by claps whereas a largedmic will
result in a more homogenous and noise-like signal.

The maximum number of virtual people allowed on a specific
row is determined by the space a virtual person consumes and the
radius of the circle the row is placed on. In ther-th row, the maxi-
mum number of virtual persons is given by

Pr = floor

(
2π(dmic + (r − 1) · drow)

wP

)
, (1)

with r = 1...R andR denoting the total number of rows. This
also determines the angular spacing of the virtual persons on that
row, i.e., a person in rowr is placed every∆ϕ,r = 360◦

Pr

degree.
Assuming all spots in a row are occupied, the overall number of
personsPΣ is then determined by

PΣ =

R∑

r=1

Pr. (2)

Since the sound pressure is attenuated on its way traveling
from a virtual person at ther-th row to the microphone in the cen-
ter, an attenuation factor has to be applied to it. Propagation losses
are modeled by the distance law leading to the row-dependent am-
plitude attenuation factor

ar =
d0

dmic + (r − 1) · drow
, (3)

whered0 represents a reference distance which corresponds to the
microphone distance used for the actual applause sample captur-
ing. Note thatar can also become greater than one, if the distance
to a row is smaller than the reference distance.

There are also frequency dependent effects which need to be
taken into account. For instance, people on the inner rows act as an
obstacle to the inwards propagating sound waves and also the air
itself absorbs sound energy. Both results in a frequency dependent
attenuation. These shading and absorption effects can be modeled
by applying a lowpass or treble shelving filterhr(t) to the signals.
Since the filter characteristics are distance dependent, the filter has
a dependency on the row indexr.

In this model, we assume the microphone’s pickup pattern
MPU to be spatially uniform which corresponds to an omnidirec-
tional characteristic:

MPU(φ) = 1, (4)

whereφ = 0...360◦ denotes the sound waves’ incident angles.
This is indicated by the blue circle around the microphone in Fig-
ure 1.

With the constant pickup pattern, the microphone signal can
then be written as

M(t) =

R∑

r

(

ar ·

Pr∑

p

(
MPU · Cr,p(t)

)
∗ hr(t)

)

, (5)

where∗ denotes a convolution.

3.2. The Layering Algorithm

Applause consists of up to thousands of individual clap signals nat-
urally superimposed on their way traveling from the hands of the
clapping person to the ears of the receiver or to a microphone. By
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Parameter Default Description

P̂Σ - desired number of people clapping
dmic 15 m distance of microphone to first row
drow 1 m distance between rows
wP 0.5 m space a virtual person consumes
δconst 1.15 s constant relative signal shift
δrand 0.01 s random relative signal shift

Table 1:The applause model’s controllable parameters

R := 1

R := R+ 1

R

yes

no

∑R
r=1

2π(dmic+(r−1)·drow)
wP

≥ P̂Σ

Figure 2:Determination of the number of rowsR.

layering the captured base signals and applying a simple physical
model, the natural behavior is mimicked.

The layering algorithm is designed such that it accepts the de-
sired number of people clappinĝPΣ as input and produces the
corresponding applause signal for the given parameters. A list of
the model’s controllable parameters is given in Table 1. Starting
with the desired number of people clapping, the number of rows
has to be determined. This can be done by increasing the num-
ber of rows until the expression in (6) comes true, i.e., the overall
number of personsPΣ possible for the given number of rows ex-
ceeds or equals the desired number of people clapping. This is also
illustrated in Figure 2.

R∑

r=1

2π(dmic + (r − 1) · drow)

wP

≥ P̂Σ (6)

In the next step, the number of people in each row has to be
determined. Except for the last row, this can be done by using
Equation (1). Since the last row does not necessarily need to be
fully occupied, it has to be treated separately and can be computed
using:

PR = P̂Σ −

R−1∑

r=1

Pr. (7)

To compute the row-dependent attenuation factorar, Equation (3)
can be applied directly. For the lowpass filter, a first order Butter-
worth filter with adaptive cut-off frequency was used to match the
spectral tilt of an arbitrarily chosen reference applause recording.

Finally, the actual applause signals to be layered have to be
generated from the captured base filescb(t), whereb = 0...B − 1
andB denotes the number of available base signals. Since there
is only a limited number of base signals available, they have to be
treated in a way such that they can be used multiple times without

−1

−0.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3
0

0.5

1
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Figure 3:Annotated base signal and corresponding metadata sig-
nal. Top plane: local peak picking; bottom plane: meta data signal

creating perceivable artifacts due to correlations. This could be
accomplished by using circularly time-shifted copies of the base
signals. Withδt denoting the time-shift, the time-shifted applause
signals are obtained by

Cp̂(t) =

{
cb(t+ jδt), if 0 ≤ t < T − jδt

cb
(
t− (T − jδt)

)
, if T − jδt < t ≤ T

, (8)

wherep̂ = 1...P̂Σ, b = (p̂ − 1)%B, j = ceil( p̂

B
− 1), % de-

noting the modulo operator, andT denoting the uniform duration
of the base signals. Please note, that the time-shifted clap sig-
nals were computed using the indexp̂ for the sake of simplicity
of notation. The relation between thêp-based and the row- and
persons-on-a-row-based indexing is given byp̂ =

∑r−1
r̂=1 Pr̂ + p.

In order to add some variability to the layered applause signals, the
time shiftδt was designed to be a superposition of a constant and
a random-based time offset, such thatδt = δconst+ ∆rand, where
∆rand denotes a function which returns a uniformly distributed ran-
dom value from the interval−δrand...δrand. All random offsets were
determined during the algorithm’s initialization and invariant dur-
ing the layering. The maximum magnitudeδrandof the random part
of the time-shift can be chosen arbitrarily but should be small com-
pared to the constant partδconst to avoid introducing artifacts. The
theoretical maximum number of virtual clapping people possible
without risking that the circularly shifted version of a signal is the
signal itself again is determined by

Pmax = floor

(
T

δconst+ δrand

)
·B. (9)

Please note that this is an estimate for the worst case scenario.
With the microphone’s omnidirectional pickup pattern, the de-

termined parameters and signals can be inserted into Equation (5)
yielding the microphone signal or final layered applause signal,
respectively.

3.3. Metadata

In order to be able to evaluate additional attributes like clap rate,
each captured base signal was manually annotated with respect
to individual claps. This was done by local peak picking, i.e., a
marker was set to every point in time of maximum absolute am-
plitude of an individual clap. For each base signal a correspond-
ing metadata signalγb(t) can be generated containing ones at the
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Figure 4:Customized webMUSHRA [13] graphical user interface.

marker positions and zeros everywhere else (see Figure 3). This
allows for treating the metadata the same way as the base files
and therefore layering the metadata almost the same way: attenua-
tion factors and the microphone’s directivity pattern can be omitted
since the focus is simply on the question whether a clap is present
or not and the microphone is assumed to have a constant directiv-
ity of one for all incident angles. The layered metadata signals can
be described as

Γ (t) =

R∑

r

Pr∑

p

γr,p(t). (10)

The average clap rate of a synthesized applause signal is given by

ρ =
1

T

T∑

t

Γ (t). (11)

4. EVALUATION

4.1. Synthesized applause signals (Test 1)

To assess the perception of applause density, eight mono applause
signals with increasing number of virtual people clapping were
generated ranging from rather loose to quite dense applause. The
individual clap signals were captured in the acoustically optimized
sound lab ‘Mozart’ at Fraunhofer IIS [14]. This room has a mean
reverberation time of Tm = 0.33 s and was designed to fulfill the
strict recommendations of ITU-R BS 1116-1 [15]. For every single
person, three clap signals with a uniform length ofT = 20 s were
recorded. Each person was placed individually in a distance of
d0 = 1m in front of a Neumann KM184 directional microphone
(cardioid) and successively shown a picture of applauding people
at three different venues and asked to clap their hands as if they
were part of this crowd. For the layering, the signals were pooled
yielding an overall number ofB = 24 base signals.

In order to be able to generate applause signals with a higher
number of people clapping, the constant time shiftδconst had to be
decreased compared to the default value in Table 1. The actual val-
ues for the constant time shift for a given number of virtual people
as well as the corresponding theoretical limitPmax according to
Equation (9) is given in Table 2. Please note that it was made sure
by three persons during informal listening that the generated ap-
plause files do not contain artifacts due to the circular time shifting
even if the number of virtual people exceeds the theoretical bound.
The synthesized applause signals are available at [16].

P̂Σ 32 64 128 256 512 1024 2048 4096
δconst[s] 1.15 1.15 1.15 1.15 1.15 0.599 0.3 0.15
Pmax 384 384 384 384 384 672 1200 1920

Table 2: Parametrization of the layering algorithm for a given
number of virtual people and theoretical limitPmax according to
Equation (9).

The stimuli were presented to the listening test participants
side by side in a multi-stimulus test and as blinded conditions in
randomized order. They were to be judged according to their per-
ceived subjective applause density on a scale ranging from 0 to
100 density points and relative to each other. The conditions cor-
responding toP̂Σ = 64 andP̂Σ = 2048 were used as references
corresponding to density levels of 20 and 80 density points, re-
spectively. They were placed next to these values on the density
scale and could be listened to any time for reference. However,
they were also hidden among the test conditions. This means, the
participants also had to identify these hidden references among the
stimuli as equally dense compared to the respective reference sig-
nals and put them to the corresponding density values.

The test was conducted using Sennheiser HD 650 headphones.
As graphical front end, a customized version of the webMUSHRA
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(a)Boxplot of density ratings depending on the number of virtual peo-
ple clapping (̂PΣ = 64 andP̂Σ = 2048 correspond to the two refer-
ences).
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Figure 5:Visualization of participants’ responses for the listening test using synthesized applause signals.

[13] tool was used. A screen shot of the graphical user interface is
depicted in Figure 4.

4.2. Naturally recorded applause signals (Test 2)

Applicability to naturally recorded applause signals was assessed
in a second listening test. The general test procedure was kept as in
the first test but naturally recorded signals with different levels of
applause density served as test and reference conditions. The fol-
lowing items were used, whereBBC ApplauseandARL Applause
were part of the MPEG Surround item test set [17],Klatschenwas
part of the item set used in [18],SmallCrowdClapping 2[19] and
Initial Applause[20] were taken from the freesound web site,In-
tro3 and17Exerc7were taken from Frank Zappa’s ‘The Yellow
Shark’ where the first is an excerpt of the last applause at the end
of the first track and the latter is an excerpt of the applause at the
end of the 17th track of that record. Applause signals were looped
and passively downmixed where necessary to obtain mono signals
with a uniform length of20 s. Additionally, two synthetically gen-
erated applause signals witĥPΣ = 32 andP̂Σ = 1024 where in-
cluded to establish a connection between both listening tests. An
overview of the used items and the condition number mapping is
given by Table 3. In this test, conditions 2 and 7 served as 20 and
80 density point references, respectively.

5. RESULTS

5.1. Synthesized applause signals

In the first listening test, 23 participants, among which 20 male
and 3 female, with an average age of 26.6 years (SD1=8.1) rang-
ing from 18 to 53 years took part. Figure 5a shows boxplots of
the raw data grouped by the number of people clapping. The very
small to non-existent inter-quartile ranges of the reference condi-
tions (P̂Σ = 64 andP̂Σ = 2048) indicate that most participants

1SD = standard deviation

Condition Name

1 synthesized (̂PΣ = 32)
2 klatschen
3 SmallCrowdClapping 2
4 Initial Applause
5 ARL Applause
6 synthesized (̂PΣ = 1024)
7 BBC Applause
8 Intro3
9 17Exerc7

Table 3:Mapping of item name and condition number of the natu-
ral applause signals.

Test 1
P̂Σ 32 64 128 256 512 1024 2048 4096

mean 13.91 20.65 37.13 51.30 62.74 73.39 80.43 85.09
sd 2.94 4.35 9.84 11.53 7.57 6.31 2.69 6.63

Test 2
cond 1 2 3 4 5 6 7 8 9
mean 16.65 20.12 30.82 56.94 58.00 70.94 80.35 91.41 93.18

sd 8.10 2.89 17.51 12.34 14.21 9.16 3.90 8.24 12.80

Table 4:Mean ratings and standard deviations for synthesized sig-
nals (upper table) and natural recordings (bottom table) including
corresponding number of people clapping or condition number,
respectively.

could easily identify the references and put the slider exactly to the
desired value. The apparently high number of outliers for these
conditions might result from the slider’s measurements which it-
self cover a range of about 10 density points and therefore add
some inaccuracies. If responses which lie within a±10 density
point tolerance region are considered to have met the reference
condition, only one response for̂PΣ = 64 is to be considered as
a true miss. An approximately logarithmic increasing perception
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of applause density can be observed (approximately linear in the
logarithmic presentation of the people clapping).

Figure 5b depicts means and t-distribution-based 95% confi-
dence intervals of the participants’ responses in a linear domain.
All confidence intervals are non-overlapping. Also the distance
from the upper confidence interval limit for̂PΣ = 2048 to the
lower limit for P̂Σ = 4096 is 0.6 density points. This indicates
that all conditions were perceptually well distinguishable. The red
line, connecting the mean values, illustrates the quasi-logarithmic
connection of people clapping and perceived density and also in-
dicates that density cannot increase infinitely but saturates at some
level. As a reference, the average clap rate is written next to the
confidence intervals. It provides information of how many discrete
events per second an applause signal consists of. The clap rate in-
creases roughly linearly with the number of people clapping. In
general, the results show that applause density can be rated consis-
tently and density perception grows roughly logarithmically with
increasing number of people.

5.2. Naturally recorded applause signals

Figure 6 shows boxplots of the responses of the listening test with
naturally recorded applause signals. 17 participants among which
14 male and 3 female with an average age of 27.6 years (SD=9.1)
ranging from 19 to 53 years were asked to rate applause density of
naturally recorded applauses. Except for one response, the refer-
ence conditions (conditions number 2 and 7, respectively) can be
considered to be recognized within the same±10 density points
range of tolerance. The two synthesized applause signals corre-
spond to condition 1 (̂PΣ = 32) and 6 (̂PΣ = 1024), respec-
tively. The plot shows that it is possible, based on participants’
responses, to produce a plausible ranking of the stimuli according
to mean perceived density. It also shows that the spread of density
ratings per stimulus is much wider if rating naturally recorded ap-
plause signals instead of synthesized ones, which indicates higher
uncertainty of the participants. This is also supported by con-
sidering the higher standard deviations of the density ratings in
the second listening test as given in Table 4. Between the first
and the second test, the mean standard deviation increases from
6.48 to 9.91. Also, the average time a participant needed to pass
through the test increased around 60% from 2.52 min (SD=1.93)
to 4.17 min (SD=2.30) although the second test had only one addi-
tional item. This leads to the conclusion that applause density can
also be rated consistently for naturally recorded applause signals
but participants need more time, i.e., it appears to be harder, and
the responses include more uncertainty.

6. CONCLUSION

This paper investigated the perceptual property that may be at-
tributed to sound textures consisting of dense pseudo-random tran-
sient events like applause signals. Specifically, we proposed a
novel perceptual attribute ‘density’ to characterize such sound tex-
tures. In order to exemplary verify the viability of this attribute
on applause signals, a set of applause stimuli of varying densities
were created. The generating procedure based on layering started
from a set of dry clap recordings and placed these signals in a
simple model of a virtual space where virtual clapping people are
located in circular rows centered around the virtual microphone
considering distance dependent level and timbre. A dedicated lis-
tening test methodology was designed based on a multi-stimulus
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Figure 6: Boxplots of the participants’ responses in the listening
test using naturally recorded applause signals (condition 2 and 7
correspond to the 20 and 80 density point references).

test. Two tests were performed for assessment of the subjective
applause density, one using the layered stimuli and the other test-
ing natural applause recordings. The results showed that listeners
reacted consistently and were able to reliably distinguish between
different applause densities. It was shown that the increase in sub-
jective density points roughly follows the logarithm of the number
of clapping people. Therefore, it is evident that density is indeed a
psychoacoustic property closely related to the physical measure of
an impact rate, but more meaningful in terms of perception. More-
over, the applicability of the applause density attribute to naturally
recorded applause signals was confirmed in a second listening test.
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ABSTRACT

This paper focuses on consequences of artifact reduction in vir-
tual sound source positioning method based on Differential Head-
Related Transfer Function (DHRTF). As resulted from previous
experiments, spatial performance of this experimental method is
very promising. However, under specific circumstances, artifacts
may occur in the virtually positioned sound. Effective methods
for artifact reduction were introduced before. This work discov-
ers impact of the reducing algorithm in the time domain in order
to understand phenomena occurring in the process. The cause of
artifact presence results from narrow band peak(s) present in the
DHRTF magnitude, which causes periodical character of the im-
pulse response in the time domain.

1. INTRODUCTION

The HRTF contains localization cues for a human listener, i.e. In-
teraural Time Difference (ITD), Interaural Level Differences (ILD)
and spectral cues [1, 2, 3]. To obtain virtually positioned sound by
the HRTF method, a convolution of the original signal with ap-
propriate HRIR pair is required. Many articles have already dealt
with more effective measuring [4, 5] or rendering of the HRTFs
[3]. However, simplifying the positioning process focused on re-
duction of the computational resources is not a well-explored is-
sue yet. The effort was put on finding an algorithm with better
spatial performance than simple amplitude panning and with less
processing requirements than the HRTF method. This paper aims
at time domain aspects of virtual sound source positioning method
primarily focused on reducing the computational costs, called Dif-
ferential Head-Related Transfer Function (DHRTF) [6, 7]. The
essence of the DHRTF algorithm lies in introducing the frequency
dependent ILD and ITD to the stereo signal not by separate fil-
tering of both channels of the binaural signal (as is in the HRTF
method [8]), but by filtering only one channel in a way that the
same inter-channel differences will occur in the stereo sound, as
when the HRTF method is applied. Therefore, only one channel is
processed (always the contra-lateral), while the other one remains
completely untouched. The DHRTF can be obtained from existing
pair of HRTFs as

HD(ϑ, ω) =
|HC(ϑ, ω)|
|HI(ϑ, ω)| · e

j(ψC−ψI ) = (1)

= AD(ϑ, f) · ej·ΨD(ϑ,f),

∗ This work was supported by the Grant Agency of the Czech Technical
University in Prague, grant No. SGS14/ 204/OHK3/ 3T/ 13.

where indices C and I stand for contra-lateral (farther) and ipsi-
lateral (closer) ear. Equivalent of the DHRTF in time domain is
called Differential Head-Related Impulse Response (dHRIR) and
can be defined as

hc(ϑ, t) = F−1
{
HD(ϑ, ω)

}
(2)

In some HRTF pairs, a specific phenomenon occurs. In un-
favorable constellation the attenuation of the ipsi-lateral channel
may be greater than in the contra-lateral (against expectation) for
particular frequencies, having a character of a narrow-band notch.
From the definition of the DHRTF, the same ILD is present. There-
fore, the artifacts are caused by presence of sharp peak in the
DHRTF (spike) exceeding the level of 0 dB. Since the property
of the DHRTF lies in frequency-dependent attenuation and time
delay of the contra-lateral channel, positive value of the DHRTF
results in boosting the specific band in this channel.

The phenomenon was named Negative Interaural Level Dif-
ference (NILD) [9]. The NILD occurs especially within DHRTF
derived from a real measured set. The origin of its occurrence re-
sults from a unique constellation of the HRTFs in a pair. As shown
in Fig. 1 (a), the transfer function of the ipsi-lateral channel can
have a spectral notch, which crosses the transfer function of the
contra-lateral channel, i.e. the contra-lateral gain is lower than the
ipsi-lateral for specific frequency band. This results in spectral
spike presence in the DHRTF magnitude, as shown in Fig. 1 (b),
black line. Panel (b) contains DHRTF derived from two different
sets of HRTF corresponding to the same position. The black line
refers to the inappropriate one. However, the presence of the spike
in the DHRTF is neither determined for specific spectral bands,
nor for specific positions and appears to occur chaotically. For in-
stance, the gray line in the figure represents DHRTF for the same
position obtained from another subject. No spectral spike is ob-
servable here. Its occurrence is different among various DHRTF
sets [9].

Figure 2 shows the extracted NILD spikes in one DHRTF set
constructed from a measured set of HRTF [10]. This set of DHRTF
is heavily distorted by the NILD spectral features. As can be ob-
served, the NILD occurs mostly in form of narrow spikes. How-
ever, even wider frequency bands can appear in particular DHRTFs,
especially around frontal axis, i.e. positions ϑ = 0◦ and ϑ =
180◦. Due to the principle of the method, the artifacts are gener-
ally likely to occur around these positions. The Negative ILD may
generate noticeable disturbing artifacts of the positioned sound.
Perception effect of the mentioned spectral spike is a pure tone
character disturbance in the contra-lateral channel. This undesir-
able phenomenon can be avoided either by selection of appropriate
DHRTF set (which actually limits personalization) or by adjusting
of the selected individual set of the DHRTF. This adjustment is
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Figure 1: Artifact origin. Magnitude of left and right HRTF for ϑ = 70◦ and ϑ = 0◦ (a). When a notch attenuation of the HRTF for
the ipsi-lateral ear crosses HRTF of the contra-lateral, a spike-like peak in DHRTF occurs (b). Spectral peaks and notches vary uniquely in
accordance with source position and selected HRTF set.

0

5

10

15

20 0

90

180

270

360
0

10

20

30

40

position (°)
frequency (kHz)

ne
ga

tiv
e 

IL
D

 (
dB

)

Figure 2: Negative ILD in the DHRTF. Extracted spectral spikes
of the Negative ILD (|Hd[Ω]| > 0) extracted from DHRTF. Notice
highest spike occurrence around positions ϑ = 0◦ and ϑ = 180◦.

considered to be performed prior to practical use. Previous work
published in [9] focused primarily on design of a simple artifact
reduction method and verification of its efficiency by subjective
listening tests. This paper extends [9] by presenting time domain
aspects of application of the artifact reduction method that were
investigated thereafter.

2. ARTIFACT REDUCTION

Several artifact reduction approaches were introduced in [9]. Ac-
cording to performed subjective tests, the most effective algorithm
contains the following steps.

2.1. Spectral amplitude limiting

The first step performs hard limitation of the DHRTF magnitude
curve, where every spectral sample exceeding the threshold (i.e.
the negative ILD spike) is reduced to this reference level. This

algorithm can be written as∣∣Ĥϑ
D[Ω]

∣∣ =

{
ε for

∣∣Hϑ
D[Ω]

∣∣ > ε∣∣Hϑ
D[Ω]

∣∣ elsewhere,
(3)

where Ω denotes spectrum of a discrete signal, Ĥϑ
D[Ω] represents

adjusted DHRTF for particular position ϑ, Hϑ
D[Ω] represents ini-

tial DHRTF, and ε stands for the threshold level. The reference
level was considered 0 dB in the logarithmic scale, which is equiv-
alent to 1 in the linear scale. The tests showed that the simple spec-
tral limiting may sometimes appear insufficient due to remaining
local maximums in the transfer function under the reference level
ε. Therefore, the algorithm shall be extended by smoothening of
the DHRTF magnitude while preserving ILD localization cues.

2.2. Spectral smoothing

This step of smoothing the DHRTF curve by moving average,
when each sample of the transfer function is obtained as an average
of its neighbors. This process can be also interpreted as convolu-
tion of the DHRTF with convolution kernel MA[Ω], as described
below. ∣∣H̄ϑ

D[Ω]
∣∣ =

∣∣Ĥϑ
D[Ω]

∣∣ ∗MA[Ω] (4)
The MA[Ω] is defined as a series of uniformly weighed coeffi-
cients of length K with amplitude of 1/K, as shown here:

MA[Ω] =

{
1/K for Ω ∈ (0,K)

0 elsewhere.
(5)

The MA[Ω] can be comprehended as coefficients of impulse re-
sponse of a low-pass FIR filter. This filtering procedure ensures
that the magnitude of the DHRTF will not cross the reference level
ε again. Block diagram representing the signal flow in the artifact
reduction method and obtaining the pre-processed dHRIR ready
for virtual sound source positioning is summarized in Fig. 3. As
can be seen in the diagram, all the processing is done within the
DHRTF magnitude. In the first step, the phase of the DHRTF is
extracted as

Ψϑ
c [Ω] = arg

(
Hϑ
D[Ω]

)
(6)

and after the processing algorithms, the original phase is returned
to the signal.
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Figure 3: Processing diagram. A block scheme of constructing dHRIR with recommended pre-processing for reduction of the artifact
occurrence. Once the DHRTF is obtained from the HRTF pair, the phase is extracted, the module is finally limited and smoothed, and
merged with the original phase. Inverse Fourier transform is the last step.

3. TIME ANALYSIS

The impact of the introduced algorithms in spectral domain has
been already presented in details in [9]. This section focuses on
the final effect of the artifact reduction in the time domain. The
phase characteristics contains the information about the ITD. For
demonstration, see actual values of both HRIR’s onsets and re-
sulting ITD obtained from a set of HRIRs measured on acoustic
manikin available in [10], which are shown in Fig. 4. The black
line denotes onset of the left channel response, the red line denotes
onset of the right channel response, and the dashed line shows re-
sulting inter-channel ITD in regular shape of two triangles. The
onset time was obtained by thresholding of the impulse response
energy. The time information was quantized to particular samples
in standard sampling rate of 44.1 kHz. The maximum ITD usually
corresponds to approximately 29-33 samples in dependence on the
head proportions. The ITD is symmetrical with almost linear char-
acter. Figure 5 shows a pure set of dHRIRs for an azimuth in range
of ϑ ∈ (0, 360) with step of 5 degrees. The dHRIR data were con-
structed from the author’s own measured HRTF set. The particular
spike-like spectral features similar to the one demonstrated in Fig.
1 results in pseudo-periodical character of the dHRIR. Several se-
lected responses corresponding to heavily distorted DHRTFs are
marked in red. The biggest distortion is observable for positions
close to frontal axis, i.e. near ϑ ∈ {0, 180}.

For demonstration of the final effect of the artifact reduction
algorithm on the dHRIR response, see Fig. 6. After application
of the reduction algorithm, the pseudo-periodicity of the particu-
lar responses is suppressed as the spike-like spectral features in
the DHRTF magnitude are removed. Notice also decreased noise
level in the dHRIRs. Application of the low-pass filter performed
by moving average also reduces the noisy tale of the response. An-
other important feature in the dHRIR set is a pair of clearly visible
triangular shapes in the horizontal plane indicating the onset of the
dHRIR. The shift corresponds to the ITD and the triangle profile
is the same as presented in Fig. 4.

As stated above, the dHRIR (DHRTF) contains information
about relative time shift and relative attenuation of the contra-
lateral (farther) channel in relation to the ipsi-lateral (closer). The
ITD is visible through the onset and the attenuation is observable
through energy of the response. For positions close to the axis of
ϑ ∈ {0, 180}, the response energy is much higher than for the
side positions ϑ ∈ {90, 270}, where the attenuation of the contra-
lateral channel is the highest.

0 30 60 90 120 150 180 210 240 270 300 330 350
0

5

10

15

20

25

30

35

positon (°)

T
D

 (
sa

m
pl

es
)

 

 
ITD
L
R

Figure 4: ITD from HRTF set. Interaural Time Delay extracted
form a real HRTF set by detecting signal energy onset of each im-
pulse response. The dotted black and red lines corresponds to the
time shift of left and right HRIRs, respectively. Dashed triangles
represent resulting ITD.

4. CONCLUSIONS

This paper presents time domain scope of the effect of artifact re-
duction algorithm for DHRTF-based positioning and extends pre-
vious work published in [9], where also perceptual analysis by lis-
tening tests is present. The basis of the algorithm is hard limiting
of the DHRTF magnitude and smoothening of the magnitude by
low pass filtering performed by moving average convolution ker-
nel. The most affected dHRIRs are around the front-back axis. As
the artifact reduction algorithm removes local maxima (peaks) in
the DHRTF magnitude, the equivalent in the time domain is re-
moving the periodicity of the impulse response. The algorithm
preserves identical time domain localization cues (ITD). The ILD
information is modified; however, the main features in the fre-
quency domain are still preserved. Future work will be focused
on the origin of the Negative ILD in the data sets as it is present
primarily in the measured HRTF sets.
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Figure 5: An original dHRIR set. A set of dHRIR[n] derived from author’s own set of HRTF . Particular responses affected subjected
to artifact occurrence resulting from spectral negative ILD spikes are highlighted by red color.

Figure 6: A processed dHRIR set. The effect of processing focused on artifact reduction is well observable. The problematic responses
highlighted in red looses their pseudo-periodical character and extensive amplitude.
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ABSTRACT

This study describes a system which detects clicks in sound
(audible degradations). The system is based on a computational
model of the peripheral ear. In order to train and verify the sys-
tem, a listening test was conducted using 89 short samples of ana-
log (vinyl) records. The samples contained singing voice, music
(rock’n’roll), or both. We randomly chose 30 samples from the set
and used it to train the system; then we tested the system using
the 59 remaining samples. The system performance expressed as
a percentage of correct detections (78.1%) and false alarms (3.9%)
is promising.

1. INTRODUCTION

Any undesirable changes in the audio signal are considered as its
degradation. According to [1] the degradations can be classified
into two groups: global degradations (e.g. background noise, non-
linear distortion, wow and flutter), and localized degradations. Lo-
calized degradations are discontinuities in the waveform present
only in some samples, such as impulse noise (clicks, crackles,
pops, ticks etc.) In this study, we used the term “click” to classify
the localized degradations perceived by the listeners as the charac-
teristic noise which is mainly associated with vinyl records. These
degradations very often occur in analog records, for example, in
historical records, or as a result of damage during the manufactur-
ing process.

Detection of clicks is a principal part of the restoration pro-
cess (e.g. [1]) or can be used for the audio quality assessment, for
example, output quality check during the manufacturing process
of the audio records. Manufactures, such as GZmedia [2], usually
perform quality control by listening tests with trained employees,
however, it is very cost and time demanding. The existing algo-
rithms for impulse detection are based on time domain modeling
of the signal (e.g. [1, 3, 4, 5]), or on wavelet transform approach
(e.g. [6, 7]). In all of the aforementioned approaches, a detec-
tion threshold has to be set. The choice of the threshold is very
often empirical, depends on the type of the signal, parameters of
the algorithm, etc. Inappropriate threshold setting leads to false
detection or missed clicks.

As stated in [1], it is necessary to focus mainly on perceptible
degradations. Therefore in this study, we propose a click-detection
system based on a computational model of the peripheral ear. The
peripheral ear model consists of a physical cochlear model which
we previously used for other purpose related with perception [8].
We trained and tested the system by using 89 short sound sam-
ples of real music, which contained perceptible clicks. The music
samples, which were provided by the vinyl record manufacturer
GZmedia, were extracted from four different songs of rock’n’roll

music. We conducted a listening test in order to measure the pres-
ence of audible clicks.

2. SYSTEM BASED ON A PHYSICAL COCHLEAR
MODEL

Figure 1 shows a diagram of the system. The first two blocks repre-
sent algorithms simulating the function of the peripheral ear. The
remaining blocks process the output signal of the peripheral ear
model – this signal is called “internal representation” of the an-
alyzed sound – and give the answer whether the sound contains
audible click(s) and temporal position of the click(s) in the signal.

The model of the peripheral ear is composed of two parts,
both adapted from the literature. The first part simulates the trans-
formation of the acoustic wave at the entrance of the outer ear
into the vibrations of the stapes (the input of the inner ear). The
model was adapted from the system called Matlab Auditory Pe-
riphery [9]. Resonances of the outer-ear canal are modeled by two
parallel 1st-order Butterworth bandpass filters: the first with a gain
of 10 dB, lower cutoff frequency of 2.5 kHz, and higher cutoff fre-
quency of 4 kHz; and the second with a gain of 25 dB, lower cutoff

Audio signal

Outer-/middle-ear model

Physical cochlear model

Cross-
correlation

Impulse
response

∑

Detector Threshold

/20th-150th ch.

/

20th
-150th ch./131 ch.

Click(s) detected (Yes/No)
Click(s) position in time

Figure 1: Diagram of the click detection system
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frequency of 2.5 kHz, and higher cutoff frequency of 7 kHz. The
input acoustical signal is first filtered by the two parallel band-
pass filters. Then the both filtered signals and the input signal are
summed together. The created signal is then processed by a mid-
dle ear model transforming it into the stapes displacement. The
middle-ear model is composed of two cascaded first order Butter-
worth filters: a high-pass filter with a cutoff frequency of 50 Hz,
and a low-pass filter with a cutoff frequency of 1 kHz. The signal
at the output of the second filter is then multiplied by a constant of
45 × 10−9, which transforms the signal into the displacement (in
meters) of the stapes.

The second part of the peripheral ear model transforms the
stapes vibrations into the vibrations of the longitudinal segments
of the basilar membrane inside the cochlea. The cochlea con-
ducts spatial-frequency analysis – the high frequencies of the in-
coming sound excite the basilar membrane near the basal site,
whereas the low frequencies near the opposite (apical) site. In
this paper, the function of the cochlea is simulated by a physi-
cal cochlear model described in [10]. The model approximates
the basilar membrane by an array of 300 oscillators coupled via
surrounding fluid. Therefore the model output is a multichannel
signal – the signal in each channel represents displacement of one
oscillator. This displacement ξi of the i-th oscillator is given by

miξ̈i(t) + hiξ̇i(t) + si[2ξ̇i(t) − ξ̇i−1(t)

− ξ̇i+1(t)] + kiξi(t) = fHi(t) + fOHCi [ηi(t)],
(1)

where mi, hi, si and ki are mass, positional viscosity, sharing
viscosity and stiffness of the basilar membrane, respectively. Each
oscillator is driven by force fHi(t) given by

fHi(t) = −GSiaSi(t) −
N∑

j=1

Gj
i ξ̈j(t), (2)

where aSi(t) is acceleration of the stapes, ξ̈i(t) is acceleration
of the oscillators, GSi and Gj

i are transfer functions obtained by
solving wave equations. The second force term fOHCi represents
the cochlear amplifier. In the model, the tectorial membrane con-
nected with stereocilia of the outer hair cells is simulated by an-
other array of oscillators. The stereocilia deflection ηi is given by
the differential equation

m̄iη̈i(t) + h̄iη̇i(t) + k̄iη(t) = −Diξ̈i(t), (3)

where m̄i is mass, h̄i is viscous damping and k̄i is stiffness, and
Di is a constant. The active force fOHCi is then calculated from
ηi, which is first transformed by a sigmoidal nonlinear function,
which attenuates the amplification at high intensities [10]. The
model parameters are same as those used in [8]. The characteristic
frequencies (CFs) of the model channels, i.e., the frequencies of
10-dB pure tone causing the highest excitation in the given chan-
nel, were distributed roughly between 30 Hz and 17 kHz. As well
as in [10, 8], the model was implemented in the time domain using
the implicit Euler method. The accuracy of this method depends
on the sampling frequency – rises with increasing sampling fre-
quency. Therefore by assuming that input stimuli have a sampling
frequency at least 44.1 kHz, the input signal to the cochlear model
was 10-times upsampled before the processing and then the output
signal in each model channel was 10-times downsampled.

Figure 2, panel A shows the internal representation (output
signal of the peripheral ear model) of a music sound sample which

Figure 2: (A) The auditory model response (internal representa-
tion) to a musical signal degraded by a click. The internal rep-
resentation of the click is marked by the ellipse. (B) The internal
representation of an impulse with an amplitude of 2 Pa. (C) Abso-
lute value of summed cross-correlation between the internal rep-
resentations shown in panels A and B. The cross-correlations were
summed across the 20th to 150th model channel (as is indicated in
Figure 1).

contains a click. The click created a very distinct pattern in the
internal representation, which is easily visible especially at high
CFs (above about 2.5 kHz); the pattern is in panel A marked by
the ellipse. This internal representation is very similar to the inter-
nal representation of an impulse (generated as unit impulse with an
amplitude of 2 Pa), which is shown in Figure 2, panel B. Therefore
the system detects click(s) in sound samples by calculating cross-
correlation of the internal representations obtained in response to
an analyzed sound sample and to an impulse. The cross-correlation
is calculated between the internal representations in corresponding
channels. Then the cross-correlations in the individual channels
are summed, which creates a signal with a distinct peak indicating
a presence of click. Figure 2, panel C shows the absolute value of
the summed cross-correlation between the internal representations
shown in the same figure. The cross-correlations were summed be-
tween the 20th and 150th channels; the CFs of these channels were
14189 Hz and 2419 Hz, respectively. We have chosen this range
experimentally. Notice that the channel numbering is inverted –
the first channel has the highest CF (see Fig. 2). This order is
given by the physical cochlear model [10] in which the first chan-
nel simulates the segment of the basilar membrane which is closest
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to the stapes (input to the cochlea); this segment has the highest
CF. The designed system then detects the presence of click(s) by
comparing the amplitude of the summed cross-correlation with a
previously defined threshold value; the threshold value used in the
system was set during the system training described in the next
section. If the amplitude is higher than the threshold value, the
system detects click(s) (see Figure 1).

Using this method also allows accurate detection of click posi-
tion in the time domain. This information could be used for a click
removal. A disadvantage of the proposed method is that it is com-
putationally demanding, especially the cochlear model. Therefore
it cannot be used in real time.

3. LISTENING TEST, SYSTEM TRAINING AND
TESTING

In order to measure the presence of click(s) in sound samples, we
conducted a listening test. Since the system compares the summed
cross-correlation with a previously defined threshold value, it was
necessary to set the threshold value by using some of the results of
the listening test (to train the system). The remaining results were
then used to test the system.

3.1. Listening test

3.1.1. Stimuli

The stimuli were 800 ms long musical samples shaped on its on-
set and offset with 80 ms long raised cosine ramps. The samples
were extracted from wav files with four different songs; the wav
files were converted from analog (vinyl) records containing im-
pulse degradations. The samples contained a singing voice, music
(rock’n’roll), or both. All the samples were provided by the vinyl
record manufacturer GZmedia. The level of the individual samples
was not scaled to the same value for all the samples in order to pre-
serve the dynamic range of the music; the samples were presented
with a sound pressure level given by its content – if it contained
a 1-kHz pure tone with maximum possible amplitude in the wav
file, the presented sound pressure level was 94 dB. For further de-
scription about the calibration procedure please refer to [11].

3.1.2. Listeners

Four (all males) listeners aged between 24–33 years participated in
the experiment. All of them had normal hearing according to their
pure tone hearing thresholds – the thresholds between 250 Hz and
8 kHz were within a range of 20 dB of hearing level. The listeners
had no prior experience with this type of experiment.

3.1.3. Procedure and equipment

The experiment was divided into three sessions, each session fol-
lowed by a compulsory pause. The first session provided the lis-
teners a chance to learn the procedure of the experiment. It con-
sisted of 25 stimuli presented three times in a random order. After
the first session we asked the listeners whether they had problems
with the procedure or with the detection of clicks in the stimuli;
none of them rated the experiment or the detection task difficult.
The results of the first session were discarded from the evalua-
tion. Finally the second and third session consisted of 89 stimuli
presented in random order and the data from these sessions were
taken as the results of the listening test.

The listening test was conducted in a sound insulated booth
placed in our laboratory. The listeners were sitting in front of a
computer monitor (EIZO S2000) and external soundcard (RME
Fireface UC), both connected to a computer placed outside of the
booth. The listeners controlled the listening test using a mouse
and graphical user interface (GUI) programmed in Matlab, and the
stimuli were presented via Sennheiser HD 650 headphones. The
GUI consisted of three large buttons labeled as “YES”, “REPEAT”
and “NO”. The listeners were presented with a sound sample and
asked to press “YES” or “NO” button based on whether they had
perceived click(s) in the stimulus. The listeners had a possibility
to repeat the presented stimulus as many time as they desired by
pressing the “REPEAT” button. After the response and a subse-
quent 2-second pause, a next stimulus was presented. No feed-
back was given to the listeners, except the number of the presented
sample within the set.

3.2. System training and testing

The overall set of 89 sound samples was randomly divided into
a training set with 30 samples and a testing set with 59 samples.
During the training, the system was presented with the samples
from the training set and the listening tests results of these samples
were used to set a threshold value. This threshold value was then
used to predict the occurrence of clicks in the samples within the
testing set.

As is shown below in Section 4, some of the samples were not
rated clearly, for example, fifty percent of the ratings suggested the
presence of click(s) and fifty percent not. For the system training
it was necessary to set a rule according to which the sample will be
claimed to contain click(s). We claimed to contain click(s) those
samples which were rated at least in: (1) 75%, or (2) 50% of the all
answers across the sessions and listeners. For these samples, we
calculated the summed cross-correlations – the cross-correlations
were summed between the 20th and 150th model channel; the CFs
of these channels were 14189 Hz and 2419 Hz, respectively. We
then calculated the maximum absolute value of the summed cross-
correlations for each of the sample and then the minimum value of
these maxima across the samples. This gave us a threshold value
which was then used during the system testing.

After the threshold value was set by using the training se-
quence, the system performance was evaluated by using the 59
test samples. Based on the results, each sample was labeled either
to contain a click or not. The results are given below together with
the results of the listening test.

4. RESULTS AND DISCUSSION

Figure 3 shows the results of the listening test and the system pre-
dictions. The bars show the percentage of the positive answers –
click was detected – across the all listeners and sessions. The cir-
cles above each bar indicate those samples for which the click was
predicted by the system. The threshold value used in the system
was set by using the listening test results on the 30 training sound
samples. We assumed that the samples from the training sequence
contained a click if the percentage of positive – click was detected
– answers was higher or equal to (1) 75%, or to (2) 50%. In fact,
both conditions gave the same threshold value (41.5). Therefore
the predictions for both conditions are the same. The predictions
are shown in Figure 3 by circles.
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Figure 3: Results of the listening test and predictions of the click detection system. The bars show the percentage of the click occurrence
across the all listeners and responses. Each bar represents one stimulus. Circles indicate the samples in which the system detected a
click(s).

In order to analyze the model performance, we used the “sensi-
tivity measures” for “Yes-No” experiments as is described in [12].
The results of the listening tests were interpreted using two condi-
tions: (1) the samples were marked to contain a click (“Detected”)
if the rating was equal or higher than 75%, and without a click
(“Not detected”) if the rating was equal or less than 25% (see
the horizontal dashed lines in Figure 3); and (2) the samples were
marked “Detected” if the rating was equal or higher than 50%, and
“Not detected” if the rating was less than 50% (see the horizontal
dotted line in Figure 3). Table 1 shows the calculated model per-
formance. The correct response (“Hit”) percentage was calculated
by dividing the number of correctly detected clicks by the over-
all number of samples marked as “Detected” in the listening tests.
The “False alarm” percentage was calculated by dividing the num-
ber of samples in which the click was predicted and which were
marked as “Not detected” by the listeners. The performance of the
click detection system is promising; mainly the false alarm rate is
very small which may indicate that the threshold value could be
smaller to increase the percentage of correct detections.

Table 1: The system performance.

Hit False alarm
Det. ≥75%; Not det. ≤ 25% 87.5% 3.9%
Det ≥50%; Not det. < 50% 78.1% 3.8%

The clicks were in some of the samples hardly distinguishable
from music, e.g., the sound of the plectrum in some samples was
very similar to clicks. This contributed to the decreased perfor-
mance of the detection system. In addition to results of listening
tests, in future work we plan to evaluate the system performance
against the results of an objective system which uses a reference.

The visual analysis of the model outputs in response to the
analyzed sound samples revealed that in some cases the high fre-
quency portion of the model responses may be masked by the mu-
sical content. Therefore summing the cross-correlations across a
large number of model channels may not be the ideal method for
click detection. We plan to focus on these details in future work.

5. CONCLUSIONS

A system allowing to detect the degradation of audio records by
clicks (localized degradation caused, for example, by scratches on
vinyl records) was designed in this study. The system employs
a preprocessing part composed of a computational model of the
peripheral ear. The peripheral ear model accounts for the trans-
fer function of the outer and middle-ear, and for the function of
the cochlea. The system does not use any reference; it detects
clicks by calculating the cross-correlation between the peripheral
ear model responses to the analyzed sound and to an impulse. The
system sums the cross-correlations across several model channels
(at frequencies above about 2.5 kHz) and compares the absolute
maximum value with a previously defined threshold value. In or-
der to define the threshold value and then to test the system perfor-
mance, we used 89 short sound samples (containing signing voice
and rock’n’roll music). We evaluated the samples by a listening
test in which the listeners were asked whether the samples were de-
graded by clicks (contained clicks). We randomly chose 30 of the
samples for the system training – for setting the threshold value;
and then tested the system performance using the remaining 59
samples. The system performance was promising: the correct re-
sponse rate which depends on the chosen method for the interpre-
tation of the listening test results was higher than 78.1% and the
false alarm rate also dependent on the method was smaller than
3.9%. We plan to improve the system accuracy in future work.
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ABSTRACT

Existing game engines and virtual reality software, use various
techniques to render spatial audio. One such technique, binau-
ral synthesis, is achieved through the use of head-related transfer
functions, in conjunction with artificial reverberators. For virtual
environments that embody a large number of concurrent sound
sources, binaural synthesis will be computationally costly. The
work presented in this paper aims to develop a methodology that
improves overall performance by culling inaudible and perceptu-
ally less prominent sound sources in order to reduce performance
implications. The proposed algorithm is benchmarked and com-
pared with distance-based, volumetric culling methodology. A
subjective evaluation of the perceptual performance of the pro-
posed algorithm for acoustic scenes having different compositions
is also provided.

1. INTRODUCTION

Virtual environments create the perception of being physically pre-
sent in a non-physical world via the presentation of synthetic au-
diovisual stimuli. With today’s technology, creation of vivid en-
vironments require significant computational power. As such, op-
timisation of any existing process needs to make better use of the
limited resources.

Sound scenes encountered in virtual environments may con-
tain many sound sources. Spatialising all of these sources will
impose a performance penalty for the underlying hardware. This
problem is aggravated for computationally heavy spatialisation me-
thods such as binaural synthesis which is widely used in VR sys-
tems.

In order to deal with the performance implications, most game
engines and virtual environment software that are in use today,
employ volumetric culling [1]. For volumetric culling, volumes
(such as spheres or cubes) are defined for each sound source. Only
those sources for which the listener is in the active volume, are
rendered. While these methodologies are effective in reducing the
amount of sound sources, perceived richness of the resulting scene
may also be degraded as a result. Here, we define auditory richness
as the perceived quantity of sound sources in an real or virtual
acoustic scene.

There are also methodologies that incorporate various percep-
tual approaches. Some of these incorporate crossmodal effects
such as culling sound sources that reside outside the view frus-
tum of the listener [2]. This method is based on the assumption
that audiovisual correspondence will have a major affect on the
perception of sound sources. Other methods will cull or spatially
cluster sound sources according to their predicted audibility [3][4].

Figure 1: Overall pipeline for the culling algorithm

Majority of games and virtual environments include spatially
separated, high-energy, broadband sound sources which may also
be concurrently active. Explosions, gunshots, engine sounds and
other sound sources may render each other inaudible due to au-
ditory masking. If sources that are inaudible can be identified
and eliminated from the rendering pipeline, computational savings
may be made without degrading the overall quality of the rendered
scene. The aim of this paper is to present an algorithm which can
select a subset of all sources in the sound scene based on their
audibility. The audibility is calculated using an existing model of
simultaneous masking which also forms the basis of perceptual au-
dio coding. The sound sources are evaluated and selected accord-
ing to their perceptual salience due to monaural masking model
used in MPEG-1 Layer I. The sound sources selected by using the
proposed procedure can then be rendered without significant per-
ceptual degradation of the richness of the auditory scene.

This paper is organised as follows. Sec. 2 presents the pro-
posed algorithm. A performance analysis of the proposed algo-
rithm is given in Sec. 3. The results of a subjective evaluation
comparing the proposed culling method with volumetric culling is
presented in Sec. 4. Sec. 5 concludes the paper.

2. PERCEPTUAL SOURCE CULLING

The algorithm proposed in this paper, consists of two parts: of-
fline analysis and real time analysis. Extraction of the masking
properties of audio sources contained within a scene, is carried out
during the offline analysis. During real time analysis, information
extracted from the previous stage is used to determine whether a
given audio source will be rendered or not. Fig. 1 summarises the
algorithm.
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2.1. Offline analysis

Offline analysis is performed prior to rendering the actual scene
on sound files which may be used in a scene. In this step, mask-
ing thresholds of sound source signals are calculated and stored
in persistent memory. The model used for calculating the mask-
ing thresholds is the MPEG-1 Layer I psychoacoustical model [5].
This application is similar to how the same model is applied in
sound synthesis [6]. Since the masking thresholds obtained this
way are additive, they need not be calculated at run-time. Details
of offline analysis is explained in the remaining parts of this sec-
tion.

2.1.1. MPEG-1 Audio Layer I Masking Model

MPEG-1 Audio Layer 1 is an audio coding standard incorporating
a psychoacoustical model to reduce the bitrate [5]. In the proposed
method, this psychoacoustical model is used to determine whether
a requested audio event will be audible inside the existing scene
or not. The model calculates the masking thresholds of individ-
ual sound sources by estimating their tonal and non-tonal compo-
nents [7]. After relevant maskers have been identified among these
components, local masking thresholds are calculated and stored.
Details of how the auditory masking thresholds are calculated, is
explained briefly below.

As a first step, samples from the audio signal are divided into
frames of 512 samples and each individual frame goes under psy-
choacoustic evaluation. Two separate frequency-domain repre-
sentations are used. The first representation uses a 32-channel
polyphase filter bank for emulating the frequency selectivity of the
auditory periphery. The second representation uses a 512-point
FFT to determine tonal and noise maskers. Each of the 32 chan-
nels generate frames of size 12 resulting in a total of 384 samples.
Appropriate time shifting is applied to correct the time delay in-
duced by the filter bank. The frequency resolution of the FFT for
a sampling rate of Fs = 44.1 kHz is 86.13 Hz. An overlapping
Hann window is used in the calculations for obtaining an estimate
of the power spectrum, X(k), k = 0 . . . N/2 of the frame.

Then, the sound pressure level (SPL) in subband l = 0 . . . 31
is computed with respect to a reference of 96 dB. The sound pres-
sure level, Lsb(l), is computed for every subband l and stored.

MPEG-1 Audio Layer I psychoacoustical model separates the
tonal and noise-like components of the audio signal. The reason
for this is the different spreading characteristics of simultaneous
masking by these different types of maskers.

The tonal components X(k), are identified based on the local
maxima which are determined as the peaks that satisfy the follow-
ing condition:

|X(k)| > |X(k − 1)| and |X(k)| >= X(k + 1)

Subsequently, for each critical band, the remaining noise-like
components are summed into a single non-tonal masker compo-
nent. A local peak is added to a list of tonal maskers if:

|X(k)| − |X(k + j)| >= 7 dB,

where j is chosen differently for different frequency bands such
that:

j = −2,+2 for 2 < k < 63
j = −3,−2,+2,+3 for 63 <= k < 127

j = −6, ...,−2,+2, ...,+6 for 127 <= k <= 250

The remaining spectral lines are identified as non-tonal compo-
nents.

Less powerful maskers are determined and eliminated in or-
der to obtain a global masked threshold. Two conditions are used
for this purpose: 1) tonal or non-tonal component which generates
masking thresholds that are below the absolute threshold of hear-
ing are eliminated as these components will not be audible [5], and
2) less powerful tonal components within the distance of less than
0.5 Bark from a powerful tonal masker are eliminated. This way,
components with the highest power are kept in the list of tonal
components and others are eliminated.

The global masking threshold for each frequency index is de-
rived from the individual masking thresholds of calculated tonal
and non-tonal maskers as well as hearing threshold in quiet.

After every frame has been processed, masking thresholds of
the 32 subbands are stored in a binary file. For a three second au-
dio signal that has a sampling rate of 44.1 kHz, output will have
b(44100 ∗ 3)/384c = 344 frames because of overlapping win-
dowing. This results in a file size of 86 KB for the storage of
this auxiliary information. This is approximately one fourth of the
original sound file. With contemporary hardware specifications,
storing this additional information on volatile memory would not
cause any issues.

Offline analysis is concluded by storing the masking thresh-
olds for each frame. Global masking threshold of the entire scene
will be calculated during the real time analysis.

2.2. Infeasibility of Precalculated Decision Making

One could argue that precalculating and storing global masking
threshold of a dynamic scene is also a feasible option. For a given
scene, masking can only occur after at least two concurrent sound
sources are played, which is what is of interest. While at least
two sources are necessary for masking to occur, there is no the-
oretical upper limit on the number of sound sources that can be
played at a given time. Even if such a limit is imposed on the
number of distinct sound files/sources in order to limit the number
of different combinations, since the same sound file can be played
infinitely many times, infinitely many possible combinations exist
for a given scene. Also, each sound event would have a different
onset making precalculation infeasible.

Let there be a scene with 30 sound files that are 4 seconds long
each. There are b(44100/384)∗4c = 459 frames per sound file. If
there are only two unique sound files played at a time, there would
be

(
30
2

)
∗(459+459−1) = 398 895 possible combinations just for

two overlapping sound sources. In this calculation, onsets of each
sound event are constrained to align with the starting pointer of a
frame. If there are only three unique sound files played at a time,
there would be

(
30
3

)
∗ (459 + 459 − 1)2 = 6 828 018 680 com-

binations. This analysis excludes the possibility that same sound
source (e.g. a gunshot sound) can be activated more than once in
the given duration.

The possible combinations are increasing exponentially and
the memory required to store all number of concurrent sound sour-
ces becomes infeasible with the contemporary hardware.

2.3. Real-Time Analysis

After the offline analysis is performed on the audio sources con-
tained within the scene, and the masking data stored in memory,
real-time analysis can be performed during the program execu-
tion. The main purpose of the real-time analysis, is to calculate
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Figure 2: Overall pipeline for the real time analysis

the global masking threshold for the dynamic scene on the fly and
identify whether a new sound event will be audible or not given the
existing events already being rendered. Determining this allows
culling inaudible sound sources, which in turn reduces the com-
putational overhead due to rendering spatial audio. At the offline
stage simultaneous masking thresholds are calculated for monau-
ral listening conditions. However we assume that the global mask-
ing threshold, which is an attribute of monaural hearing is also an
indicator of the perceptual salience for binaural hearing. Visual
representation of the real time analysis, for handling an auditory
event is shown in the Fig. 2.

Real-time analysis involves several stages: Firstly, when an
auditory event is triggered, the event manager (EM) does the pre-
liminary operations required to handle this event. EM then places
or re-prioritizes this event in the decaying event priority queue
(DEPQ) in order to reduce hard drive access delay. After the data
is successfully stored in the heap, timed circular buffer (TCB) at-
tenuates masking thresholds according to their distance and adds
their masking values to the global masking threshold. Then, the
audibility ratio of the individual audio source is calculated. If this
ratio is larger than a selected threshold value, that audio source is
culled.

2.3.1. Concept of Sound Events and Event Manager

For the proposed algorithm, the audio rendering component of the
game engine needs to be encapsulated. For every spatial audio
render request, sound events are generated, later to be handled by
the sound event manager (EM). Each audio event includes:

• An audio identifier which denotes both the actual audio
file path and the binary file which contains the masking in-
formation.

• Distance from the listener position

The event manager that was mentioned above has two respon-
sibilities: 1) handling sound event requests, and 2) handling end-
of-audio events received from the game engine. Event manager
runs on its own thread with a single mutex that locks each time an
event is received. Receiving end-of-audio events require the same
mutex lock acquisition as receiving an auditory event. Hence
they are synchronized, even if multiple threads call them simul-
taneously. One key difference between them is that, receiving an
end-of-audio event is a blocking operation whereas sound event
handling is not. Details of each operation are explained below.

Sound Event Handling: Whenever a sound event is triggered,
the event manager tries to acquire the thread lock (via the only

mutex it has). If it fails to acquire the lock, it simply returns
without doing any operations and the audio will be rendered. If it
acquires the lock, meaning that this is the only running real time
analysis, it checks whether the masking information for the given
audio signal exists or not. If there is no masking information pre-
sent, audio will be automatically rendered, without doing any fur-
ther operations. This could be the case, for example, for back-
ground music which should not be subject to culling or for sources
which are marked as immutable by the game audio designer.

If the lock is acquired and the audio/masking data are valid,
event manager proceeds with the remaining operations. After all
the operations and calculations are carried out and the decision
is made, the event manager releases the thread lock and returns
the result to the calling thread. After that, if the audio is marked
as inaudible, it will be culled and no further operations will be
necessary. If the audio is marked as audible, game engine proceeds
with spatial binaural audio rendering. A visual representation of
the workflow is displayed in Fig. 3.

End-Of-Audio Event Handling: End-of-audio events are sig-
nals that indicate that a single audio file has finished playing, and
the information of which audio file is finished is not conveyed.
These events are required in the execution of the circular masking
threshold which will be explained below.

When an end-of-audio event is received, lock must be acquired.
After the program counter is in the critical section, event manager
decrements the active audio count. If there is no active sound in
the scene, timed circular buffer is notified and the lock is released.
When all sound events have finished playing, TCB is purged. A
visual representation of the workflow is displayed in Fig. 4.

2.3.2. Decaying Event Priority Queue

As explained above, auditory masking information for each sound
is stored in persistent data storage such as HDDs or SSDs. Com-
pared to the data that was allocated dynamically from heap or
stack, accessing data is significantly slower from these resources.
In order to counteract this effect, the retrieved auditory masking in-
formation is temporarily stored in a decaying event priority queue
(DEPQ).

DEPQ is a dynamically allocated priority queue that stores a
fixed amount of past auditory event information. Priorities for each
event are set according to their arrival order. As the name suggests,
priorities for each event are decremented every time a new event
comes. When the queue is full and an event that is not stored in
queue arrives, the event with the lowest priority (the least active
event) is replaced with the newer one.
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Figure 3: Event manager workflow for handling auditory events

2.3.3. Timed Circular Buffer

Timed circular buffer (TCB) contains the global masking threshold
and incorporates new masking values into it. All of the masking
values come from binary files that are stored during the initial of-
fline analysis stage. TCB also decides whether a given sound will
be audible or not by calculating audibility level as a ratio of the
number of audible frames to the number of inaudible frames of the
audio signal to be played. TCB then returns its assessment to the
event manager. The timed circular buffer is a variation of circular
buffer with four additional variables besides the size of the buffer
and the buffer itself:

1. Start Index, inclusive; Points to the first valid data of the
buffer. Updated according to time, stored as unsigned inte-
ger.

2. End Index, exclusive; It points to the first empty index of
the buffer. Stored as unsigned integer.

3. Valid Index, exclusive; This points to the end of previous
sound data and index from which the array needs to be
cleared from. One could also say it is this first index af-
ter the last valid data. Stored as unsigned integer.

4. Audibility Percentage; For a given audio and an existing
scene, determines how much of the given auditory event
will be audible.

Details of how each index works in conjunction with the algo-
rithm is explained below:

MPEG-1 Layer I uses 12 samples per subband and there are
32 subbands as explained above. Size of the buffer, in the case that
the buffer will store 5 s1 of masking information, can be calculated
as follows:

bufferSize = Size of buffer for 5 seconds

+ 1 extra empty frame

= floor(5000 / Frame Time) * 32 + (32)

= floor(574.21875) * 32 + 32

= 18400 Doubles

1Size of buffer is not constrained to 5 seconds and can be shorter or
longer depending on user requirements.

Figure 4: Event manager workflow for handling end-of-audio
events

where the duration of a single frame of audio is given as:

Frame Time = (Frame Size * 1000 ms) / Sampling Rate

= (384 * 1000 ms) / 44100 ≈ 8.7 ms

The start index is only modified by the actual time difference.
It is updated every time a new auditory event arrives. Calculation
of start index, when requested, is implemented as follows:

startIndex += b elapsedTime / frameDuration c / 32;

startIndex = startIndex % circBfrSize;

Prior to calculating the global masking values for the dynamic
scene, the individual masking values are attenuated according to
distance using the inverse-square law.

∆Lp = 10 log(
r1
r2

)2 dB

While determining the audibility for a given audio event, a
threshold value called audibility ratio is defined:

Audibility ratio =
number of audible frames

total number of frames

To determine whether a frame is audible or not, masking val-
ues are first compared with the current global masking values. If
the given masking value is greater than the existing global mask-
ing threshold for any of the 32 subbands, that frame of the audio
will be considered audible.

When handling masking values, TCB follows the following
steps of execution:

1. Update starting frame according to time,

2. Determine estimated end index and clear deprecated data,

3. Attenuate masking values according to source distance,

4. Calculate the audibility ratio within the existing scene,

5. If audibility ratio is greater than a preset threshold, add
these masking values to TCB and return.
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3. PERFORMANCE ANALYSIS

The primary purpose of the proposed algorithm is to provide a
performance advantage with minimum perceptual degradation. As
such, the computational cost of real time analysis should be lower
than synthesizing binaural audio. Performance of the proposed al-
gorithm, as well as factors that affect analysis duration is explained
below.

3.1. Algorithmic Complexity of Real-Time Analysis

Real time analysis consists of three components: event manager
(EM), decaying event priority queue (DEPQ), and timed circular
buffer (TCB). All operations of the event manager have a compu-
tational complexity of O(1), and the algorithmic complexity de-
pends on the other two components, DEPQ and TCB. In this sec-
tion, we will assume that the size of the priority queue is m and
the size of the masking value sequence is assumed to be n.

Decaying event priority queue (DEPQ) has two main function-
alities; handling sound events and handling end-of-audio events.
End of audio events are of complexity O(1). Handling audio
events on the other hand, not only requires interaction with the
queue itself but also the auditory masking values in the file sys-
tem. Firstly, if the size of the queue is m, searching through the
queue has a complexity of O(m). Secondly, fetching the masking
values from the file system and placing them into the queue has a
complexity of O(n).

For the timed circular buffer (TCB), the sequence of input val-
ues is traversed twice. Once for attenuating the masking values
according to distance and second time for adding the masking val-
ues to the global masking threshold. So the complexity of this
operation is O(n).

Three factors determine the computational cost of the analysis
stage:

1. Length of the sound signal:

(a) In the case that the file is not already stored in DEPQ,
read time (excluding the seek time) is proportionate
to the length of the offline analysis file.

(b) Each frame coming from the analysis file are com-
pared to the global masking threshold in the TCB to
determine whether a given audio is audible or not.
Hence number of frames affects the duration of the
real-time analysis.

2. Type of persistent data storage: Retrieval from a physical
drive takes longer in comparison with a solid-state drive.

3. Storage in DEPQ: If data is not stored in the program stack,
time costs of seek time, data transfer rate, and rotational
latency (for HDDs) are added to the time cost of finalising
the analysis. [8]

A limiting factor in the applicability of the proposed method
is the type of persistent data storage from which offline analysis
data is retrieved. HDDs incur spin-up delays, seek time delays and
slow data transfer rates compared to SSDs. In a system that highly
depends on time, such issues may render the system useless due
to hardware delays. If the end user were to use HDDs, increasing
DEPQ size and storing the whole masking information into the
queue would be a feasible option.

3.2. System Performance

An assessment of the performance of the proposed method is pre-
sented in this section. Time values listed here are hardware depen-
dent. In order to smooth out peaks due to higher-priority operating
system processes, the metrics presented in this section use an av-
erage of 10 runs.

The hardware used in the calculation of the reported values in-
cludes Intel i5-3570K CPU running at 3.40GHz, 8GBs of RAM,
120GBs of SSD, 500GBs of HDD and a GeForce GTX 670 graph-
ics card.

3.2.1. Performance of Real Time Analysis

The time it takes to complete real time analysis is affected by how
the pre-calculated data is accessed. Different storage media have
different data transfer overheads which in turn affects the duration
of real time analysis. This section describes the individual cost of
the culling algorithm, including any delays associated with it but
excluding the cost of the subsequent (binaural) rendering opera-
tions. Table 1 shows the average times to reach a decision, based
on the conditions listed.

Different hardware architectures would have different results.

Table 1: Average time required to complete real time analysis

Input Size Storage in DEPQ Memory Type Delta Time
1 Frame Stored RAM ≈ 0 ms

574 Frames Stored RAM 0.51 ms
1 Frame Absent HDD 15.626 ms

574 Frames Absent HDD 15.918 ms
1 Frame Absent SSD ≈ 0 ms

574 Frames Absent SSD 0.53 ms

3.2.2. Performance Gained by Culling a Single Audio Source

For a sound signal that was stored in DEPQ, average time it takes
to render a 5 second audio is 0.51 milliseconds. During this time,
a single CPU core is fully utilized. We can express the total cost
of a program execution as:

CostOfExecution = AverageCPU Utilization ∗
T ime InMilliseconds

Since audio rendering incurs a performance penalty in the be-
ginning of each frame, over the time of execution, we can see
whether this methodology is profitable or not. Since we are not
considering the memory delay for retrieving the actual audio data
from memory, we are not considering the retrieval of the masking
values from memory either. For an audio signal that is already in-
side the DEPQ, and for audio data that was already stored in RAM,
the performance metrics are listed in Table 2.

Table 2: Execution cost comparison

Input Size Culling Assessment Cost Of Execution
1 Frame No Culling Algorithm 9ms∗%0.44 = 3.96
1 Frame With Culling Algorithm 9ms∗%0.46 = 4.14

574 Frames No Culling Algorithm 5000ms∗%0.45 = 2250
574 Frames With Culling Algorithm 5000ms∗%0.49 = 2450
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As shown in the table, the culling algorithm has 8% more
performance overhead compared to the existing audio synthesis
pipeline. However in the case that the audio will be culled, we
will save 92% of the clock cycles. In other words, in order for the
proposed algorithm to provide any computational gain, it should
cull at least 92% of all the frames. One disadvantage of the culling
algorithm, however, is that it will block a CPU core completely
until the analysis is done.

At the cost of degrading the overall composition of the scene,
a volumetric culling methodology would save %100 percent of the
clock cycles instead of our %92 but does not guarantee the reten-
tion of perceptually most prominent sources. While the proposed
methodology does not provide the best overall performance, it pro-
vides a good balance between perceived richness and performance
as will be shown in the next section.

4. SUBJECTIVE EVALUATION

Audio produced with sound source culling, regardless of the meth-
odology, is dependent on the user determined variables. Resulting
auditory richness produced by the aforementioned methodologies,
provide a crude approximation to the original scene. In order to
find out which parameters provide sufficient perceived richness, a
subjective evaluation was performed.

4.1. Chosen Test Methodology

The ITU-R Recommendation BS.1534, proposes proposes a sub-
jective evaluation method called "MUlti Stimulus test with Hidden
Reference and Anchor
(MUSHRA)" which is appropriate for assessing intermediate au-
dio quality [9]. While this paper is not directly related to audio
coding or quality, we use MUSHRA to test intermediate levels of
auditory richness given a hidden reference and anchor.

4.2. Test Procedure

4.2.1. Presentation of Stimuli

In the MUSHRA test method, a high quality reference signal, a
low quality anchor signal and other signals that fall in between
them in terms of quality are evaluated [9]. In any given test, there
is a single reference and a single anchor that the user is expected to
find. Each prerecorded sound can be played as many times as the
listener desires. Presentation of both the different experiments and
the stimuli contained within the experiments are randomized. So
not only each listener listens experiments in a different order but
each listener faces a randomized presentation order of the stimuli.
For the experiments, a MATLAB interface called MUSHRAM was
used [10].

4.2.2. Grading

The whole test procedure is comprised of giving ratings to test
signals which are displayed in random sequence. Listeners were
instructed to score the presented samples in comparison with the
explicitly provided reference signal. The scores that are given, can
range between 0 and 100. Listeners were asked to find and rate
the reference and the anchor signals as 100 and 0, respectively.
For any of the remaining stimuli, listeners were asked to give their

Table 3: Contents of Test Scenes

Experiment Contents (ss = sound sources)
Impulsive Scene 13 impulsive ss.

Impulsive + Speech
+ Music

6 impulsive ss., 6 speech ss.,
1 Music sound

Impulsive + Sound Effects
+ Music

6 sound effect ss., 6 impulsive ss.,
1 Music sound

Sound Effects + Speech 7 speech ss., 6 sound effect

scores according to the perceived richness. They were also en-
couraged to listen to the available reference signal, prior to giving
scores on the stimuli.

4.3. Experiment Details

The MUSHRA test applied for this paper is comprised of four dif-
ferent experiments. Each experiment involves a combination of
different sound sources of different categories: impulsive sounds,
music, static sound effects and speech signals. From these sound
sources, we arranged four different psychoacoustical experiments,
involving sounds under different categories. In each of these sce-
nes, there were a total of 13 sound sources in the case of reference
signals. The applied culling methodology served to reduce the
number of sound sources at each rendered scene. Composition of
each scene is given in the Table 3.

The test scenes were adjusted so that the maximum length of
a stimulus does not exceed 2 s.

4.3.1. Selection of Sound Source Locations

Since both systems need to be tested with the same conditions,
a scene that is appropriate to both culling methodologies was re-
quired. In order to achieve this, sound sources were distributed
along the horizontal plane of the listener. Assuming one source
will be directly in front of the listener, the axis needed to be di-
vided into 180/(13 − 1) = 15 degree segments. Listener was
placed at the coordinate location (700, 700), facing towards the
negative x axis.

We used Unreal Engine 4 to test the proposed algorithm. In or-
der to achieve a controllable volumetric culling methodology, each
of the sound sources were placed at a fixed radius away from the
listener. They were grouped into pairs and were placed at an equal
distance and symmetrical angles with respect to the front direc-
tion of the listener. Coordinates of sound sources were calculated
according to the formula:

X = r cos(θ) + 700 (cm)

Y = r sin(θ) + 700 (cm)

Top down view that demonstrates the positions of the sound
sources is given in Fig. 5.

For example, a sound source with a culling radius of 200 cm
will not be rendered when a listener is positioned 300 cm away
from the source. This way of adjusting test scene enables precise
control over which sound sources are going to be culled because
of the spherical culling radii. Note that these sources were not trig-
gered in the same time frame so that their onsets do not coincide.
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Figure 5: Positioning of the sound sources for the tested scenes

4.3.2. Generation of Test Cases

There are nine stimuli in each experiment. The reference signal
includes all 13 sounds. The anchor signal involves only a single
sound source to achieve the lowest richness in a scene. The re-
maining signals are results of scenes with culling methodologies
applied. For the perceptual culling methodology, various audibil-
ity ratios were tested. For volumetric culling methodology, various
radii were tested. In total, there were 4 scenes with 9 culling set-
tings making a total of 36 test cases.

At each run, among the 7 stimuli, 4 of them were produced
with perceptual culling and 3 of them were produced with volu-
metric culling. For perceptual culling, %0, %10, %20 and %30
audibility ratios were used. For distance based culling, 650, 550
and 450 cm culling radii were used. Due to the configuration of the
scene, chosen auditory stimuli and culling methodology, test cases
that have 9 and 11 sound sources were only available to audibility
based culling methodology.

4.4. Statistical Analysis

Eleven participants participated in the test (7 male, 4 female). Fig. 6
shows the results of the scores from the test. As can be observed,
scenes that have 8, 10, 12 and 13 sources have results for both of
the culling methodologies.

In order to see whether the proposed methodology has any ad-
vantage over volumetric culling for a given scene, responses given
to scenes with the same number of sources but obtained using dif-
ferent culling strategies can be compared. Fig. 6

Independent-samples t-tests were performed to find out whether
mean responses given to stimuli obtained using different culling
methods are significantly different. Differences in mean values of
subjective responses for 8, 10, and 12 sound source scenes us-
ing different culling methodologies is statistically significant at
α = 0.05 level with auditory culling outperforming volumetric
culling for these cases. For the 8 source case, the difference be-
tween mean responses was statistically significant with t(75) =
2.965, p = 0.004 (Variances between groups is significant). For
the 10 source case, the difference between mean responses was sta-
tistically significant with t(152) = 2.767, p = 0.006 (Variances

Figure 6: Box plot of subjective scores from listening tests. Circles
denote outliers and stars denote extreme values with their corre-
sponding sample index

between groups is significant). For the 12 source case, the dif-
ference between mean responses was statistically significant with
t(59.268) = 2.270, p = 0.027 (Variances between groups is not
significant)2. For the 13 sources case, the differences between
mean responses were not significant. This result was expected as
no source was culled through culling methodologies for this case.

5. CONCLUSIONS

A perceptual sound source culling methodology based on mod-
els of simultaneous masking was proposed in this paper. The al-
gorithm uses a prioritisation approach based on the audibility of
sound sources and those sources which will be less audible than
the others are culled.

The algorithm was evaluated with respect to its computational
as well as its perceptual performance. Performance evaluations
showed that while the culling algorithm itself causes some compu-
tational overhead, it may still provide savings when it is realised
that culled sources are not processed further for binaural spatial-
isation and that binaural processing has a higher computational
overhead in general. The subjective evaluations involved a com-
parison of the proposed culling algorithm with volumetric culling
where sources are culled based on their distance from the listener.
It was observed that for the same number of sources culled us-
ing the auditory culling and volumetric culling methods, auditory
culling provided higher scores in terms of auditory richness.

While the computational and perceptual performance of the
proposed method for culling sources in more complex scenes in-
cluding a higher number of sources remains to be investigated, the
proposed culling algorithm provides a promising approach that

2In order to check for the normality assumption, Levene’s test was used.
The degrees of freedom of the test is modified in order to account for the
cases where the assumption that homogeneity of variances does not hold
and is called Welch’s t-test.
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could make it possible to render better spatial audio on low-end
devices.
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ABSTRACT

The control of interpretational properties such as duration, vibrato,
and dynamics is important in music performance. Musicians con-
tinuously manipulate such properties to achieve different expres-
sive intentions. This paper presents a synthesis system that au-
tomatically converts a mechanical, deadpan interpretation to dis-
tinct expressions by controlling these expressive factors. Extend-
ing from a prior work on expressive musical term analysis, we de-
rive a subset of essential features as the control parameters, such
as the relative time position of the energy peak in a note and the
mean temporal length of the notes. An algorithm is proposed to
manipulate the energy contour (i.e. for dynamics) of a note. The
intended expressions of the synthesized sounds are evaluated in
terms of the ability of the machine model developed in the prior
work. Ten musical expressions such as Risoluto and Maestoso are
considered, and the evaluation is done using held-out music pieces.
Our evaluations show that it is easier for the machine to recognize
the expressions of the synthetic version, comparing to those of the
real recordings of an amateur student. While a listening test is un-
der construction as a next step for further performance validation,
this work represents to our best knowledge a first attempt to build
and quantitatively evaluate a system for EMT analysis/synthesis.

1. INTRODUCTION

Expression plays an important role in music performance. For the
same musical score, different performers would interpret the score
with their personal understandings and experiences and instill their
feelings and emotions into it, thereby creating large variations in
their actual performances. These variations can be observed in
interpretational properties like timing, modulation, and amplitude.
Therefore, in automatic music synthesis, an important step is to
characterize and to control such expressive parameters.

Expressive music performance has been studied in the last few
decades [1, 2, 3, 4, 5, 6]. For example, Bresin et al. [7] synthesized
music of six different emotions by using performance rules such
as duration contrast, punctuation, and phrase arch. Maestre et al.
[8] characterized dynamics and articulation parameters related to
the expressivity of saxophone. D’Incà et al. [9] considered four
sensorial adjectives (hard, soft, heavy, and light) and four affec-
tive adjectives (happy, sad, angry, and calm) based on a set of
audio cues. Grachten et al. [10] used both predictive and explana-
tory framework to model three categories of dynamics markings
in piano. Erkut et al. [11] captured information of guitar perfor-
mance such as damping regimes and different pluck styles used in
a plucked-string synthesis model. More recently, Perez et al. [12]
combined the modeling of the characteristics of the performer (i.e.,

pitch, tempo, timbre, and energy), the sound as well as the instru-
ment in order to render natural performances from a musical score.

Surprisingly, among all the elements of expressive synthesis,
the expressive musical terms (EMT) that describe feelings, emo-
tions, or metaphors in a piece of music have been rarely discussed,
even though they have been widely used in Western classical music
for hundreds of years. To fill this gap, in a prior work [13] we pre-
sented a computational analysis of ten EMTs — including Tran-
quillo (calm), Grazioso (graceful), Scherzando (playful), Risoluto
(rigid), Maestoso (majestic), Affettuoso (affectionate), Espressivo
(expressive), Agitato (agitated), Con Brio (bright), and Cantabile
(like singing) — using a new violin solo dataset called SCREAM-
MAC-EMT. 1 The dataset contains ten classical music pieces, with
each piece being interpreted in six versions (five EMTs and one
mechanical, deadpan version denoted as None) by eleven profes-
sional violinists, totaling 660 excerpts [13]. With this dataset, we
built supervised machine learning models to recognize the EMT
of a music excerpt from audio features. We compared the per-
formance of two types of features for the classification task. The
first type of features includes a set of audio features characterizing
the three interpretational factors, dynamics, duration, and vibrato,
whereas the second type of features are standard timbre, rhythm,
tonal, and dynamics features such as Mel-frequency cepstral coef-
ficients (MFCC) extracted from the MIRtoolbox [14]. Our evalua-
tion shows that the first feature set, which has clearer music mean-
ings, achieves better classification accuracy than the standard fea-
tures do, showing the importance of these interpretational features
in characterizing EMTs.

Extending from this prior work, we investigate in this paper
the use of a small set of such interpretational features for synthe-
sizing music of different EMTs. Specifically, we aim to manipulate
features of vibrato, dynamics, and duration to synthesize expres-
sive sounds from a mechanical interpretation. The way of ma-
nipulation is learned from a training set SCREAM-MAC-EMT. To
quantitatively evaluate the performance of the proposed expressive
synthesis method, we make use of the classification model devel-
oped in our prior work [13] again to see if the intended EMT of the
synthesizer can be correctly recognized. Specifically, we recruit a
professional violinist and an amateur student to record new data
in accordance with the collection method of the SCREAM-MAC-
EMT dataset. That is, both of them perform the sixty classical
excerpts (i.e. six different versions of the ten pieces) individually.
Then, we compare the performance of the real and synthetic ver-
sions by means of the same EMT analysis and classification pro-
cedure. In other words, the objective evaluation of the ten EMTs

1https://sites.google.com/site/pclipatty/
scream-mac-emt-dataset
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Figure 1: Flowchart of the EMT synthesis system.

recognition is applied to these outside data through the classifica-
tion models constructed from the preliminary work [13]. There-
fore, we can observe not only the differences between the two
people who have distinct musical trainings and skills from their
violin performances, but also the result of synthesis based on the
two unique sources. The synthesized sound samples can be found
online. 2 This paper is organized as follows. Section 2 describes
the expressive synthesis method, together with the EMT features,
and the setting of classification. In Section 3, the experimental
results are presented. Finally, we conclude in Section 4.

2. METHOD

Figure 1 shows the EMT synthesis diagram, whose goal is to con-
vert a mechanical interpretation of a music piece into an expressive
one. We refer to the mechanical interpretation as the “None” sig-
nal. As the manipulation process is usually done for each note,
at the first stage note segmentation is applied to the None audio
file. Then the manipulations of duration, vibrato, and dynamics of
each segmented notes are performed according to the pre-learned
parameters of the target EMT (see Sections 2.1–2.3 for details).
Lastly, when concatenating all the manipulated notes back into a
complete music piece, we adopt fade-in and fade-out operations to
eliminate the crackled sounds.

To synthesize expressive sounds, the parameter values of the
ten EMTs are calculated by averaging over the corresponding mu-
sic pieces because each EMT is interpreted in five different ex-
cerpts. Moreover, as we have the performance from eleven musi-
cians for each music piece and each EMT, the parameters will be
averaged again across the violinists. The EMT feature set listed in
the Table 1 is used in the proposed synthesis system. It includes
seven relevant features, namely vibRatio, ND-CM, 4MD-CM,
FPD-CM, D-M-CM, D-Max-CM, and D-maxPos-M, as well as
two fundamental features of vibrato, VR-M-M and VE-M-M. The
first seven features are found to be more important than other pos-
sible interpretational features for classifying EMTs [13]. The last
two features are found less useful in classifying EMTs, but they
are still needed to manipulate added vibrato to a note.

The manipulations of duration and vibrato are implemented by
means of the phase vocoder, which is a mature technique of time
stretching and pitch shifting [15, 16, 17]. Given an audio input, the
short-time Fourier transform (STFT) converts the signal from time
domain into a time-frequency representation. The time stretching
(expansion/compression) is achieved by modifying the hop size
and then by performing the inverse STFT with the overlap-add
method. The pitch shifting is accomplished by resampling the time

2http://screamlab-ncku-2008.blogspot.tw/2016/
03/music-files-of-expressive-musical-term-experiment.
html

Table 1: The EMT feature set used in the synthesis system. The
terms ‘M’ and ‘CM ’ denote mean and contrast of mean, respec-
tively. Please refer to [13] for details.

Features Abbreviation Description

Vibrato
vibRatio

percentage of vibrato notes in a
music piece

VR-M-M mean vibrato rate
VE-M-M mean vibrato extent

Dynamics

D-M-CM mean energy
D-Max-CM maximal energy

D-maxPos-M
relative time position of the en-
ergy peak in a note

Duration

ND-CM
mean length of every single
note

4MD-CM
mean length of a four-measure
segment

FPD-CM
mean length of a full music
piece

Figure 2: Illustration of adding vibrato to a non-expressive note.
The note is divided into a sequence of fragments whose pitches will
be individually shifted by means of the phase vocoder. The timbre
preservation is applied to each fragment. The vibrato contour is
sampled at sixteen times per cycle to avoid artifacts.

stretched signal back to the original length. More details of the
synthesis method, together with the meaning of the features listed
in the EMT feature set, and the setting of EMT classification, are
introduced in the following sections.

In what follows, we assume that all the audio excerpts are sam-
pled at 44.1 kHz.

2.1. Vibrato Features

Vibrato is an essential factor in violin performance and its anal-
ysis/synthesis has been studied for decades [18, 19]. Vibrato is
defined as a frequency modulation of F0 (fundamental frequency)
and is typically characterized by the rate and extent [20]. The vi-
brato rate means the number of periodic oscillations per second
while the vibrato extent specifies the amount of frequency devia-
tion. In the EMT feature set, VR-M-M, VE-M-M and vibRatio
are related to vibrato. The first two are defined as the mean value
of the vibrato rate and extent, and the last one means the ratio of
the number of vibrato notes over total notes in a music piece. The
detailed criteria of determining whether a note is vibrato could be
found in [13]. Vibrato is a common interpretation in violin perfor-
mance, but the VR-M-M and VE-M-M are found to have weak dis-
crimination power in classifying EMTs [13], possibly due to their
subtle difference. The mean values of the two features among the
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Figure 3: The energy contours are modeled by means of the EMT parameter (UEC; left) and the categorized method (CEC; right).

Figure 4: The number of notes in the three categories of the ten EMTs

ten expressive musical terms are between 6.3–6.8 Hz (STD=0.15)
and 0.27–0.38 semitones (STD=0.03) separately. In contrast, the
vibRatio has strong discrimination power and its mean values
are between 52–74% (STD=6.82) among the ten expressions. As-
suming that there are no vibrato at all in the None signal, to imple-
ment vibRatio we need to determine how many vibrato notes
there should be, and which notes should be manipulated to have
vibrato. Firstly, the amount of vibrato notes is easy to calculate
and is expressed by:

# Vibrato notes = # notes in a violin piece× vibRatio ,
(1)

where the value of vibRatio is set differently for different EMTs
and it’s set according to its average value in the training set (i.e.
SCREAM-MAC-EMT) per EMT. Secondly, according to our ob-
servation, a note with longer duration will more likely have vi-
brato. Hence, we sort all the notes in descending order of duration
and add vibrato to the top longest ones (the exact number of notes
is determined by equation (1)).

Moreover, we remark that the continuity of the pitch contour
is important to obtain a naturally synthesized vibrato. Therefore,
we use a sequence of short fragments to model the modulation
of the original frequency of a non-expressive note. Specifically,
we shift the pitch of each fragment through the phase vocoder to
fit a vibrato contour. For the purpose of avoiding weird artifacts,
we sample at sixteen times per cycle of a vibrato contour so that
the sampling period is approximately 2.4 milliseconds (410 sam-
ples). Accordingly, the first step of the vibrato manipulation pro-
cess shown in Figure 2 is that partitioning a non-expressive note
into a sequence of fragments of 2,048 samples with an 80% over-

lap (1,638 samples). Next, given a fragment and its corresponding
pitch on the particular vibrato contour generated by the VR-M-M
and VE-M-M, the pitch shifting is carried out with a Hanning win-
dow of 256 samples as well as a hop size of 64 samples. Then,
the timbre preserving method proposed by Röbel and Rodet [21]
is adopted. According to this method, both the spectral envelope,
measured by a true envelope estimator, and the pre-warping fac-
tor of the original fragment are calculated before the pitch shifting
takes place. The timbre preservation is therefore realized by means
of the multiplication of the pre-warping factor and the pitch-shifted
fragment. Finally, we overlap and add the fragments to achieve the
synthesized vibrato note.

2.2. Dynamic Features

One of the most prominent characteristics to distinguish expres-
sion is dynamics. According to Gabrielsson and Juslin [22], the
dynamics and the temporal envelopes of individual notes are dif-
ferent for distinct expressions. The EMT feature set has three dy-
namic features, D-M-CM, D-Max-CM and D-maxPos-M, which
indicate the mean energy, the maximal energy, and the relative
time position of the maximal energy peak in a note (denoted as
maxPos), separately. To utilize these features for synthesis, we
need to know the dynamic envelops of the ten EMTs ahead. How-
ever, the specific envelopes are still unknown within these features
so we need to model the energy contour, which characterizes the
instantaneous energy as a function of time. To make the energy
contour as close to the real acoustic envelope as possible, we con-
sider the data of the three consultants, who helped us in the cre-
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ation of SCREAM-MAC-EMT [13], and the dynamic level func-
tion, which is calculated by summing the spectrum over the fre-
quency bins and expressing in dB scale with frames of 1,024 sam-
ples at increments of 256 samples [13]. According to the ways of
deciding the values of maxPos for each EMT, we implement two
types of energy contour model: one is directly using the parameter,
D-maxPos-M, in the EMT feature set (denoted as UEC), while
the other is based on a categorized method (denoted as CEC).

The UEC modeling of dynamics is implemented as follows:
STEP 1 Calculating the dynamic levels of all the notes among the

five excerpts corresponding to a particular EMT across
the three consultants (15 excerpts in total).

STEP 2 Resampling all the dynamic levels so that the values of
maxPos are equal to the D-maxPos-M parameter.

STEP 3 Averaging the whole dynamic levels.
The UEC model of the ten EMTs is shown in the left side of the
Figure 3. We see that Scherzando, Con Brio, and Risoluto have rel-
atively large variation of the energy contours, while the remaining
ones have relatively flat ones. Besides, we observe that the values
of maxPos for all EMTs lie in the interval of 40–70%. However,
this phenomenon is unfortunately not consistent with our observa-
tion, as the maximal energy would not always lie in the middle of a
note. Some notes have strong attacks and others have maximal en-
ergy in the back even within a music piece with a particular EMT.
The D-maxPos-M falling into the middle portion is probably due
to the fact that we have taken average on all the notes in the dataset.
This motivates us to take the following alternative model.

The CEC modeling of dynamics classifies the notes into three
categories among the 15 excerpts of each EMT:

note ∈

 Front, if maxPos < 0.33
Middle, if 0.33 ≤ maxPos < 0.66
Back, otherwise.

(2)

After doing this, we count the number of notes for each category.
Certainly, as seen in Figure 4, the dominant one of each EMT is
different. We simply select the relative category of each EMT, i.e.,
discarding the remaining ones, to construct a new energy contour
model. For example, as most of notes are classified into the back
category in the Tranquillo case, we take such notes to modeling its
own energy contour.

Accordingly, the CEC model is realized as follows:
STEP 1 Computing the amount of notes in the front/middle/back

category of the ten EMTs using the equation (2).
STEP 2 Selecting the relative majority category of each EMT and

taking the notes belonging to this particular group for the
dynamic level calculation.

STEP 3 Repeating the three steps of the UEC model.
The right-hand side of the Figure 3 shows the estimation of en-
ergy contours for each EMT based on the CEC model. We no-
tice that Risoluto has a strong attack, and Scherzando as well as
Con Brio still has a maximal energy in the middle. Besides, the
others have slowly increasing curves which reach the highest en-
ergy in the end of a note. The performance of these two models
will be evaluated in the classification experiment. Ultimately, we
carried out the dynamic manipulation by means of applying a par-
ticular energy contour to each note, together with the multiplica-
tion of the mean/maximal energy of every note and the parameter,
D-M-CM/D-Max-CM.

Figure 5: Illustration of time shortening: (a) The original dura-
tion of two consecutive notes, (b) The shortened Noten followed
by an overlapping Noten+1, (c) A silent gap between the short-
ened Noten and Noten+1 if ND–CM < FPD–CM .

2.3. Duration Features

The deviation of timing is also an important expressive factor used
by performers [8]. In the EMT feature set, we use 4MD-CM,
FPD-CM and ND-CM, defined as the mean length of a four-measure
segment, of a full music piece, and of every single note, respec-
tively. Firstly, we stretch a non-expressive note through the phase
vocoder and the time-scaling factor is according to the parameter,
ND-CM for each EMT. The length of synthesized note is described
as follows:

NDSynthesis = NDNone ×ND–CM . (3)

Next, we take the FPD-CM into account and calculate the reason-
able onset position of stretched note by the following equation:

OnsetSynthesis = OnsetNone × FPD–CM . (4)

In general, there is an overlap between two consecutive notes in the
time shrinking case. However, an abrupt and silent gap may occur
in some expressions such as Tranquillo if ND-CM < FPD-CM.
This is illustrated in Figure 5. In such a case, the synthesized tone
can not keep the temporal continuity of sound. To address this
issue, the FPD-CM will be set equal to the ND-CM in such condi-
tion. Moreover, we stretch every four-measure segment according
to the value of 4MD-CM for each EMT. A Hann sliding window of
1,024 samples and a fine hop size of 100 samples are adopted in
the phase vocoder module.

2.4. Classification

To evaluate the performance of the synthesis result, we take ad-
vantage of the classification models constructed from the prior
work [13] for the machine recognition of the ten EMTs. Specif-
ically, the radial-basis function (RBF) kernel Support Vector Ma-
chine (SVM) implemented by LIBSVM [23] is adopted for clas-
sification. In the training process, we use SCREAM-MAC-EMT
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Figure 6: The first phrase of Mozart’s Variationen with a mechan-
ical interpretation performed by an amateur student.

and take 11-fold cross validation, that is, leave-one-violinist-out in
each fold. Besides, the feature selection process is performed by
using the ReliefF routine of the MATLAB statistics toolbox [24].
In order to obtain optimized SVM models, the parameters c and γ
of the SVM and the top-n′ most relevant features are taken based
on the highest average accuracy across the 11 folds. In the testing
process, each of the outside data, two real recordings collected in
this study and six synthetic versions (see Section 3.1 for details),
need to be normalized prior to classification. Then the data are
fed into the eleven SVM models in conjunction with correspond-
ing relevant features produced in each fold, and the accuracy is
computed by averaging over the eleven results. According to [13],
the values of c, γ for the SVM classifier and the optimal feature
number nopt are set to 1, 2−6, and 36 separately.

3. RESULTS

3.1. Synthesis Results

In this paper, we consider three different sources of the ten non-
expressive music pieces, that is, MIDI, amateur student, and pro-
fessional violinist, in order to observe the differences between the
people who have distinct violin trainings and skills. The last two
data are recorded in accordance with the collection method of the
SCREAM-MAC-EMT. To compare the real recordings with the
synthetic versions, both of them perform not only the mechan-
ical interpretation of the ten classical music pieces but also the
EMT versions according to the settings of the dataset. In other
words, the two people record all the sixty excerpts one by one in
a real-world environment. Similarly, to evaluate the proposed syn-
thesis method, each non-expressive excerpt is synthesized in five
distinct expressive versions. Moreover, based on the two energy
contour models, all the three sources have two types of synthe-
sized sounds. In sum, we have two original and six synthetic data,
and each data has sixty excerpts. The following figures, restricting
spectrograms from 0 to 3 kHz, illustrate the variations in vibrato,
dynamics, and duration. Figure 6 shows an example of mechanical

Table 2: The average accuracy compared between the original and
synthetic versions which utilize the uncategorized and categorized
energy contour models (UEC and CEC, respectively), across three
distinct sources.

Data MIDI Amateur Expert
Original — 0.293 0.605

UEC 0.578 0.656 0.595
CEC 0.482 0.687 0.615

Table 3: F-scores of the ten EMTs compared with the original as
well as the synthetic version based on the categorized energy con-
tour (CEC) model.

EMT MIDI Amateur Expert
CEC Original CEC Original CEC

Scherzando 0.878 0.407 0.857 0.653 0.738
Affettuoso 0.317 0.270 0.503 0.436 0.561
Tranquillo 0.923 0.711 0.835 0.838 0.866
Grazioso 0.252 0.250 0.542 0.468 0.516
Con Brio 0.381 0.047 0.770 0.442 0.606
Agitato 0.524 0.397 0.981 0.764 0.922

Espressivo 0.472 NaN 0.231 0.588 NaN
Maestoso 0.483 0.345 0.519 0.815 0.557
Cantabile 0.132 NaN 0.667 0.610 0.459
Risoluto 0.500 0.286 0.855 0.549 0.660

interpretation performed by the amateur, while the three particu-
lar expressive versions are demonstrated in Figure 7 which con-
tains original and corresponding synthesized versions in the upper
and lower rows respectively. Comparing to the original, we no-
tice that Scherzando has a little faster tempo but both Risoluto and
Maestoso have slower one. Besides, all the three synthetic results
have more powerful dynamics and stronger vibrato.

3.2. Classified Results

The objective evaluation of the machine recognition of the ten
EMTs is applied to these outside data via the classification models
built up from the preliminary work. Hence, the average accuracy
predicted by the eleven SVM models among original and synthetic
data across the three sources is listed in the Table 2. Addition-
ally, the performances of the two energy contour models are also
displayed. Firstly, the MIDI achieves higher classified accuracy
when using the UEC model. However, all the other synthetic ver-
sions have better performance than MIDI. Secondly, the amateur
attains an accuracy less than 30% based on the original data but
more than 60% among the synthetic ones. There are highly signif-
icant differences on both the synthetic data from the original one
as validated by a one-tailed t-test (p<0.00001, d.f.=20). In par-
ticular, the CEC version, using the categorized method to model
the dynamic envelopes, achieves the highest accuracy of 0.687,
showing a slight improvement from the UEC version (p<0.05).
Finally, the original data of the expert attain a great performance
and the average accuracy comes to 0.605. Besides, both the syn-
thetic versions have nearly the same classified results as the origi-
nal. In addition, the average F-scores of the ten EMTs comparing
between the original and the CEC synthetic version are listed in the
Table 3. Espressivo and Cantabile have unrepresentable values,
NaN, in the synthetic version of expert and the original version of
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Figure 7: The first phrase of Mozart’s Variationen with three particular EMTs. The upper row shows the original recordings of an amateur
while the lower one displays the corresponding synthetic versions based on the specific non-expressive version (see Figure 6).

amateur respectively because their true positives are zero. Apart
from this exception, we find that all the ten EMTs attain higher
F-scores in the synthetic version compared with the original of the
amateur. Moreover, Scherzando, Tranquillo and Agitato are eas-
ily recognized among the five data probably because the first two
have lighter dynamics than other EMTs and the last one has faster
tempo in most cases.

3.3. Discussion

According to the experimental results, the synthetic data produced
by means of the proposed system attain high performances. Specif-
ically speaking, almost all the synthetic versions achieve more than
50% accuracy in the EMT classification task. Particularly, the CEC
synthetic version of the amateur has significant difference than the
original, implying that the virtual simulated violinist is closer to
the model of eleven violinists than the amateur. However, the av-
erage results are based on the 11 SVM models and corresponding
relevant features, which are derived from the 11-fold cross valida-
tion from the prior work [13]. We adopt this criterion in order to
not only carry on the work but also evaluate the performance of
synthesis system via a objective method. In the real application,
we will use all the training data to generate a unified model.

Although the synthetic versions obtain great accuracy in clas-
sifying the ten EMTs, we could not judge that they have the same
expressiveness as the original, or even better than that in the am-
ateur case, by means of the machine recognition. Especially, we
only use the nine average features in the synthesis system so both
the subtle deviation and the diverse interpretation in violin perfor-
mance could not be modeled. Hence, the human recognition of

expressions is necessary. This work represents an important part
of our EMT analysis/synthesis project. A listening test is under
construction for it is interesting to know how subjects perform in
this regard when original and synthesized sounds are presented. It
is expected that such results can be beneficial to this study.

4. CONCLUSION AND FUTURE WORK

In this study, we have presented an automatic system for expressive
synthesis from a mechanical sound by means of a small set of in-
terpretational factors derived from the preliminary analysis results.
The synthetic data coming from three distinct sources with the
dynamic, vibrato, and duration manipulations achieve more than
50% accuracy in the expressive musical term classification task.
The performance of two energy contour models is also reported.
Specifically, the synthetic versions based on the non-expressive ex-
cerpts of an amateur student are closer to the classified models than
the original, providing insights into the application of computer-
aided music education such as performance calibration in pitch,
tempo, and articulation. For future work, we will consider to adopt
other features for generating more expressive versions and to con-
duct a listening test for subjective evaluation.
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ABSTRACT

Concatenative synthesis is a practical approach to sound texture
synthesis because of its nature in keeping realistic short-time sig-
nal characteristics. In this article, we investigate three concatena-
tive synthesis methods for sound textures: concatenative synthesis
with descriptor controls (CSDC), Montage synthesis (MS) and a
new method called AudioTexture (AT). The respective algorithms
are presented, focusing on the identification and selection of con-
catenation units. The evaluation demonstrates that the presented
algorithms are of close performance in terms of quality and simi-
larity compared to the reference original sounds.

1. INTRODUCTION

Sound texture synthesis is an emerging research topic. It inspires
to explore the physics and signal characteristics of sounds other
than music and speech, and it also has a great potential to appli-
cations in the film, broadcast and video game industries. Sound
textures are generally understood as sound that is composed of
many micro-events but have features that are stable on a larger
time-scale, such as wind, rain, fire, stream, insects, crowd cheering
or applause. In this work, we will focus on sounds generated by
real-world physics such as environmental, mechanical, and crowd
sounds. The imaginary ambiance sounds or creative texture-like
sounds are therefore not within the context of this work.

Among existing sound texture synthesis methods [16], gran-
ular synthesis is a relatively practical approach as it makes use
of snippets of a sound recording, and thus inherits the short-time
signal’s timbre which provides a shortcut to naturalness. Con-
catenative synthesis can be seen as a particular kind of granu-
lar synthesis [15] and we will be using this term to distinguish
it from many commercial granular synthesis products that usu-
ally generate sounds of different timbre than that of the original
sounds. Since 2012, the authors have been working together on the
French national project PHYSIS1: an industrial project focused on
the modeling, transformation and real-time synthesis of diegetic
sounds for interactive virtual worlds and augmented reality. The
developed concatenative synthesis methods include: Concatena-
tive Synthesis with Descriptor Controls (CSDC) controls transi-
tions between segments using audio descriptors, thus preventing
artefacts (section 2.1); Montage Synthesis (MS) analyzes energy
evolution in multiple sub-bands and re-synthesizes a sound texture
by means of replacing similar atoms to re-create the sequence of
events (section 2.2); AudioTexture (AT) is an algorithm used in a
commercial car engine sound synthesizer AudioMotors, which is
originally designed to synthesize tire-rolling sound (section 2.3).

In this article, the main emphasis is laid on perceptual evalu-
ation of concatenative synthesis methods for sound textures. Per-

1https://sites.google.com/site/physisproject

ceptual audio evaluation is a well understood topic [1], but the
latest comprehensive survey of methods for sound textures [16]
found only some previous work involving evaluation by percep-
tual listening tests, e.g. [4, 6, 8]. Since then, listening tests have
been more systematically carried out in the literature for sound
textures [5, 7, 13, 18, 20] and general sound synthesis for vir-
tual reality and gaming [10–12]. The evaluated use-case in this
work is example-based sound textures extending an environmental
sound texture recording for an arbitrary amount of time, even from
varying (non-stable) recordings or periodic sounds, where looping
would be easily detectable.

The article is organized as follows. We briefly introduce and
compare the algorithms and discuss the respective advantages and
disadvantages in section 2. Then, we present the listening test
database and setup in section 3. The evaluation results are ana-
lyzed and discussed w.r.t. the quality and similarity compared to
the reference original sounds in section 3.3. Finally we draw con-
clusions and present perspectives in section 4. Since this article
focuses on the evaluation part, we will only describe the methods
in general; readers are invited to consult the implementation details
in the respective references.

2. METHODS

The principle of concatenative synthesis is to concatenate sound
units in a random or controlled order. The sound units can be de-
fined either by a fixed size (granular synthesis) or by more sophis-
ticated analysis methods. The concatenation between two selected
units is carried out by cross-fading using an analysis window such
as hanning. The cross-fade shall result in smooth transition pro-
vided that the selected units are of similar timbre characteristics at
the boundary. For sound texture synthesis, the underlying events
are usually evolving (energy, phase, modulation, etc.). Assuming
that the events can be identified as consecutive units, we propose
to study the identification and selection of sound units which help
to reconstruct sound textures that preserve the perceptual quality
of the original timbre and the underlying events.

2.1. Concatenative Synthesis with Descriptor Controls

The CSDC method [18] is based on randomized granular playback
with control of the similarity between grains using a timbral dis-
tance measure based on audio descriptors. In previous work [18],
this distance measure has been validated as generally superior to
an MFCC-based timbral distance and to uncontrolled purely ran-
domized playback. CSDC is based on corpus-based concatenative
synthesis (CBCS) [15], that can be seen as a content-based ex-
tension of granular synthesis, which allows unit (grain) selection
controlled by audio descriptors.
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In order to synthesize a varying texture without audible rep-
etitions nor artefacts such as abrupt timbral or loudness changes,
we use a timbral distance measure between the last played grain
and all other grains as candidates, and randomly select a successor
grain from the timbrally closest grains, thus generating a random
walk through the timbral space of the recording, that never takes
too far a step, but that potentially still traverses the whole space of
variety of the recording.

The timbre is determined by the audio descriptors suggested
by Schwarz and Caramiaux [17] with the addition of pitch. This
choice has been validated by Schwarz and O’Leary [18]. The 6 in-
stantaneous descriptors Loudness, FundamentalFrequency, Nois-
iness, SpectralCentroid, SpectralSpread, SpectralSlope are ex-
tracted with the IRCAMDESCRIPTOR library [14] and averaged
over all frames of size 23 ms. To avoid too regular triggering of
new grains, the duration and time of the played grains are ran-
domly drawn within a 600–1000 ms range, and a random start off-
set of +/- 200 ms is applied to each grain. Grains are overlapped
by 200 ms, and an equal-power sinusoidal cross-fade is applied
during the overlap.

2.2. Montage Synthesis

The MS algorithm [13] looks to exploit regions of similarity in
the original texture to inform the sequencing of sampled elements.
There are two levels to the synthesis model. Longer term sections,
called segments, are used to model the higher level structure of
textures. These segments are synthesized from the concatenation
of shorter sections, called atoms.

In the analysis phase, sub-band energy envelopes are extracted
based on perceptual criteria by using the ERB (Equivalent Rect-
angular Bandwidth) scale and loudness-scale approximation. A
time-frequency atom is defined by a duration of 100 ms such that
it is long enough to enable the comparison of envelopes and short
enough to allow variations in the synthesis phase. An envelope
difference measure is proposed to measure the similarity between
atoms (local texture structure) and to derive the segments (long
term evolution). Based on a statistical model, the sequences of
both the segments and atoms are automatically re-synthesized to
avoid repetition. A new overlap-add method is also proposed based
on frequency-dependent cross-fading length and position in the
spectral domain. In principle, the cross fade region is taken to
be 4 times the inverse of the bin center frequency, and the possibly
different cross-fade position for each bin minimize phase discon-
tinuities. This enables concatenation with short overlap without
introducing perceptible modulations.

2.3. AudioTexture

The goal of AudioTexture (AT) is to allow sound designers to
make use of any sound texture recordings available and re-create
the same sound textures (with semantic controls) synchronous to
video images for film/TV post-production and video games.

Principle: Similar to the concept of MS, we view sound tex-
tures as composed of two levels of events: micro events (atoms)
and macro events (segments). The assumption made here—that
a segment boundary represents a new macro event—is essential
to identify for good concatenation quality. The micro events are
more difficult to handle for complicated textures like crowd cheer-
ing/applauding, which will be addressed in future work. We as-
sume that macro events will result in dominant energy variation

and thus can be identified from the local maxima of the energy en-
velope. The boundary between two macro events (assumed to be
deterministic) is then defined by the corresponding local minima.
Since micro events may result in slight energy variation, the pro-
posed AT algorithm aims to identify prominent local extrema as
macro event units.

Method: Similar to several PSOLA (Pitch-Synchronous
Overlap–Add) marker analysis algorithms [3], the analysis stage
is based on detecting prominent local (energy) maxima as the po-
sitions of macro events (glottal pulses in the case of speech). The
density of local maxima can be understood as how often a macro
event occurs, which in fact is related to the physical behaviors of
sound textures. Since the event occurrence frequency varies for
different sounds, we simply define a user parameter, minimum
macro event duration, to avoid selecting spurious local extrema.
Once the macro event units are identified, the synthesis stage uses
the common cross-fade method with waveform similarity to refine
the cross-fade position [21].

Implementation: In practice, we have found that, by means of
low-pass filtering the signal using a biquad filter (gradual attenua-
tion after the cutoff frequency), it is sufficient to obtain a smooth
energy envelope of which the local maxima approximate the lo-
cations of macro event positions. According to our experimen-
tal tests, using a biquad filter of cutoff frequency at 20Hz and of
bandwidth 0.3 seems to generalize well over a variety of sound
textures. The other practical reason is that the components in the
low frequency tend to evolve slowly and are thus more often re-
lated in phase for a long-term evolution. The unit identification
based on low-frequency emphasized signal seems to produce less
perceptually-disturbing phase discontinuity (similar to the idea of
MS’s frequency-dependent overlap-add treatment). The search of
local maxima starts from the beginning of the processed signal.
For each local maximum detected, the algorithm selects the largest
local maxima within the intervals of minimum macro event dura-
tion. The minimum duration of 1 s seems to be sufficiently large to
generalize. This parameter should in future work be learned from
annotated databases. To concatenate two units during synthesis,
the cross-fade region is defined by a quarter of the unit size based
on the shape of hanning window.

To summarize, the algorithm (1) searches for local amplitude
maxima of the low-passed signal as the macro event positions (2)
marks the related local minima (one-to-one correspondence) in the
original signal as the macro event boundaries (3) concatenates by
cross-fading the macro event units in a random order (or selected
order). The algorithm is implemented in a commercial DAW (Dig-
ital Audio Workstation) plugin AudioMotors Pro2 for tire-rolling
mode synthesis. Although the product has been made available
since 2013, we found that this simple idea has also been suggested
in a recent granular synthesis algorithm [19]. AudioTexture is
scheduled to be released as a sound design product with preset
parameters adapted to different kinds of sound textures.

2.4. Baseline method

We have implemented a baseline method RND similar to Fröjd and
Horner’s approach [4], which randomly concatenates sound units
of sizes randomly drawn between 600 ms to 1 second with 200 ms
overlap and equal-power sinusoidal cross-fade. This method is

2http://lesound.io/product/audiomotors-pro, free trials are available
for download.
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Algorithm Units Analysis Synthesis
CSDC grains fixed size of 800ms without overlap descriptor similarity
MS atoms/segments sub-band energy envelope difference sequence model
AT segments energy evolution + minimum duration 1 s random order
RND grains random sizes between 600 ms to 1 s random order

Table 1: This table compares the analysis and synthesis phases of the proposed methods.

used to compare with the three proposed methods to evaluate the
effectiveness of sound unit identification and selection.

2.5. Algorithm comparison

An overview of the three sound texture synthesis methods is shown
in Table 1. The scale of the units are of the relation RND ≈ CSDC
< MS < AT. Here we consider the scale of MS defined by its enve-
lope because it imposes a constraint on the selection of the atoms.
Like the usual granular synthesis, CSDC uses grain units of a fixed
size that is sufficiently large to preserve the local structure gener-
ated by micro events. The principal functionality of CSDC is unit
selection based on descriptor similarity. RND randomizes both the
unit size (close to the grain size of CSDC) and the unit selection.
AT is using the largest unit scale (≥ 1 s) for macro events and
there is no control strategy applied during the synthesis phase. MS
models both micro events by atom units of a fixed size and macro
events by segments. A statistical model of atom/segment sequenc-
ing is further used at the synthesis stage. The order of complexity
of the presented algorithms is RND < AT < CSDC < MS.

3. EVALUATION

The evaluation is carried out by web-based listening tests (see Fig-
ure 1). In addition to the concatenative synthesis methods, we
have added a signal-model based method SDIS based on spectral
domain imposition of statistics [7]. This method is a more efficient
implementation of the state-of-art signal-model based method pro-
posed by McDermott and Simoncelli [8]. Since we assume that
concatenative synthesis methods generally have the advantage over
signal-model based methods in terms of quality, we have included
this method for evaluation to verify if all the proposed methods do
demonstrate their advantages.

3.1. Experiment setup

The algorithms presented above are evaluated in an ongoing lis-
tening test accessible online3. The test database contains 27 sound
texture examples with equal duration of 7 seconds:

• 14 sounds used by McDermott et. al. in their previous stud-
ies on sound texture perception [8]

• 13 sounds contributed by the PHYSIS project partner Game-
AudioFactory4

They are carefully selected to cover a wide range of sound tex-
tures generated by human, transportation, mechanical gears, ani-
mals and natural elements (air, water and fire). Some of the sounds
contain explicitly non-uniform environmental sound textures, i.e.
containing some variation in texture and timbre, but not clearly

3http://ismm.ircam.fr/sound-texture-synthesis-evaluation
4http://gameaudiofactory.com

perceived as outlier events. They are meant to test an algorithm’s
capability to re-synthesize slow evolution such as wind blowing.
There are also periodic sounds that serve to test the algorithms’
capability to preserve the periodic structure without introducing
jitter and phase discontinuities.

In the listening test, for each of the 27 sound examples in ran-
domized order, the original is presented to the subject, and then
6 stimuli in randomized order: the resyntheses generated by the
five algorithms (CSDC, MS, AT, RND and SDIS) and the original
(ORIG) as hidden anchor. Subjects are asked to use a numerical
slider between 0 and 100 to rate the stimuli according to the two
criteria:

Quality: Presence of artefacts, such as abrupt loudness or timbral
changes, cuts, repetitions, loops, distortions, etc. The scale is
further divided into 5 levels: bad, poor, fair, good and excel-
lent.

Similarity: Does the resynthsis sounds sufficiently credible like
the variation of the original sounds ? The scale is further
divided into 5 levels: very dissimilar, somewhat dissimilar,
somewhat similar, quite similar and very similar.

3.2. Results

At the time of writing, 17 responders took the test (with 2 only
providing partial data). All but 2 reported being familiar with per-
ceptive listening tests, none reported hearing impairment. Age and
gender information were not gathered. Figure 2 shows the ratings
of quality and similarity (without any scaling). For each algorithm,
the rating statistics are calculated over all responses and sounds.
We also analyze ratings with respect to different sound classes ac-
cording to local structure (stable, varying, periodic) in Figure 4
and sound content characteristics (noisy, pitched) in Figure 3:

stable: local structure does not vary along time such as heavy rain
sounds (13 sounds)

varying: local structure slightly varies along time such as wind
whistling sounds (11 sounds)

periodic: global structure is a repetition of local structure such as
helicopter sounds (3 sounds)

noisy: sound does not contain pitched or harmonic components
such as gas stove sounds (22 sounds)

pitched: sound contains pitched components such as crowd cheer-
ing sounds (5 sounds)

In general, ORIG ranks the best, which validates that the testers
are doing a proper job. All the three concatenative synthesis meth-
ods are rated in a close range around 80 (between quite similar to
very similar). Surprisingly, RND is rated quite well and appears
very competitive by the mean similarity measure. All concate-
native methods are rated much better than SDIS, which confirms
the expected advantages in sound texture synthesis. This seems to
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Figure 1: An example of listening test web interface.
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Figure 2: Box plots of the quality and similarity ratings per type of stimulus, showing the mean and standard deviation (blue circle and
error bar), median (middle line), quartile range (box), min/max (whiskers), and outliers (crosses).

align with the result obtained in [4] where a concatenative synthe-
sis method seems to be generally rated better than the signal-model
based method based on wavelet trees [2].

To test if the observed differences of ratings are significant or
simply due to chance, further statistical analysis has been carried
out. As Figure 5 shows, the ratings are not normally distributed,
so that the Kruskal-Wallis non-parametric method [9] has been ap-
plied instead of ANOVA (analysis of variance).5 Here the null

5However, McDonald [9] argues that one-way ANOVA is not very sen-
sitive to non-normal distributions, and indeed, ANOVA with Bonferroni
correction gives very similar results in terms of significance of differences
of pairs of means: The p-values are generally lower with ANOVA, but only
very few passed under the significance threshold of 5%. We report here the
more conservative Kruskal-Wallis results.

total ORIG CSDC MS AT RND SDIS
ORIG — **** **** **** **** ****
CSDC **** — ****
MS **** — ****
AT **** — ****
RND **** — ****
SDIS **** **** **** **** **** —

Table 2: Significance level for each pair of differences of means
on quality (upper triangle) and similarity (lower triangle) ratings
for total results.

hypothesis H0 is that the ratings come from the same distribution
(and differences in means are thus due to chance), and the alter-
native hypothesis HA is that the data comes from different distri-
butions. The significance levels of the p-values for each pair of
comparisons are given in Tables 2–7 for the quality and similarity
ratings. The significance level depending on the p-value is habitu-
ally represented by a number of stars as follows:

Level * ** *** ****

p ≤ 0.05 0.01 0.001 0.0001

stable ORIG CSDC MS AT RND SDIS
ORIG — * ****
CSDC — ****
MS — ****
AT ** — ****
RND — ****
SDIS **** **** **** **** **** —

Table 3: Significance level for each pair of differences of means
on quality (upper triangle) and similarity (lower triangle) ratings
for stable sounds.
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Figure 3: Box plots of the quality and similarity ratings for each sound character (noisy, pitched) per type of stimulus, showing the mean
and standard deviation (blue circle and error bar), median (middle line), quartile range (box), min/max (whiskers), and outliers (crosses).

3.3. Discussion

The global results given in Table 2 show that, in general, all resyn-
theses can be distinguished from the original. However, none of
the concatenative synthesis based algorithms can be distinguished
amongst each other (the null hypothesis that the differences in rat-
ings are due to randomness can not be rejected). Yet, all concate-
native synthesis algorithms can be reliably distinguished from the
SDIS algorithm with p < 0.0001. The two latter points hold for
all subsets of sounds in Tables 3–7.

varying ORIG CSDC MS AT RND SDIS
ORIG — * **** ** **** ****
CSDC ** — * ****
MS **** — ****
AT ** — ****
RND **** * * — ****
SDIS **** **** **** **** **** —

Table 4: Significance level for each pair of differences of means
on quality (upper triangle) and similarity (lower triangle) ratings
for varying sounds.

periodic ORIG CSDC MS AT RND SDIS
ORIG — ** ****
CSDC — ****
MS — ****
AT ** — ****
RND *** — ***
SDIS **** **** **** *** ** —

Table 5: Significance level for each pair of differences of means
on quality (upper triangle) and similarity (lower triangle) ratings
for periodic sounds.

For stable sounds (Table 3, Figure 4 top), the granular resyn-
theses (with the exception of AT but including RND) can not be
distinguished from the original. For varying sounds (Table 4, Fig-
ure 4 middle), CSDC is significantly better than RND, as well as
AT for the similarity rating. For periodic sounds (Table 5, Figure 4
bottom), only RND can be distinguished from the original, as well
as AT for the similarity rating. However, there are only 3 sounds
in this class, so the results should be taken with care.

Noisy sounds (Table 6, Figure 3 top) share the interpretation

noisy ORIG CSDC MS AT RND SDIS
ORIG — ** **** **** **** ****
CSDC ** — ****
MS **** — ****
AT **** — ****
RND **** — ****
SDIS **** **** **** **** **** —

Table 6: Significance level for each pair of differences of means
on quality (upper triangle) and similarity (lower triangle) ratings
for noisy sounds.

pitched ORIG CSDC MS AT RND SDIS
ORIG — ** *** ****
CSDC — ****
MS ** — ****
AT — ****
RND *** — ****
SDIS **** **** **** **** **** —

Table 7: Significance level for each pair of differences of means
on quality (upper triangle) and similarity (lower triangle) ratings
for pitched sounds.
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Figure 4: Box plots of the quality and similarity ratings for each sound class (stable, varying, periodic) per type of stimulus, showing
the mean and standard deviation (blue circle and error bar), median (middle line), quartile range (box), min/max (whiskers), and outliers
(crosses).

for global results: all resyntheses can be distinguished from the
original and from SDIS. For pitched sounds (Table 7, Figure 3
bottom), CSDC and AT can not be significantly distinguished from
the original.

In general, the proposed concatenative synthesis methods ob-
tain slightly better ratings than RND, although the differences are
not significant, except for the sound classes of varying sounds,
where CSDC and AT (for similarity only) have significantly (with
p < 0.05) better ratings. We may summarize the advantages of
the concatenative algorithms as follows:

CSDC: Unit selection based on descriptor similarity is very effec-
tive provided that the unit size is fixed. That is, the descriptors
characterize well the units such that the selected units follow
a credible sequence even for time-varying sound textures: it
shows its strength for stable, periodic, and pitched sounds,
where it can not be distinguised significantly from the origi-
nal, and for varying sounds, where the distinction is less sig-
nificant than for the other methods. For varying sounds, it is
significantly better than RND.

MS: The statistical sequence modeling is very effective for stable
and periodic (almost identical to ORIG) sounds with a fixed

atom size and varying segment length. However, it tends to
have less favorable rating for varying sounds. This could pos-
sibly be improved by parameter refinement to allow longer
evolution of macro events (segments).

AT: The unit analysis is quite promising provided its simplicity.
Since there is no treatment to handle unit selection, it may
result in less satisfying quality for varying sounds such as lap-
ping waves and crowd cheering sounds, and its statistically
significant difference to the original for stable sounds shows
that there is room for improvement.

4. CONCLUSION

We have evaluated the proposed concatenative methods for sound
texture synthesis, each of different degrees of complexity (RND:
simple random choice, AT: random choice with simple unit iden-
tification, CSDC: unit selection by sound descriptors, MS: unit
(segment) identification, sequence modeling and matching). Us-
ing a database of sound texture examples relevant to gaming and
multimedia applications, the evaluation results had little difference
in their mean ratings. The proposed three concatenative synthesis
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Figure 5: Histograms of ratings per bins of 10 rating points. Order of bars as in the previous figures: ORIG, CSDC, MS, AT, RND, SDIS.
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methods appear to be slightly advantageous to the baseline method
RND. A finer analysis of the results sound-by-sound is yet to be
carried out, which may reveal edge cases that lead to more in-
sights on what treatment is necessary for different types of sound
textures and eventually an improvement of the design of the eval-
uation database. Since the differences in quality/similarity among
proposed methods are generally not statistically significant, one
may need to design objective evaluation measures. For example,
a good concatenative synthesis should generate high quality sound
textures while shuffling a lot the units that do not follow their orig-
inal order. That is, the resynthesis shall have as many as possible
re-ordered grains compared to the original sounds.

The concatenative methods evaluated in this article do demon-
strate their advantages over the signal model based method SDIS.
Notice that we do not draw a conclusion here that the concatenative
synthesis methods are better than the signal model based methods
but we do confirm certain observations like the results obtained
in [4]. However, it is true that it is generally more difficult to de-
velop a signal-model based method that compete in quality with
the concatenative methods for sound texture synthesis.

To further improve the algorithms, the principal ideas of cer-
tain algorithms can benefit each other. However, the common chal-
lenge to sound texture algorithms are varying sounds as shown in
Figure 2. We believe that it is essential to model a long-term evo-
lution (one cycle of lapping waves) as well as physically coherent
behavior (cycles of lapping waves). Based on the same algorithm,
for instance, one may adapt the analysis, control and synthesis pa-
rameters to each kind of sound textures. The possible advantages
of parametric synthesis methods, such as based on a signal or phys-
ical model, or physically-informed [16], in terms of controllability
and adaptability to a given temporal evolution are beginning to be
attained by recent interactive concatenative methods, e.g. [17].
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ABSTRACT

When a monophonic source signal is projected from two or more
loudspeakers, listeners typically perceive a single, phantom source,
positioned according to the relative signal amplitudes and speaker
locations. While this property is the basis of modern panning algo-
rithms, it is often desirable to control the perceived spatial extent
of the phantom source, or to project multiple, separately perceived
copies of the signal. So that the human auditory system does not
process the loudspeaker outputs as a single coherent source, these
effects are commonly achieved by generating a set of mutually
decorrelated (e.g., statistically independent) versions of the source
signal, which are then panned to make an extended source or mul-
tiple, independent source copies.

In this paper, we introduce an approach to decorrelation us-
ing randomly generated allpass filters, and introduce numerical
methods for evaluating the perceptual effectiveness of decorrela-
tion algorithms. By using allpass filters, the signal magnitude is
preserved, and the decorrelated copies and original signal will be
perceptually very similar. By randomly selecting the magnitude
and frequency of the poles of each allpass biquad section in the
decorrelating filter, multiple decorrelating filters may be generated
that maintain a degree of statistical independence. We present re-
sults comparing our approach (including methods for choosing the
number of biquad sections and designing the statistics of the pole
locations) to several established decorrelation methods discussed
in the literature.

1. INTRODUCTION

Signal decorrelation is an important tool for audio upmixing, spa-
tialization, and auraliztion. In the simplest case, when two coher-
ent audio signals are played through loudspeakers, a listener will
perceive a single sound source located somewhere between the two
speakers, controlled by the relative amplitudes and time delay of
the signals. Although this is one of the principles on which stereo-
phonic panning algorithms rely, it is not without problems. For
example, when the signals are presented to the listener over head-
phones, the location of the source is often perceived to be within
the listener’s head. Additionally, the perceived source width is of-
ten reduced. These problems also exist in systems with more than
two loudspeakers.

Our goal in decorrelating signals is to reduce the phase coher-
ence of a given signal while maintaining perceptual transparency.
That is to say a monophonic file run though our decorrelation al-
gorithm presented on a single speaker should be indistinguishable
from the original file. When the same file is run through mul-
tiple independent decorrelation filters and presented on multiple
speakers, the signals should no longer sum perceptually to a sin-
gle point and the apparent source width should appear to be ex-
tended. See Fig. 1 for a graphical depiction of a phantom source

between two speakers and decorrelated phantom sources. In the
current work, we are concerned with applications for multichan-
nel and surround sound applications where one might want many
decorrelated copies of a signal panned in space.

In the following sections we will briefly review other common
decorrelation techniques followed by a description of the measures
we use to evaluate perceptual transparency and independence. We
will then introduce our approach to signal decorrelation through
perceptually-weighted random allpass filters before showing the
results of evaluating our approach in comparison to other popular
techniques. We will conclude with some recommendations for us-
ing decorrelation filters in real-time systems and the implications
of this work for further research.

(a) Phantom image (b) Widened ASW (c) Independent sources

Figure 1: Multiple speakers producing the same signal usually
produce a single phantom image (1a) while decorrelation can pro-
duce a phantom image with a wider apparent source width (1b) or
multiple, statistically independent sources (1c).

2. STANDARD DECORRELATION TECHNIQUES

Perhaps the simplest decorrelation algorithm is based on convolv-
ing the source signal with a short sequence of random samples,
scaled to have unit power. The longer we make this sequence the
more decorrelation we can achieve, but at the expense of smearing
the original signal out in time. For this reason, we typically con-
strain the length to be shorter than 30 ms so the decorrelation is
not perceived to add reverberation.

In a second approach Kendall proposes an “allpass filter” tech-
nique formed by taking the IDFT of a transform constrained to
have unit magnitude at the DFT bins with a random phase uni-
formly distributed on the interval (−π, π) [1, 2]. Even though this
processes creates a filter with unit magnitude on the DFT bins, it
does not guarantee a flat magnitude response. Additionally, be-
cause the DFT is a periodic transform, discontinuities at the start
and end of the signal can cause audible artifacts. It is possible to
refine this technique by limiting how quickly the phase can change
between consecutive samples, but this does not solve the issues re-
lated to the magnitude response being only flat on average. Due to
the random nature of these algorithms, both techniques work when
trying to decorrelate a signal into more than two channels.
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Another broad approach involves passing the signal through
a filterbank and applying delays to each band of frequencies [3–
5]. Researchers have experimented with the number of frequency
bands—ranging from as few as three to greater than 24—the spac-
ing of the bands of the filterbank, and the amount of delay in each
band. Depending on the complexity of the filterbank, this tech-
nique can suffer from frequency cancellation at the band edges
during reconstruction, and can be computationally expensive. Fur-
thermore, depending on the algorithm, some these techniques are
not necessarily effective for multichannel applications as they take
advantages of stereo, complementary processing.

Cabrera proposes a method of sinusoidal modeling with fre-
quency and amplitude modulation to decorrelate signals [6,7]. This
method introduces latency due to the signal analysis and can be
computationally expensive.1

At the additional cost of higher complexity, many of these
techniques can be further refined by separating the signal-to-be-
processed into steady state and transient components, so that the
decorrelation effects can be applied only to the steady state por-
tion. This is done to ensure that transients do not get smeared out
in time and become perceptual artifacts.

In addition to the aforementioned techniques, Gardner and
Schroeder suggested methods of expanding the spatial extent of
a signal using delays and comb filters, but these methods impart
strong coloration on the signal [8, 9].

The literature is diverse on decorrelation for upmixing and
resynthesizing ambiance with applications for perceptual audio
coders. Using a down-mixed, monophonic signal and side-chain
information (binaural cue coding), Faller and Baumgarte suggest a
perceptually-weighted frequency-domain modification using ran-
dom sequences for each channel to preserve time and level differ-
ences [10, 11]. The MPEG Surround standard includes specifica-
tion for an allpass filter approach [12, 13].

Valin proposes decorrelating frequencies above 2 kHz using
shaped comb-allpass filters and lower frequencies by injecting psy-
choacoustically masked noise [14]. Zotter et al. take an approach
using deterministic allpass filters [15].

Several mono-stereo upmixing techniques rely on leveraging
complementary filters or other intrinsic properties of decorrelating
only two channels [16–20]. While it is possible that these tech-
niques can be extended for multichannel systems by cascading the
algorithms with different parameters, this will not work for all sys-
tems (e.g., those require placing signals 90 degrees out of phase).

3. ALLPASS FILTERS FOR DECORRELATION

Allpass filters are useful for signal decorrelation because they main-
tain a flat frequency response while effecting the phrase and group
delay. Digital allpass filters contain poles inside the unit circle
matched with zeros at reciprocal magnitudes and at the same fre-
quencies as the pole. In other words, the position of the zeros are
reflected across the unit circle. The class of filters we consider are
biquad allpass filters that produce a real output signal and have the

1Currently this does not run in real-time, but rather performs the analy-
sis offline.

z transform

H(z) =
ρ+ z−1

1− ρz−1
· ρ+ z−1

1 + ρz−1
(1)

=
z−2 − 2<(ρ)z−1 + |ρ|2

1− 2<(ρ)z−1 + |ρ|2z−2
, (2)

where
ρ = αe2πωj , (3)

in which α controls the distance of the poles from the unit circle
and ω is the angle. This can also be written as the difference equa-
tion

y[k]− 2<(ρ)y[k − 1] + |ρ|2y[k − 2] (4)

= x[k − 2]− 2<(ρ)x[k − 1] + |ρ|2x[k] ,

where y[k] is the output and x[k] is the input at sample k. These
allpass filters exhibit conjugate symmetry, which causes their out-
put to be real. This is important for processing real signals as it
maintains the magnitude at all real frequencies. Here we propose
cascading multiple, randomly generated allpass sections to gen-
erate decorrelating filters. Because they are randomly generated,
we can create multiple, mutually decorrelated impulse responses
with different phase responses, and therefore multiple decorrelated
copies of signals.

In the following sections, we will explore the parameterization
of this filter structure.

3.1. Pole-Zero Angle

The angle of the pole position controls the frequency at which the
slope of the phase response changes fastest. When constructing
our cascade of filters, one easy technique for choosing the pole’s
angle would be to place them randomly. While this is a valid tech-
nique, we have chosen to warp the random pole angles by equiva-
lent rectangular bands (ERB) in order to maintain a relatively con-
stant pole density across the critical bands of human hearing. As it
turns out, decorrelation is difficult at low frequencies due to long
wavelengths. This closely resembles the difficulty humans have
localizing low frequency sound sources.

At high frequencies, the human auditory system primarily uses
level differences to localize sound sources and decorrelating sig-
nals with time delays is potentially wasted [21]. High frequency
signals have short wavelengths. Time delays could potentially
realign signals’ peaks and nulls offset by one or more periods.
By warping the random distribution by ERBs, the majority of the
poles will be placed in frequency ranges that will have the largest
perceptual effect for sound localization.

3.2. Pole-Zero Radii

While the pole angle controls the frequency at which the largest
phase change occurs, the pole’s radius—the distance between the
pole and the unit circle—controls the amount of the phase distor-
tion. Each pole added to the system adds a cumulative π amount
of phase to the system. As the pole’s radius approaches the cen-
ter of the unit circle, the phase across all frequencies approaches
a linear slope and the response is identical to the phase response
of a unit delay. As the pole radius approaches the unit circle, the
phase distortion becomes concentrated in a smaller frequency re-
gion. Additionally, as the pole approaches the unit circle, the group
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Figure 2: Five allpass cascade impulse responses (1024 biquad
sections), offset vertically.

delay also becomes larger at that frequency. The pole radius will
always be between 0 ≤ r < 1, and in the current approach, we
select radii randomly within the limits

0.5 ≤ r < β , (5)

where r is the radius and β is computed from

β =
τg
fs
, (6)

in which τg is the maximum allowable group delay and fs is the
sampling rate. We computed β to keep the group delay associ-
ated with any given pole below a perceptual threshold of 30 ms to
minimize audible artifacts.

3.3. Filter Delay

When cascading the allpass filters, we can replace the unit delay,
z−1, with a longer delay, z−n, in order to cause the phase to wrap
around the unit circle n times faster. We randomly choose one,
or small, prime or near prime delays so the cumulative effect of
multiple delays do not align precisely.

Fig. 2 shows two example impulse responses generated by the
above allpass filter cascade approach.

4. EVALUATION AND RESULTS

In order to evaluate the success of a decorrelation algorithm, we
must consider the degree to which it achieves decorrelation, the
amount it perceptually alters the original signal, and its computa-
tional efficiency. Correlation can be investigated mathematically
through various applications of the cross-correlation function and
by studying coherence. Perceptual similarity and the effects on lo-
calization are studied with empirical data from informal listening
tests.

4.1. Cross-Correlation Metrics

The primary metric for evaluating the correlation between two dis-
crete time signals is the cross-correlation function defined

Φxy[l] =

N−1∑
m=0

x[m]y[l +m] , (7)

where x and y have been zero padded to be the same length and
N is the number of samples in one of the signals. This function,
measures the similarity between two signals as they are slid by
each other at increasing time lags, l. When x = y, this function
is called the autocorrelation function and will exhibit a maximum
peak at lag zero (l = 0) with a height equivalent to the signal
power. In the cross-correlation case, the more similar signals x
and y are, the larger a peak will be seen in the cross-correlation.
Additionally, when signals are similar but offset in time from one
another, the maximum peak will shift away from lag zero by the
amount of delay between the signals. It is important to note that
correlation is only valid if the signals have similar features and are
worth comparing. Finding the correlation of two unrelated signals
will likely show that the signals are decorrelated but the result is
not meaningful.

When we apply our decorrelation kernels to a signal, we hope
to spread the energy of the signal out in time by different amounts
across frequencies. Since our decorrelation algorithm is a LTI sys-
tem, we can directly compare impulse responses generated by our
allpass filter cascade. Fig. 3 shows an example of the autocorrela-
tion and cross-correlation of two allpass decorrelation kernels. As
we would expect, the autocorrelation of both impulse responses
are highly correlated at lag zero and are not well correlated at any
other delay. The cross-correlation of the two impulse responses,
on the other hand, have no single point where they line up, and
have no large spikes in their correlation.

Because the decorrelation is frequency-dependent, and most
listeners have two spatially separated ears, it is imperative that we
consider correlations at lags other than zero. Moreover, as we slide
signals by each other in the computation of the cross-correlation,
it is only at lag zero where signals will overlap entirely and all
samples will be contributing to the cross-correlation function. To
address these issues, we propose a cross-correlogram, computed
by chunking the input signals into windows and performing 50%
overlap-add cross-correlations on the windowed signals. This met-
ric allows us to easily display cross and autocorrelations in a man-
ner similar to the interaural cross-correlation (IACC).

In order to compare auto and cross-correlations, we normalize
the range of the autocorrelation by the signal power and the cross-
correlation by

1

2

(
max(|Φxx|) + max |Φyy|)

)
. (8)

This effectively scales the autocorrelation for both signals and the
cross-correlation of the signals to each be within the range [−1 ≤
Φ ≤ 1] , where −1 is perfect negative correlation and 1 is perfect
correlation.

For visual clarity, let us consider a linear, sinusoidal chirp from
20 Hz–20 kHz, seen in Fig. 4. Due to the periodicity of the signal
increasing over time, there is a clear pattern imprinted in the auto-
correlogram. Fig. 6 shows the auto and cross-correlogram of the
present decorrelation technique as well as the noise and Kendall
approaches. The distortion of the correlation patterns from the
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Figure 3: Cross-correlation (black) and autocorrelation (blue) of
three pairs of allpass cascade impulse responses (each 1024 bi-
quads), offset vertically. Note the autocorrelation is a Dirac pulse.

auto-correlogram are clearly seen in the cross-correlogram plots.
It is important to note that the present technique preserves original
input signals better than the other techniques, and this can be seen
in the auto-correlogram by the fact that it is much more similar to
the unfiltered auto-correlogram seen in Fig. 5.

4.2. Coherence

Coherence is defined as the maximum value of the cross-correlation
function. Although coherence distills the correlation sequence to
a single number, it is not directly useful as it treats all frequencies
the same and does not take the human auditory system into con-
sideration. Instead, we present coherence values for octave bands,
computed using a 4th order zero-phase Butterworth filterbank. Ide-
ally, the average coherence values across frequencies would be
near zero. Fig. 7 shows coherence per octave band for the allpass
filter cascade approach as well as the noise and Kendall methods.
Because of the perceptually informed filter design, our technique
achieves low coherence above 60 Hz but does not perform well
near DC.

4.3. Efficiency

Allpass filters are inherently IIR filters because of the feedback
associated with having poles. The random allpass filter cascade is
precomputed and the filter is applied at runtime. While the class of
decorrelation filter described in this paper could simply be imple-
mented using their difference equations, we did most of our com-
putation by approximating the filter’s impulse response by thresh-
olding it once it dropped below −90dB. Below this threshold, we
assume the filter’s output would be below the noise floor and in-
distinguishable from roundoff error. We applied the filter impulse
response as a convolution kernel (implemented with multiplica-
tion in the frequency domain). These impulse responses are quite
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Figure 4: Spectrogram of 20 Hz–20 kHz linear sinusoidal chirp
depicting the unprocessed signal (a), allpass cascade (b), noise
sequence (c) and Kendall sequence (d).

short, having at most a few thousand taps and are suitable for real-
time applications. For most applications, the computational re-
quirements of this decorrelation algorithm will be negligibly small
compared to other necessary signal processing constraints.

4.4. Listening Results

We performed informal listening tests to compare the allpass cas-
cade decorrelation technique to the Kendall and noise approaches.2

The authors and several colleagues familiar with audio and with
normal hearing participated in a short listening test to evaluate
the amount of decorrelation and the perceptual transparency of the
decorrelation techniques. We presented critical listening material
including castanets, glockenspiel, and male German speech from
the EBU Sound Quality Assessment Material (SQAM) CD as well
as recordings of unprocessed electric guitar and vocals from Tom’s
Dinner [22]. Each recording was presented over headphones and
stereo studio monitors with listeners both in the sweet spot and
off axis in a quiet room. The various conditions for the test in-
cluded stereo presentations of the sound examples converted to
mono and processed with 250, 500, 1000, 2000, and 3000 allpass
biquad sections. As a control, we also processed the material using
the Kendall and noise techniques with 512, 1024, and 2048 length
sequences.

All three decorrelation algorithms achieved satisfactory decor-
relation of the test stimuli. The noise and Kendall approaches
decorrelated the signals slightly better than the allpass cascade, but
the apparent source width of the signals for all three was signifi-
cantly larger than the unprocessed “big” mono presentation. Like

2We intend to run formal listening tests in the future.
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Figure 5: Autocorrelelogram and cross-correlelogram for unprocessed 20 Hz–20 kHz linear sinusoidal chirp signal.

when multiple violins play the same part in an orchestra and the
similar sonic components fuse together to create the impression
of a source with a larger apparent source width, the decorrelation
algorithms broadened the spatial extent of the monophonic audio
examples.

While all three algorithms effectively decorrelated the test ma-
terial, the allpass cascade sounded much less colored than the other
approaches. This is primarily due to the fact that the allpass filter
maintain the desired flat frequency response while the Kendall and
noise approaches do not. Presented in mono, the allpass cascade
approach sounds much more similar to the original audio files and
is therefore significantly more perceptually transparent. Presented
in stereo, the Kendall and noise methods sound more similar to
playing an audio signal combined with an inverted phase version
of itself and the sonic coloration can be audible and unpleasant
compared to the allpass filter cascade.

The optimal number of biquad sections for the allpass filter
technique varies with the source material. In general, using more
biquad sections reduces the correlation between channels. How-
ever, strong transients such as the onsets of the castanets and glock-
enspiel can suffer from chirp-like artifacts. In our tests, we found
that the castanets were effected when more than 500 biquads were
used and the glockenspiel at 1000. All the other material suffi-
ciently masked the displeasing artifacts beyond 2000 biquad sec-
tions. Additionally, since the decorrelation filters are randomly
generated, their effectiveness varies based on the frequency con-
tent of the material and the specific decorrelation filters used.

5. CONCLUSIONS

In this paper, we have described an approach for signal decorre-
lation that uses cascades of allpass filter biquad sections. All-
pass filters are useful for decorrelation because they maintain a
flat magnitude frequency response while adding frequency specific
phase delays. We have introduced several methods for displaying
and evaluating decorrelation, mainly the cross-correlogram, octave
band coherence measure, and listening tests. While techniques like
Kendall’s “allpass filter” and convolution with noise can achieve a
higher amount statistical independence, the present algorithm in-

troduces less distortion to the original signal and sounds better.
This decorrelation method is well suited for real-time applications
for spatializtion, auralization, and upmixing.

In the current approach, the pole locations for the allpass filters
are chosen in a naïve way and nothing prevents multiple decorre-
lation filters from having poles placed in the same locations. In
the future, we would like to design the filters in a way that we can
achieve the same or greater amounts of decorrelation with a shorter
number of biquad sections by reducing the amount of competition
between independent decorrelation kernels. Furthermore, the high
transient content of sound files like the castanet recording expose
the necessity of transient detection in decorrelation algorithms.
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Figure 6: Auto-correlelograms (left) and cross-correlelograms (right) for 20 Hz–20 kHz linear sinusoidal chirp signal processed with
allpass filter cascades (6a), noise sequences (6b), and Kendall filters (6c).
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the means, dotted lines the standard deviation, and gray lines in-
dividual one-vs-one coherences (1000 pairs).
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ABSTRACT
Implementations of audio algorithms on embedded devices are re-
quired to consume minimal memory and processing power. Such
applications can usually tolerate numerical imprecisions (distor-
tion) as long as the resulting perceived quality is not degraded.
By taking advantage of this error-tolerant nature the algorithmic
complexity can be reduced greatly. In the context of real-time au-
dio coding, these algorithms can benefit from parametrization to
adapt rate-distortion-complexity (R-D-C) trade-offs. We propose
a modification to the rate-distortion loop in the quantization and
coding stage of a fixed-point implementation of the Advanced Au-
dio Coding (AAC) encoder to include complexity scaling. This
parametrization could allow the control of algorithmic complex-
ity through instantaneous workload measurements using the target
processor’s task scheduler to better assign processing resources.
Results show that this framework can be tuned to reduce a sig-
nificant amount of the additional workload caused by the rate-
distortion loop while remaining perceptually equivalent to the full-
complexity version. Additionally, the modification allows a grace-
ful degradation when transparency cannot be met due to limited
computational capabilities.

1. INTRODUCTION

Development of low-power, fast implementations of perceptual au-
dio codecs is always challenging due to the complex nature of
the signal processing involved. In addition, the necessity of oper-
ating these algorithms on computationally-restricted architectures
for mass production and low delay requirements present an addi-
tional constrain on workload. The goal in this case is to optimize
execution speed and power consumption while remaining percep-
tually indistinguishable from a possible reference implementation
on a more powerful platform. If this goal cannot be met for com-
plexity reasons, the degradation in quality should be gradual ac-
cording to perceptual rules.

In order to achieve this, a major task consists on porting a
floating-point code to a fixed-point version suited for low-power
platforms. It has been already shown that the same overall per-
ceived quality (according to listening tests and objective measure-
ments) of AAC and mp3 codecs can be preserved even with the
precision loss associated with porting code from floating-point arith-
metic to a 32-bit, fixed-point representation [1]. These results
were achieved by using proper scaling of audio signal energies and
masking thresholds at various points in the psychoacoustic model,
adapting a fractional arithmetic to pure integer processors and us-
ing a logarithmic representation of signals in order to transform
costly division operations to subtractions, and to attain a suitable
mapping of the dynamic range.

On a more general plane, there have been recent discussions
on the implementation of multimedia processing algorithms and
the role of fixed complexity boundaries on error-tolerant applica-
tions [2]. Due to limitations of silicon CMOS technology in pro-
viding further increase in speed at acceptable fault-rate and energy-
dissipation, current research suggests a closer look at multimedia
applications in terms of precision and resilience requirements [3].
Particularly, parametric adaptation of rate-distortion-complexity
curves [4] of audio coding algorithms at different stages can greatly
help in optimally exploiting the capabilities of each target plat-
form. Moreover, this parametrization also accelerates the process
of achieving optimal performance on new processors, indepen-
dently of hardware optimizations.

The MPEG 2/4 AAC codec is present among the most promi-
nent examples of perceptual audio coding (PAC) technologies. PAC
techniques usually convert the time domain input samples into
a frequency domain representation in order to remove redundan-
cies and irrelevancies of the signal for efficient transmission and/or
storage. In doing so, the coding noise power is adapted to a hearing
threshold provided by a human perceptual model [5] in a way that
the noise is as less disturbing as possible. Some latest examples
include the Unified Speech and Audio Coding (USAC) [6] and the
recent MPEG-H Audio [7] standards. Complexity and workload
are of particular importance for encoding and decoding audio in
real-time due to their application on low-power mobile devices.
Versions of the AAC codec specially fit for this task are AAC Low
Delay (AAC-LD) [8] and AAC Enhanced Low Delay (AAC-ELD)
and AAC-ELD version 2 (AAC-ELDv2) [9] and 3GPP Enhanced
Voice Service (EVS) [10]. These variations feature shorter trans-
form lengths in order to accommodate low delay requirements and
eliminate or greatly limit bit reservoir techniques for maintaining
a constant time delay ([11],[12]), the trade-off being loss of fre-
quency resolution and an increase in workload for a fixed sampling
rate.

The AAC encoder carries the most algorithmically complex
modules of the codec [1]. Particularly, the psychoacoustic model
block including the time-to-frequency transform and the quantiza-
tion and coding block are the most demanding in terms of compu-
tations [13]. Since, for MPEG codecs, only the AAC decoder is
standardized, modifications on the AAC encoder to achieve better
performance are possible as long as the produced encoded output
produces a valid bitstream. This work will focus on the quantiza-
tion block by studying a possible parametrization of the internal
algorithm to scale its complexity according to the available pro-
cessing power.
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Figure 1: Simplified block diagram of the AAC Encoder

1.1. Comparison to previous approaches

Although previous efforts were made in order to identify and op-
timize the most sensitive steps in terms complexity of the quan-
tization stage ([14], [15]), the proposed algorithms offer efficient
implementations with varying compromises in quality, but offer
no parametrization of complexity factors except for setting a max-
imum limit to the number of iterations for rate and distortion loops.

In [14] the authors propose a scheme based on an estimation
of the non-uniform quantization stage of the AAC encoder in order
to implement a loop-less bit-allocation. This approach results in a
significant reduction in complexity (reported 80% to 90%) to the
expense of a significant reduction in audio quality. Nevertheless, it
is not clear how this approach can benefit from parametrization in
cases where the same algorithm is implemented on more powerful
architectures and a better audio quality can be allowed.

In this regard, the authors of [15] also propose an hybrid ap-
proach where loop-less bit-allocation is used as a starting point
for a loop-based method. They claim at least a factor of 10 in
complexity reduction with respect to the standard approach to bit-
allocation in AAC by decoupling rate and distortion loops. Since
only AAC audio decoders -and not encoders- are standardized, the
proposed method in the AAC standard is only provided as a refer-
ence and is far from meeting the complexity requirements of a low-
power and/or real-time implementation. The encoding approach
can vary significantly as long as the produced bit-streams are valid.
Consequently, many of today’s available solutions -including the
implementation of AAC used for our work- also shows similar per-
formance with respect to this approach [12], [1].

To the best of our knowledge, the transition between a loop-
less approach and a higher quality loop-based bit-allocation is not
studied previous works. An equivalent method to that in [14] based
on estimation of the quantization noise is already present in our
implementation of the AAC encoder in addition to a loop-based
bit-allocation method for higher quality. Our work proposes a
closer look to the quality-complexity trade-off and a solution for a
smoother transition between the two modes of operation.

2. SYSTEM OVERVIEW

The quantization and coding stage of the AAC encoder quantizes
the spectral data provided by a Modified Discrete Cosine Trans-
form (MDCT) of a Pulse Code Modulated (PCM) audio signal, in
a way that the quantization noise satisfies the demands of the psy-
choacoustic model [5](Figure 1). On the other hand, the number
of bits needed to quantize the spectrum must be below a certain
limit, typically the average number of available bits for a block of
audio data. The way in which this trade-off is approached is the
core of the coding strategy. This strategy is usually carried out

in an Analysis-by-Synthesis manner, in which the resulting quan-
tized and coded spectral lines are evaluated and re-quantized until
an optimal solution within a range is reached.

The AAC quantization process involves the gain adjustment of
groups of spectral values (scale factor bands) which are then pro-
cessed by a power-law quantizer and a Huffman Coder. The scale
factor amplification is used to take advantage of the non-uniform
distribution of the coding noise provided by the power-law quan-
tizer to better accommodate perceptual requirements [16]. The
amplification factors (scale factors or scaling factors) applied to
the scale factor bands are differentially coded also using Huffman
Coding. The goal of the quantization stage is to determine the
set of scaling factors that better accommodate the psychoacoustic
model requirements and the bit availability at a certain rate.

The scale factor amplification and non-uniform quantization is
carried out according to

X̄(i) = sign(X(i)) · nint

((
|X(i)|

4√2qk

)0.75

− 0.0946

)
(1)

where X̄(i) is the value of the quantized i-th spectral line, X(i)
the i-th input MDCT spectral line and qk the scale factor (ampli-
fication factor) associated to the k-th scale factor band. The span
of i : 0 < i < Ik − 1 determines the amount of spectral lines
per scale factor band (bandwidth), where Ik ranges from 4 to 52
for each k-th scale factor band. Expressions sign() and nint()
represent the sign of the argument and the rounding operation to
the closest integer respectively [17]. The power, root and division
operations present in (1) conform one of the main bottlenecks on
the computational load for low power devices [1].

The Fraunhofer AAC Encoder [18] features two different qual-
ity modes for the quantization stage: Fast Quality, where an open-
loop solution is used to set each scale factor qk based on a pri-
ori estimations of the non-uniform quantizer noise and the hearing
thresholds provided by the psychoacoustic model, and High Qual-
ity, where the scale factors are set by refining the open loop estima-
tion by Analysis-by-Synthesis (AbS) using two stages of iterative
search. The AbS method can be seen as an AAC distortion-rate
loop [15] and is described below.

2.1. Scale factor band optimization

The optimization method is based on a simple iterative search in
the neighborhood of the initial scale factor value, in which a suit-
able scaling factor qk that minimizes the quantity

Dsfb(qk) =
∑
∀i∈sfb

|X(i)− X̃(i, qk)|2 (2)

in each scale factor band (sfb) is chosen. The values of X̃(i) repre-
sent the reconstructed spectral values after quantization using the
inverse of (1). The quantityDsfb given by equation (2) is defined as
the distortion (or noise power) of each scale factor band caused by
the quantization process and is used as a cost function for a series
of iterative searches. This minimization is nevertheless restricted
to keeping the noise-to-mask ratio (nmr) [19] just below a certain
limit, and not much lower. If the nmr is too low, bits would be
wasted in coding a band whose coding noise is already complying
with the psychoacoustic rules. The method also considers this case
when the starting distortion value is too low and tries to adapt it in
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order to save bits in coding. After a first calculation of distortion
for the first estimation of qk, the algorithm has two main branches:

First branch (adjust distortion): If the noise-to-mask ratio
determined from the distortion is more than 1.25 (estimated exper-
imentally), then try to improve it by searching for a qk that mini-
mizesDsfb within qk = [qk−νl, . . . , qk−1, qk, qk+1, . . . , qk+
νh], where νl, νh are the lower and higher limits of the search vec-
tor respectively.

Second Branch (adjust bitrate): The power-law quantizer of
equation (1) provides coarser quantization steps for greater scale
factors, coarser step sizes will need less bits to be coded. If the
calculated nmr is less or equal to 1.25, the scale factor used can
be increased in order to spare some bits and still comply with
quantization noise masking rules. The search vector becomes then
qk = [qk, qk + 1, . . . , φh], where φh is the higher limit and the
search stops when the resulting nmr is greater than 1.25.

Due to the fact that this iterative search requires the repeated
re-quantization of the spectral lines X(i) -via (1) and its inverse
quantization counterpart [20]- to get X̃(i) for each value of qk the
choice of νl, νh and φhsignificantly impacts on the computational
complexity.

2.2. Inter-band scale factor assimilation

Once the first set of scale factors has been determined, further iter-
ative searches try to decrease the range of scale factor values across
the scale factor bands in order to save bits on differential encoding.
Given a set of scale factor bands, their difference in value is re-
duced and also adjusted to produce the smaller value of (2). Then,
for further coding efficiency, additional smoothing along sets of
scale factor bands is applied among these previously selected scale
factors with the same criteria. In all cases, the same complexity
considerations apply and the number of re-quantization operations
grow further.

3. PARAMETRIZATION OF THE RATE-DISTORTION
LOOP

Prior AAC encoder profiling [18] with the AbS feature switched
on showed that the routines of distortion calculation, quantization
and inverse quantization were the most cycle-demanding because
of the many routine calls to (1) and (2). Distortion calculation and
inverse quantization are only performed when the AbS mode is
active. The most significant increase in cycle consumption takes
place with the switch from no AbS to active AbS at around 40-60%
extra cycles depending on the target platform.

3.1. Modification of the distortion calculation

As mentioned above, the evaluation of (2) has many calls through-
out the code. It is worth noting that the exact absolute value ofDsfb

is not important. A certain amount of error is permitted as long as
the search algorithm ends at the right value of qk (i.e. the scale fac-
tor that adjustsDsfb to the better trade-off ) within the search vector
remains guaranteed. Based on this remark, the conditions on the
calculation of (2) can be relaxed in favor of lesser computational
cost.

3.1.1. Adaptive Threshold

One approach for reducing the amount of re-quantization can be
calculating the distortion for a subset of lines on each scale fac-
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Figure 2: Extract of the absolute value of the MDCT spectrum of
a sample input signal. Lines of the spectrum that are considered
for Analysis-by-Synthesis recalculation according to equation (5)
(j ∈ Kτ ) and adaptive threshold τk (continuous line) for each sfb
(gh = 0.5) are coloured in dark red. Threshold based on classical
spectral flatness measure [19] for reference (diamond line).

tor band. The whole spectrum needs to be quantized at the end
with the right scaling factor qk, but for the purpose of the itera-
tive search, only a representative portion of the spectrum can be
used for estimating (2). This can greatly reduce the computational
burden.

Since the power-law quantizer aims to evenly distribute the
SNR across the dynamic range of the signal by applying a com-
panding function to the quantization steps [16], the spectral lines
with higher relative energy will contribute more to the round-off
error than the lines with lesser energy.

It is well known that tonal signals concentrate the majority
of their energy on narrow portions of their frequency spectrum.
The lines corresponding to tonal portions (higher relative energy)
will be the ones which contribute the most to the calculation of
(2) within a scale factor band. It is therefore advantageous to rely
on spectral flatness measures or tonality indices per band in order
to identify these sections. The commonly used spectral flatness
measure is the ratio of the geometric mean µg and the arithmetic
mean µa of the power spectral density of each scale factor band
k, SFMk = µg

µa
[19]. A value of the SFM close to 1 means a

flat "non-tonal" spectrum, whereas a value close to 0 means the
presence of strong harmonic components corresponding to a tonal
signal.

The selection of the subset of lines can be carried out with the
aid of an adaptive threshold. This threshold is a fraction of the
maximum value of X(i) for a specific spectral band and is based
on the estimated tonality for that particular region. The threshold
τk is defined as:

τk = gh ·max
i∈sfb

[X(i)] · (1− nlk
Ik

) (3)

where Ik is the scale factor band width in spectral lines and nlk is
the number of lines in each scale factor band that will effectively
be above some minimum quantization error value, marked as "rel-
evant lines":
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nlk =
∑Ik−1

i=0

√
|X(i)|

( ek
Ik

)0.25 (4)

where ek is the total energy of the spectral band k.
The encoder already calculates nlk for other purposes and its

re-utilization saves processor cycles. For the case of the power-
law quantizer of equation (1), an estimation of the quantization
error can be made that depends on the quantizer step size qk and a
form factor of the spectral band expressed by the ratio between the
geometric mean and the arithmetic mean [5] [14].

The spectral lines with amplitudes below the threshold τk will
not take part on the distortion calculation. The more tonal the scale
factor band, the higher the threshold (Figure 2). This means that
only lines corresponding to the strongest harmonics will be cal-
culated. From the figure it can also be seen that, -albeit with dif-
ferent scaling- both classical spectral flatness measures SFMk and
τk given by equation (3) are equivalent for this purpose. The pro-
posed tonality measure is used instead of classical approaches be-
cause most of the elements of equation (3) are already calculated
for other purposes within the encoder. As a consequence some
processing power is saved by not estimating tonality again in a
different way.

The parameter gh is an ad-hoc correction gain factor, hand-
tuned in a way that the resulted calculated lines after the algorithm
approaches the amount predicted by the number of relevant lines
nlk, restricted to the condition that gh · (1 − nlk

Ik
) < 1 so that

at least one spectral line is calculated per sfb . It must be noted
that other measurements of tonality can be used according to en-
coder implementation and the available data, and the tuning of the
threshold gain gh can accordingly vary.

3.1.2. Reformulation

The computational cost of calculating (2) for all the spectral lines
in narrow bands (few frequency bins) becomes comparable to the
one derived from using the threshold implementation. It was de-
termined experimentally that the threshold implementation is more
suitable if only used for spectral bands that have more than Ik =
12 lines because there is also a cost to implementing the thresh-
old decision within the loop that scans every spectral line. Be-
sides, skipping the calculation of some spectral bands for an al-
ready small set can lead to significant errors in (2) that will affect
the convergence. Equation (2) then is reformulated as:

Dsfb(qk) =
{ ∑

∀j∈Kτ
|X(j)− X̃(j, qk)|2 if Ik ≥ 12∑

∀isfb |X(i)− X̃(i, qk)|2 if Ik < 12
(5)

where Kτ ∈ sfb is the subset of spectral lines for which
X(i) > τk.

3.2. Taking advantage of signal stationarity

Another approach for avoiding the excessive re-quantization can
be taking advantage of the relative stationarity of audio signals
[19]. Once a given set of optimal scaling factors has been deter-
mined for an audio time frame, it is possible that the same set of
optimal scale factors is already close to optimal for the next frame,
given that the signal does not change significantly in that frequency
region (Figure 3). Furthermore, this same principle can be applied
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Figure 3: Sets of scaling factors for coding the spectrum of a tun-
ing pipe recording. Two consecutive audio frames are superim-
posed. The difference between frames greatly diminishes around
the scale factor 28 and up (around 5 kHz and up at a frame size of
1024 and sampling rate of 48 kHz).

to stereo signals that do not feature a significant inter-channel dif-
ference [21]. For two consecutive audio time or channel frames f
and f + 1, a preset threshold τs can be set to the condition:

|q(f+1)
k − q(f)

k | < τs (6)

for qk factors of the same scale factor band k (frequency region).
Only when the scale factor difference between two frames is big-
ger than the threshold will the AbS procedure described in sec-
tion 2 take place. Otherwise, the scaling factor is considered close
enough to optimal and the already quantized spectrum can be used.
This method can be further refined to implement higher order tem-
poral smoothing techniques, to the expense of additional memory
usage: increasing the order F of the smoothing filter requires stor-
ing the complete set of scaling factors for each of the F previous
frames.

4. RESULTS

This section encompasses results regarding trade-offs of the pa-
rameter tuning, complexity measurements and quality measure-
ments.

4.1. Parameter Tuning

The parameters gh and τs introduced in Sections 3.1 and 3.2 have
limiting values. On one hand, the values can be set very low, so
they do not have any influence on the re-quantization simplifica-
tion and the complexity remains the same. In fact, these param-
eters can be set to generate a bit-exact stream with the reference
version if set to gh = 0, all the lines will then take part in the re-
quantization of equation (5). By setting τs = 0, the AbS routine
takes place even if the scale factors remain the same within two
consecutive frames.

On the other hand, if these parameters are set too high, the sim-
plifications on the distortion calculation account for a coarse -and
not so frequent- approximation of (2). This can result in audible
artefacts with respect to the full AbS version, where all spectral
lines are re-quantized in every audio frame. Figure 4 shows the
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Figure 4: Spectrogram of a coded tuning pipe mono audio sig-
nal at 48 kHz and 48 kbps with AAC-ELD. Above: Unmodified
Analysis-by-Synthesis scale factor estimation. Middle: Scale fac-
tor smoothing in time (section 3.2) with τs = 3. Below: Scale
factor smoothing in time with τs = 1.

case where the time smoothing of section 3.2 is implemented with
a value of τs that is too high (middle spectrogram). In comparison
with the full AbS reference (upper spectrogram), more discontinu-
ities can be seen in the spectral line of 5 kHz, which account for
audible artefacts. This shows that the stationarity assumption can
be overdone and inhibiting the AbS procedure can affect how the
encoder works in small details. The lower spectrogram shows an
optimal value of τs = 1, where a lower complexity is still reached
without affecting the sound quality.

Similar assumptions and procedures can be made with the
threshold implementation of equation (5), where the optimal value
was deemed to be around gh = 0.7

4.2. Complexity

Table 1 shows two representative cases of complexity measure-
ments for the different proposed modifications of section 3. The
platforms tested are based on an ARM Cortex-A57 64-bit core and
a Texas Instruments C6424 32-bit processor. All MHz values in-
clude all memory wait state and cache miss cycles and have been
obtained with activated data and program cache. The different en-
coders do not contain any particular optimization that favors one
particular version over the other. The selected encoding variant
was AAC-ELD due to the shorter audio processing block length
and therefore with tighter complexity requirements [9], [12]. A
stereo file at 48 kHz sampling rate was encoded with a frame size
(block length) of 512 samples. Encoder tools not relevant to the
measurement were turned off in order to minimize the influence of
other modules on the measurements. As a reference for a lower

bound, workload was also measured for the encoder when no re-
quantization routine is used (Condition 5). The frame smoothing
procedure of equation (6) was used with a parameter of τs = 1
and gh = 0.7 for the adaptive threshold method.

Texas Instruments figures were obtained on a TMS320C6424
EVM evaluation board at a clock speed of 600 MHz.

ARM Cortex-A57 figures were obtained by running the soft-
ware on a NVIDIA Jetson TX1 module running Linux Ubuntu
(GNU/Linux 3.10.67 Kernel aarch64). We considered as the true
reproducible value the minimum workload number for processing
an audio frame during 10 consecutive encoder executions in order
to filter out any influence of the operating system layer. Only one
core was active and all power scaling functions were deactivated.
The processor core at full performance was running at a CPU fre-
quency of 1.91 GHz.

Indeed, Table 1 shows a general workload reduction for both
architectures using one of the two methods, or a combination of
both. Relative improvements might change in the presence of
architecture-specific optimizations. For example, the significant
jump in complexity between condition 5 and the other four condi-
tions for the TI board is due to the poor handling the loops present
on the AbS algorithm when no pragma directives are available
[22]. As it will be shown in the next section, further reduction in
workload can be achieved for mono files, where the encoder does
not make use of joint stereo coding techniques [17] that might mit-
igate the workload reduction impact.

4.2.1. Complexity Scaling
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Figure 5: Parametric workload curves for Cortex-A57 showing the
influence of parameter gh on encoding complexity. Two mono files
(lrefpip: tuning pipe, mixed: castanets and guitars) at 48 kHz en-
coded with a block length of 512 samples. Terms q0 and q1 used
to denote workload figures for no re-quantization at all and full
unmodified re-quantization respectively.

To further illustrate the influence of the proposed modifica-
tions on complexity, figure 5 shows parametric workload measure-
ments performed on two different mono signals encoded with the
same configurations as before. In contrast to the previous mea-
surements, some compiler optimizations were active (-o3 switch
on aarch64-linux-gnu-gcc 4.8.3) in order to provide insight on a
real usage case scenario. The signal marked as lrefpip corresponds
to the recording of a tuning pipe with a predominantly tonal struc-
ture, whereas the signal marked as mixed contains the recording of
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Table 1: Encoder Workload Measurements (Unoptimized).

Condition Encoder variant Workload (MHz.) Workload (MHz.)
ARM Cortex-A57 TI C6424

1 Unmodified Re-quantization 41 74
2 Frame Smoothing 36 67
3 Adaptive Threshold 33 64
4 Fr. Smooth. and Adapt. Thr. 32 62
5 No Re-quantization 30 45

guitars and castanets, showing in this case an hybrid transient-like
and tonal structure.

For gh = 0 it can be seen that the workload corresponds to
the full re-quantization case where all the lines are calculated. Al-
ready the full re-quantization shows varying complexity according
to the signal (q1 lines). In the case of the hybrid signal, the con-
tent allows some relaxation on the iterative search for finding the
minimum distortion, given that part of the coding noise will be
masked by the loud transients. Conversely, the tonal structure of
lrefpip and its relative quietness imposes a stricter requirement for
reaching the minimal distortion on each scale factor band, there-
fore taking more time per frame and increasing workload. There
is a small overhead for gh = 0 with respect to the workload of the
unmodified encoder on full re-quantization due to the calculation
of τk.

As gh increases, the number of spectral lines calculated for
each iteration of the AbS algorithm diminishes according to (5).
The signal characteristics also influence the way the total com-
plexity is reduced: the encoding of the tonal signal shows a steeper
reduction in workload when gh is increased. This is because the
modified re-quantization algorithm presented in section 3.1 only
calculates the significant harmonics in each scale factor band. Such
harmonics account for a few spectral lines per band that contain
the most energy, and therefore convergence to the fitting scaling
factor is guaranteed within a few calculations. On the contrary,
the selectivity of the algorithm decreases for signals with a greater
number of non tonal spectral bands, as is the case of the mixed sig-
nal. Most of the lines need to be calculated for non-tonal regions
of the spectrum, a smaller workload reduction is achieved when
increasing gh.

The workload reduction reaches a limit for higher values of
gh. According to (5), only scale factor bands that have less than
12 spectral lines will be calculated in its entirety, and the rest of
the bands will only be re-quantized with only one line per band in
each iteration of the AbS search. Accordingly, this accounts for
an offset with respect to the state where no re-quantization at all
-at any of the bands- takes place (marked as q0 lines). In addition,
even if the AbS iterative search is carried out re-quantizing as few
lines as possible in each scale factor band, the whole spectrum
needs to be re-quantized with the best suitable scale factors in the
end. This final re-quantization of each band with its best scaling
factor also contributes to the difference in workload with respect
to the q0 operating points of the encoder for each signal.

4.3. Objective and Subjective Quality Grading

In order to evaluate the audio quality of the proposed parametriza-
tion, a Perceptual Evaluation of Audio Quality (PEAQ) [23] test

automatically rated audio items from a database of 278 entries -
music and speech recordings- coded with the different proposed
encoder variants (τs = 1 and two extreme values for gh) and en-
coding at various bit rates and decoded using the same reference
decoder.

Table 2: Total average PEAQ degradation.

Bitrate Variant
/chan FS AT (gh = 0.2) AT (gh = 1.9) NR (q0)
24000 0.032 0.007 0.014 0.108
32000 0.017 0.026 0.031 0.118
48000 0.180 0.010 0.098 0.344
96000 0.031 0.020 0.050 0.146

Table 3: Tonal signals average PEAQ degradation.

Bitrate Variant
/chan FS AT (gh = 0.2) AT (gh = 1.9) NR (q0)
24000 0.067 0.035 0.032 0.177
32000 0.027 0.031 0.093 0.332
48000 0.523 0.038 0.208 0.602
96000 0.092 0.027 0.108 0.291

Table 4: Audio MUSHRA test items.

Item Description
35_short xylophone
Hanco jazz music
lrefhrp harpsichord
lrefpip tuning pipe
Mahle orchestra recording
si02 castanets

Tables 2 and 3 show the average differential Objective Dif-
ference Grade (ODG) points with respect to the normal unmodi-
fied re-quantization operation, corresponding to the q1 operating
point described in section 4.2. The encoder versions are, as before
with frame smoothing (FS), adaptive threshold (AT) and no re-
quantization at all (NR) as a lower quality bound, corresponding
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Figure 6: Listening Test results for the different encoder modifications. Ten test subjects, seven expert listeners. Stereo files encoded with
AAC-ELD, 96kbps (48 kbps per channel) at a sampling rate of 48 kHz.

to the q0 operating point. When comparing Table 2 and 3 it can be
seen that ODG differences are greater when only tonal-like signals
are considered. The differential ODG values are transcribed with-
out sign for the sake of clarity, but in all cases show a degradation
in PEAQ scores with respect to the q1 operating point.

The items which presented the most degradation from the en-
coder reference were selected for taking part of a MUltiple Stim-
uli with Hidden Reference and Anchor (MUSHRA) listening test
[24]. A short description of the audio items can be found in Table
4. The stereo files were encoded at a bitrate of 48 kbps per channel
(96 kbps stereo) again using the AAC-ELD codec.

Figure 6 shows the results of the MUSHRA test for the dif-
ferent encoder variants with re-quantization active. An anchor
item that corresponds to a low-pass filtered version of the orig-
inal reference at 3.5 kHz is marked as "lp35". Condition 5 -no
re-quantization- was not included in the listening test since it is
considered to operate at a lower quality range, and not meant to
be perceptually equivalent to the other versions. There were 10
test subjects, 7 of which are expert listeners. For reproducing the
sound, Stax electrostatic headphones and amplifier were used in
an acoustically controlled environment. As it can be seen from
the test data, from particular items and total, there is no significant
perceptual difference between encoder versions.

5. CONCLUSIONS

The error-resilient nature of audio coding algorithms permits a
greater headroom for complexity reduction than other signal pro-
cessing algorithms that do not make use of perceptual rules. In this
case, we have shown that the perceived quality of the AbS algo-
rithm in the quantization stage of our AAC-Encoder version [18]
does not significantly change, even when the algorithm complex-
ity is notably reduced (up to 20% of the total complexity or 80%
of added complexity by AbS on a stereo file, without any hard-
ware optimization). As already discussed in [1] and confirmed

here, bit-exactness of the encoder output between versions is not
the best figure of merit for conditioning the optimization work.
Objective and subjective perceptual evaluation should also be per-
formed in workload reduction strategies aimed to low power im-
plementations. This "perceptually aware" optimization possibility
is usually not recognized in later stages of implementation, where
all reference algorithms are considered to be optimally tuned, even
when computational requirements have not yet been thoroughly
assessed.

The implementation stage of algorithms that make use of hu-
man perceptual models must be thoroughly evaluated, even during
the final stages where usually only architectural optimizations take
place. This approach can make a considerable difference when
all architecture specific improvements are not enough in order to
reach strict workload requirements.

On the case of mono files where joint stereo coding methods
are not present, the relative workload reduction is around 30%
for the AbS algorithm within perceptual equivalence to the un-
modified version. Nevertheless, parametrizing algorithms under
complexity-distortion trade-offs can be considered as extra flexi-
bility on top of the work done already if perceptual equivalence
does not need to be met. Future work includes trying to design a
self-scaling algorithm that implements automated control on these
parameters based on instantaneous workload measurements, given
experimentally determined limits in section 4.1 and further inves-
tigation on parametrizing other modules of the encoder.
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ABSTRACT

Physical models of electric guitars are still not very widespread
in the scientific literature. Especially, the description of the non
linear behavior of pickups still requires some refinements. This
paper deals with the identification of pickup non linearities based
on a Hammerstein representation, by means of a specific experi-
mental set-up to drive the pickup in a controlled way. A compar-
ison with experimental results shows that the model succeeds in
describing the pickup when used in realistic conditions.

1. INTRODUCTION

An electric guitar pickup is a sensor that captures the string vi-
brations and translates them into an electric signal. It is basically
composed of a set of permanent magnets surrounded by an electric
coil. A ferromagnetic string vibrating in the vicinity of the pickup
results in a variation of the magnetic flux through the coil. Ac-
cording to the Faraday’s law, an electrical voltage is then induced
across the coil.

A few models of pickup are available in the literature. Some
of them are based on integral equations leading to the variation of
magnetic flux at the coil location [1]. These models principally
show, first, that vertical oscillations of the guitar strings produce
a stronger effect than horizontal ones and, second, that there is a
noticeable distortion of the electric signal generated by both oscil-
lations. An overview of the modeling issues related to magnetic
pickups is available in [2]. It concerns effects of both pickup posi-
tion and pickup width on the pickup timbre, as well as the effect of
the pickup internal impedance. In [2], the magneto-electric con-
version done by the pickup is modeled using static non-linearity
followed by a simple derivative (Fig. 1). The static non-linearity
represents the non-linear relation between the string displacement
and the magnetic flux which can be evaluated using computer sim-
ulations and implemented as an exponential or N-th order polyno-
mial [3].

On the other hand, studies on non-linear modeling have led to
many nonparametric non-linear models. Among these non-linear
models, the Volterra series representation is usually considered as
an effective one. Nevertheless, it lays down the calculation of mul-
tidimensional kernels and in practice, most applications are lim-
ited to the second or the third order. Simplified Volterra-based
models, namely Hammerstein model (static nonlinear function fol-
lowed by a linear filter) or Wiener model (linear filter followed
by a static nonlinear function) [4], are then often preferred in the
case of open-loop systems because of their simpler structure and
lower computational cost. Furthermore, for a better accuracy of
the estimation, these simple models can be extended to so-called
generalized models, such as the generalized Hammerstein model,
as shown in Fig. 2. This generalized Hammerstein model is made

up of N parallel branches, with each branch consisting of a lin-
ear filter Gn(f) preceded by an N-th order power static non-linear
function, for n = 1, N , and has been successfully tested in [5, 6].

The goal of this paper is to proceed with the identification of
pickup linearities based on a generalized Hammerstein representa-
tion of the pickup. For this purpose, a specific experimental set-up
is used to drive the pickup in a controlled way, and a technique is
carried out to get rid of non-linearities due to the driver. One of
the aims of this study is to find out if it is meaningful, or not, to
use a simple Hammerstein structure given in Fig. 1, as it usually
done in modeling the pick-up nonlinearities [1, 2, 3], or if more
complex model such as the Generalized Hammerstein one is nec-
essary. The answer is given through the measurement provided in
sections 2 and 3 and a comparison between theoretical and exper-
imental results in the case of a realistic use of the pickup is given
in section 4.

d
dt

static NL
x(t) u(t)

Figure 1: Non-linear system usually used to model non-linearities
of a guitar pickup [2].

2. MEASUREMENT OF THE PICK-UP
NON-LINEARITIES

The first goal of this paper is to identify the pickup in terms of
Generalized Hammerstein model (Fig. 2). The output of such a
model is governed by the following equation

u(t) =

N∑
n=1

x(t)n ∗ gn(t), (1)

where gn(t) is the inverse Fourier transform of Gn(f) and where
∗ stands for convolution.

Since the pickup is an electromagnetic transducer that converts
string vibration into an electrical output signal, its experimental
characterization is not straightforward. Usually, when measuring
a linear or a non-linear device, excitation signal is a controlled one
(impulses, swept-sine, pseudo-random sequences) so that output
signal can be used to identify the system in terms of a frequency
response function (FRF) for a linear system, or in terms of a set of
describing functions when dealing with a non-linear system. For
a pickup, the excitation signal is the displacement of a plucked
string exhibiting a multi-modal and non stationary behavior. Such
an excitation is useful for a study in real conditions [7] but can
hardly be used to get a FRF or to identify non linearities.
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(·)3
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(·)N

+
x(t)

x(t)

x2(t)

x3(t)

xN (t)

u(t)

Figure 2: Generalized Hammerstein model for identifying the non-
linearities of the pickup; x(t) and u(t) represent the displacement
of the guitar string and the output voltage of the pickup, respec-
tively.

a piece of guitar string
attached to the shaker

pick-up attached to a fixed support

Figure 3: Measurement device used to characterize the non-
linearities of the pickup. The string portion is attached to a shaker;
the pickup is attached on a fixed support.

To control the string displacement, we use the system shown in
Fig. 3. A piece of steel string (diameter 1.42 mm) is fixed on a non-
magnetic support, itself fixed to a shaker which imposes a string
displacement perpendicular to the pickup [8]. The pickup under
test is set on a precision movement device which allows adjusting
the distance at rest d0 between the string and the magnet. For this
experiment, d0 is set to d0 = 5 mm corresponding approximately
to the distance set on a real guitar.

The shaker is driven by a Synchronized Swept Sine signal [9]
so that the non-linearities of the whole system, that is the shaker
and the pickup in series, can be easily identified using a General-
ized Hammerstein model [5].

The synchronized swept-sine is generated using [9]

x(t) = sin

[
2πf1L exp

(
t

L

)]
. (2)

where

L =
T

ln
(

f2
f1

) , (3)

and where f1 and f2 are initial and final frequency respectively
and T is duration of the swept-sine. Note that the definition of
the exponential swept-sine (Eq. (2)) does not contain the "-1" term
contrary to the usual definition [10]. For more details about why
the term "-1" should not appear in the exponential swept-sine def-
inition please refer to [9].

To protect the shaker from a possible destruction due to exces-
sive displacement or current, the frequency range is furthermore
limited to the span 15 Hz - 500 Hz. The excitation signal is pre-
filtered using a linear filter so as to obtain a displacement whose
amplitude is almost constant over the frequency span. The peak
amplitude is set here to 1 mm. The displacement of the string por-
tion (that is the displacement of the shaker) is measured by means
of a vibrometer pointing at the string. The electrical output of the
pickup is then connected to an acquisition card which exhibits a
high input impedance (470 kΩ). Consequently, the measured out-
put voltage corresponds to the open-circuit voltage which does not
take into account the effect of pickup output impedance.

The Higher Harmonic Frequency Responses (HHFRs) of both
the string displacement and the pickup output voltage calculated
using the Synchronized Swept Sine method [9] are given in Fig. 4.
The method consists in de-convolving the measured signals with a
so-called inverse filter as

h(t) = F−1
[
F [y(t)]X̃(f)]

]
, (4)

where y(t) is the acquired response of the nonlinear system (dis-
placement or voltage signal) to the synchronized swept-sine, and
where the Fourier transform of inverse filter X̃(f) is given analyt-
ically as

X̃(f) = 2

√
f

L
exp

{
−j2πfL

[
1− ln

(
f

f1

)]
+ j

π

4

}
. (5)

The impulse response h(t) then consists of time-delayed higher
harmonic impulse responses, separated by time delays

∆tn = L ln(n), (6)

that can be windowed and represented in the frequency domain as
The Higher Harmonic Frequency Responses (HHFRs). For more
details see [9].

The fundamental harmonic of the string displacement (Fig. 4a)
is not flat despite the pre-filtering and the second harmonic reaches
−40 dB relative to fundamental harmonic. It is thus rather diffi-
cult, or almost impossible, to estimate which part of the HHFRs of
the pickup output voltage (Fig. 4b) is due to the pickup behavior
and which part is due to the shaker behavior.

To overcome this problem, we use a technique detailed in [11]
in which a non-linear system can be identified even if it is pre-
ceded by another unknown non-linear system. According to this
technique, the non-linear system under test is then described by an
N-th order Generalized Hammerstein model, as shown in Fig. 2.
For the pickup under test, the magnitude values of the estimated
linear filter Gn(f) of the Generalized Hammerstein model are de-
picted in Fig. 5.
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Figure 4: Higher Harmonic Frequency Responses (HHFRs) of (a)
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Figure 5: Magnitude values of the estimated filters Gn(f) of the
Generalized Hammerstein model (Fig. 2) of the pickup.
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Figure 6: Modulus (a) and phase (b) of the first filter G1(f) of
the identified Generalized Hammerstein model of the pickup under
test and its parametric fit.
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Figure 7: Modulus (a) and phase (b) of the second filter G2(f) of
the identified Generalized Hammerstein model of the pickup under
test and its parametric fit.
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Table 1: Coefficients αn of the estimated parametric Hammerstein
model.

α1 7.50e−02
α2 6.75e−03
α3 2.11e−03
α4 4.75e−04
α5 8.31e−04

3. NON-LINEAR PARAMETRIC MODEL OF THE
PICKUP

Observing the estimated filters of the Generalized Hammerstein
model depicted in Fig. 5, one can note that the dependence on fre-
quency for all filters is approximately 6 dB/oct. Such a slope cor-
responds to j2πf in the frequency domain or to a simple derivative
d/dt in the time domain.

It is thus tempting to fit all the filter responses Gn(f) with
a function αnj2πf in order to replace each branch of the Gen-
eralized Hammerstein model by a multiplicative coefficient αn in
series with a derivative function d/dt. A fit of the first two filters
G1(f) andG2(f) (magnitude and phase) is depicted in Figs. 6 and
7. It is interesting to note that the estimated phases of both filters
are very close to π/2 within the whole frequency range.

The estimated Generalized Hammerstein model can thus be
parametrized and simplified to the following relation

u(t) =

N∑
n=1

αn
d x(t)n

dt
=

d

dt

(
N∑

n=1

αnx(t)n
)
. (7)

This relation being a time derivative of a Taylor series, we can
simplify the Generalized Hammerstein model to a Hammerstein
model consisting of a static non-linearity followed by a linear fil-
ter (Fig. 1). In this particular case, the static non-linearity is repre-
sented by a simple Taylor series with coefficients αn and the linear
filter is represented by a time domain derivative, as shown in Fig. 1.
This result tends to confirm the model previously proposed by [2].
The fitted coefficients αn for the pickup under test are given in Ta-
ble 1 and the corresponding input-output characteristic is depicted
in Fig. 8.
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Figure 8: Input-output graph of the static nonlinerity based calcu-
lated as a power series developpement with coefficinets αn given
in Table 1.

Figure 9: Picture of the second experiment in which the pickup is
placed under a vibrating string.

4. MODEL VS. REAL GUITAR-STRING SIGNAL

To test the validity of the identified Hammerstein model, we set
up a different experiment corresponding to a realistic use of the
pickup. For that purpose, we use a lab guitar prototype [8]. A gui-
tar string is fixed on an wooden beam. The string is tuned as open
low E (f0 = 82 Hz). The pickup under test is set on a mechanical
arm on which some precision movement pieces are fixed. Thanks
to this system, the pickup position under the string can be adjusted
along the 3 axes. For this experiment, the pickup is set at 1/4 of
the total length of the string corresponding approximately to the
neck position on a real guitar and the distance at rest between the
string and the pickup is set at 5 mm. A detail of the experiment
is shown in Fig. 9. The string is struck using an impact hammer.
A vibrometer pointing at the string at the pickup location allows
the measurement of the string displacement in the vertical plane.
Temporal evolution of both string displacement and pickup output
voltage are recorded simultaneously and depicted in Figs. 10 and
11. A zoom on a few periods of both experimental signals is given
for three different time lags along the time-varying response. As
expected, the string displacement is distorted just after the excita-
tion. It becomes less and less distorted as the harmonics of higher
orders fade with time. The output signal of the pickup exhibits the
same kind of behavior with time. One can notice that the output
voltage is more distorted due to pickup non-linearities.

The displacement signal measured with the vibrometer is then
used as the input of estimated parametric Hammerstein model of
the pickup and the both measured and synthesized pickup outputs
are compared on the same graph (Fig. 11). The difference between
estimated and experimental signals is plotted on Fig. 11, showing
that the model succeeds in describing the non linear behavior of
the pickup when used in realistic conditions.

5. DISCUSSION

The results presented in this paper shows that a simple Hammer-
stein model seems to be sufficient for the pick-up modeling and
that using a Generalized Hammerstein model is not necessary. How-
ever, several hypotheses have been put forward simplifying the
problem that might be at the origin of small differences between
the measured and modeled pick-up outputs compared in Figs. 10
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Figure 10: Recorded signals of the vibrating string.
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Figure 11: Recorded and synthesized signals of the voltage from the pickup.
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and 11.
First, the frequency range of the excitation signal is bellow

500 Hz due to the capacities of the shaker. Using larger frequency
range might have been beneficial. The nonlinearities of the pick-up
may differ at higher frequencies, and thus, in such a case, a com-
plete Hammerstein Generalized model might be useful. A supple-
mentary study would be necessary to draw a meaningful conclu-
sion.

Next, the movement of the rigid string attached to the shaker
exhibits only z-axis polarization, whereas it is known that the string
being played by a guitar player exhibits rather an ellipsoid type
motion in both y and z directions [12, 13]. A hammer-like impact
has been used to excite the string in order to approach the z-axis
motion of the string in the comparative measurements whose re-
sults are provided in Figs. 10 and 11. However, the real-word pick-
up behavior might be influenced by 2D movement of the string,
even though it is known that the y-axis contribution is rather neg-
ligible [14, 8]. Moreover, the piece of the rigid string attached to
the shaker is of finite length and does not exhibit any deformation
compared to a string attached on guitar.

Even though these phenomena have been neglected, the results
presented in this paper show a very good agreement between the
output predicted by the model and the output obtained from the
experimental measurement.

6. CONCLUSIONS

This paper presents a parametric model of guitar pickup whose
parameters are directly estimated experimentally. The validity of
this model has been verified for a pickup operating in a realistic
way. In future work, this model can be used to synthesize different
kinds of existing pickups (single coil pickups, humbuckers). It
can also be extended to the synthesis of augmented pickups by
artificially modifying the parameters of the model.
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ABSTRACT
This paper describes a new efficient and sample based monophonic
pitch tracking approach using multiple phase locked loops (PLLs).
Hereby, distinct subband signals traverse pairs of individually pa-
rameterized PLLs. Based on the relation of the instantaneous pitch
sample of respective PLLs to one another, relevant features per
pitch candidate are derived. These features are combined into
pitch candidate scores. Pitch candidates which exhibit the max-
imum score per sampling instance and exceed a voicing threshold,
contribute to the overall pitch track. Evaluations with up to date
datasets show that the tracking performance, compared to imple-
mentations which use only one PLL has significantly improved
and nearly approaches the scores of a state of the art monophonic
pitch tracker.

1. INTRODUCTION

Pitch is a perceptual feature which is still subject to discussion
and lacks an explicit mathematical definition. In the presented ap-
proach pitch is therefore considered to be the momentarily present
fundamental frequency. In 3.2 the definition of pitch is discussed
further with regard to the comparison with an alternative pitch
tracking technique. If pitch information is extracted from an audio
signal, it can be used to control further audio signal processing in
many possible ways. Until today various monophonic pitch track-
ing techniques have been developed. Some of these approaches
deliver robust and satisfying results. However, most of these sys-
tems employ block-based analysis and their implementation can be
computational expensive. A block-based approach, named PYIN,
applying the difference function paired with probabilistic evalua-
tion and post-processing [1] yields the best results to date. This pa-
per introduces a new sample-based approach for monophonic pitch
extraction using multiple PLLs which is computationally efficient
and suitable for implementations on low-power processors with
limited resources. PLLs have been used for music information
retrieval purposes as beat tracking [2] and monophonic pitch de-
tection before. A pitch tracker combining numerous phase locked
loops, involving a lot of redundancy leading to high computational
cost, is presented in [3]. In another approach a single, modified
PLL is used for pitch extraction [4]. This leads to satisfying results
for input signals where the respective overtone energy is lower
than the energy of the fundamental frequency. Otherwise octave
errors might occur and the single PLL locks to overtone frequen-
cies. From here on this algorithm is referenced throughout this
paper as Single PLL while the algorithm which is presented in the
following text will be referred to as Multi PLL. If instead of a sin-
gle PLL multiple PLLs with equal parametrization are applied in
differing, slightly overlapping subbands, one can observe merging

pitch tracks of neighboring PLLs [5]. This observation leads to the
idea to combine distinct subbands and variably configured PLLs
in a new way in order to exploit the occurring concurrence of pitch
tracks on periodic monophonic audio input. The following paper
is structured as follows. Section 2 gives a system overview by pre-
senting how multiple bandpass filters and phase locked loops are
configured and combined. It shows how particular PLL pitch sam-
ples are interpreted in order to extract significant features regarding
the instantaneous fundamental frequency of the monophonic audio
signal. Based on these features the derivation of PLL-dependent
pitch candidate scores and the successive selection of a candidate
is described. Section 3 compares the pitch tracking performance
of the approach presented in this paper with the original Single
PLL pitch detector and the PYIN algorithm by means of a guitar-
based dataset. Section 4 summarizes the findings of this study and
discusses possible future enhancements.

2. SYSTEM OVERVIEW
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Figure 1: Block diagram of the Multi PLL algorithm

First, the input audio signal is filtered using a decimation filter
in order to conduct a successive downsampling to a sample fre-
quency of 11 kHz. A filter bank then divides the input audio signal
into 4 octave bands. For each subband signal an envelope is cal-
culated in order to generate a constant envelope signal of unity
amplitude (AGC block in Fig. 1). This dynamic pre-processing al-
lows the PLLs to achieve an optimal tracking performance. After
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the subband signals have passed the gain control stage they are
fed to the respective PLL pairs. Output samples of all 8 PLLs
are interpreted in order to extract 5 features per PLL. Each feature
is based on a different relation as pitch pair deviation, the num-
ber of pitch candidates assigned to relative subtones/overtones,
number of close pitch candidates and pitch slope. A pitch can-
didate score for each PLL output sample is derived by combining
these features. The pitch candidate scores reflect signal proper-
ties as periodicity, harmonicity and pitch slope. Hereby the PLL
itself covers the feature extraction which is related to periodicity,
while the combination of particular pitch tracks into features pur-
sues amongst others the quantification of harmonicity. The pitch
candidate with the highest score is selected and contributes to the
overall pitch track F0, provided that a certain voicing threshold is
exceeded.

2.1. Filterbank
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Figure 2: Absolute frequency responses of utilized 8th order ellip-
tic filters

The filter bank is composed of I = 4 bandpass filters as de-
picted in Fig. 2. Each sub band channel i ∈ [0, . . . , I − 1] spans
over a region of one octave. 8th order elliptic bandpass filters with
a stop band attenuation of 80 dB and a passband ripple of 1 dB are
used to facilitate a sufficient edge steepness. This parametrization
results in a 63 dB/Octave roll-off, which supports the isolation of
fundamentals as illustrated in Fig. 4. The subbands are enclosed
by the ripple frequencies

fr
i,j = 80.06 Hz · 2i+j , (1)

where j = 0 denotes the lower ripple frequency and j = 1
denotes the upper ripple frequency. The magnitude frequency re-
sponses |Hi(e

jω)| of the filters are shown in Fig. 2. By filtering
the input signal in both the forward and the reverse direction, a
phase distortion of the output signal can be prohibited.

The approach described in this study mainly aims at providing
the best possible tracking performance of the overall system under
ideal performance of the subsystems. Ideal performance with re-
gard to the filterbank subsystem means, the attainment of a certain
edge steepness of respective subband filters without the emergence
of phase distortions. This ensures the isolation of the fundamental
frequency without the presence of the first overtone in the target
octave band. At the same time a frequency dependent delay of
pitch tracks is prohibited. The above mentioned characteristics can
be achieved in the simplest way if the processing of the filterbank
is conducted offline. The implementation of the filterbank is the

only reason why the overall system is bound to offline processing.
All succeeding modules can be adapted for real-time processing
without much effort and worth mentioning side effects. In order
to implement the whole system in a real-time-capable fashion an
alternative design for the filterbank has to be considered.

Within each channel a temporal envelope ei(n) is generated
whose inverse value is used to generate the constant envelope sig-
nal

x̄i(n) =
xi(n)

ei(n) + emin
. (2)

ei(n) is computed using the smoothed decoupled peak detection
algorithm [6] with attack τa = 50 ms and release τr = 100 ms. In
the denominator emin is added as a constant offset in order to pre-
vent divisions by zero. The chosen parametrization depicts a trade
off between minimum-time envelope tracking and the containment
of arising nonlinearities within the subband. The further usage of
ei(n) for feature extraction is described in 2.3.

2.2. Phase locked loop

LF

X
Kd

xd(n)
LPF

X
α

+

X
1-α

OSC
yosc(n)

F0(n)

LF     
LPF 
OSC

Loop Filter     
 2nd order Lowpass     
Oscillator 

+

+
X

fosc(n) xlf(n)

fpll

xin(n)

Figure 3: Block diagram of the modified PLL

In order to track partials which are present in a respective sub-
band, two third order PLLs operating in a nonlinear mode are in-
stalled. The phase detector is implemented as a simple multiplier
which uses the constant envelope signal x̄in(n) and the oscillator
output yosc(n) as input signals (Fig. 3). The resulting signal con-
tains the difference-frequency and the sum-frequency of the real
valued input signals. This signal is in succession amplified by the
constant gain factor Kd which controls the frequency range of de-
tection and the sensitivity of the PLL towards changes of the phase
difference between the two signals. xd(n) then traverses a 2nd or-
der lowpass filter (LPF in Fig. 3) with a cutoff frequency of 23 Hz,
which is also part of the loop filter, in order to eliminate the sum
frequency component of the multiplier output. The forward path
is continued by adding the constant PLL specific center frequency
fpll to the lowpass filter output. The resulting output signal de-
notes the F0 track of the PLL. This F0 track is then filtered ir-
respective of the loop filter in the forward and reverse direction
using a first order recursive moving average filter with non recur-
sive coefficient 0.05 and recursive coefficients [1, -0.95] in order
to further attenuate undesired high frequency oscillations.

In known implementations the lowpass filter (LPF in Fig. 3)
alone represents the loop filter in the feedback path. Because
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this implementation requires an immediate tracking of varying fre-
quencies over a big range without the presence of a constant carrier
frequency [7], modifications to the loop filter have to be applied
in order to obtain satisfying tracking results. This modification
is realized using a low frequency shelving filter in the feedback
path formed by the weighted sum of xd(n) and the lowpass-filtered
phase detector output [4]. For α a value of 0.35 is chosen. In the
feedback path

fosc(n) = fpll + xlf (n) (3)

controls the instantaneous frequency of the oscillator according
to which the phase is incremented. The oscillator emits the real-
valued signal

yosc(n) = cos
(
φ(n)

)
(4)

with the wrapped phase

φ(n) =

(
φ(n− 1) + 2π

fosc
fs

)
mod 2π. (5)

By feeding yosc(n) and xin(n) to the multiplier, the loop is closed.
The basic concept behind the pairwise positioning of the PLLs is
the idea that a fundamental frequency within one subband must
be tracked by both, the upper and the lower PLL as illustrated in
Fig. 4. The parametrization of the 8 PLLs differs in the used values
for the gain of the phase detector output Kd, and the PLL center
frequency fpll. The gain of the phase detector

Kd
i = 600 · (i+ 1) (6)

is adapted per band in a linear fashion and has been determined
experimentally. Each subband i is enclosed by a respective PLL
pair with lower

fpll
i,l = 80.06 Hz · 2i− 1

12 (7)

and upper

fpll
i,u = 80.06 Hz · 2i+ 13

12 (8)

center frequency. For the following steps the octave indexes

i→ p = 2i+ j (9)

are mapped to PLL indexes p where j = 0 refers to the lower and
j = 1 to the upper PLL.

PLL pairs assigned to subbands that contain merely overtone
energy tend to track distinct overtones, while PLL pairs that track
the fundamental coincide. If there is no sufficient periodic signal
portion apparent in the respective octave band, the F0 track falls
back to the PLLs center frequency. This behavior, which supports
the differentiation between the fundamental and higher order par-
tials, is shown in Fig. 5. The same principle applied to a guitar lick
recording is depicted in Fig. 6. The spectrogram is overlayed with
candidate pitch tracks.

2.3. Feature Extraction

For every sampling instance a single pitch sample for each of the
8 individually parameterized PLLs (F0p(n)) is emitted. Based
on these samples, the following 5 features are extracted and de-
scribed in detail. Each feature is determined by the mapping of a
calculated difference ∆ or a count of pitch candidatesN that fulfill
certain constraints.
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Figure 4: The PLL pair that corresponds to the channel in which
the fundamental is contained concurs (dashed lines). The continu-
ous lines depict the ripple frequencies of the elliptic bandpass filter
and the grey line represents the ground truth.
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Figure 5: Optimal tracking of the fundamental and corresponding
overtones. Only the PLL pair that tracks the fundamental coin-
cides (red), while all other PLLs remain on their center frequency
(black) or track distinct overtones (blue, yellow). The grey lines
denote the partial frequencies.

2.3.1. Pitch pair deviation

We assume that PLL pairs which process the same subband sig-
nal coincide if the fundamental is contained within this channel
(Fig. 4). In this context

∆fp(n) =

∣∣∣∣∣∣1200 · log2

(
F0b p

2
c·2(n)

F0b p
2
c·2+1(n)

)∣∣∣∣∣∣ (10)

quantifies the distance between F0b p
2
c·2(n) and F0b p

2
c·2+1(n),

the particular pitch pair residing in subband i = b p
2
c, on a loga-

rithmic scale. This leads to the feature

F∆f
p (n) =

100−∆fp(n)

100
(11)

with −∞ < F∆f
p (n) ≤ 1. The negative range of F∆f

p (n) ex-
presses the importance of coinciding pitch pairs when seeking the
fundamental frequency.
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2.3.2. Pitch candidates assigned to relative subtones

For a PLL pitch sample F0p(n) which is assigned to a funda-
mental, no other pitch candidate F0q(n) may refer to a relative
subtone. There are two criteria a potential subtone F0q(n) of
F0p(n) has to fulfill in order to be classified accordingly. The ab-
solute difference in Cent between F0p(n) and an integer multiple
of F0q(n) must fall below ∆C, and the relative subband energy

Ei(n) =
ei(n)2∑3
j=0 ej(n)2

, (12)

must exceed 3%. ∆C is set to 40 Cent in order to consider inher-
ent oscillations of the F0 tracks as well as inaccuracies and incon-
sistencies of the particular F0 tracks which can occur during the
attack of a tone. The subband energy is considered before the sig-
nal passes the automatic gain control stage (AGC block in Fig. 1)
in order to prohibit false subtone detections caused by the amplifi-
cation of noise components. A false subtone detection would lead
to an incorrect exclusion of pitch candidate F0p(n) in the follow-
ing scoring. The number of PLL pitch samples F0q(n) that refer
to a relative subtone of a particular PLL pitch sample F0p(n) is
defined as

Nst
p (n) =

p−1∑
q=0

8∑
o=21

∣∣∣∣1200 · log2

(
F0p(n)

F0q(n)·o

)∣∣∣∣ < ∆C ∧ Eb q
2
c(n) > 3%

0 else.

(13)

Nst
p (n) is mapped to the mandatory feature

F st
p (n) =

{
1 Nst

p (n) = 0

0 else.
(14)

If a relative subtone of a pitch candidate F0p(n) has been identi-
fied, its overall score is set to zero as noted in Eq. (21).

2.3.3. Pitch candidates assigned to relative overtones

Pitch candidates F0q(n) which reside near integer multiples of
the currently examined PLLs pitch sample F0p(n) reinforce the
assumption that F0p(n) is a fundamental frequency. The number
of pitch candidates F0q(n) which are classified as overtones of
F0p(n) is defined as

Not
p (n) =

7∑
q=p+1

8∑
o=2

1

∣∣∣∣1200 · log2

(
F0p(n)·o
F0q(n)

)∣∣∣∣ < ∆C

0 else,
(15)

from which the feature

F ot
p (n) =

Not
p (n)

7
(16)

is derived. This feature favors PLLs with lower-order indexes in
order to prevent overtone errors.

2.3.4. Close pitch candidates

A high number of PLL pitch samples F0q(n) that reside near pitch
sample F0p(n)

Ncp
p (n) = −1 +

7∑
q=0

1

∣∣∣∣1200 · log2

(
F0p(n)

F0q(n)

)∣∣∣∣ < ∆C

0 else
(17)

exhibits that F0p(n) comparatively carries a lot of energy. This is
represented by the feature

F cp
p (n) =

Ncp
p (n)

Ncp
max

, (18)

with Ncp
max = 4 based on analyzed Ncp

p (n) outputs.

2.3.5. Pitch slope

After the attack phase of a tone has passed, its pitch is assumed to
be stable with little variation in time. Therefore, a low order

∆tp(n) =

∣∣∣∣∣1200 · log2

(
F0p(n)

F0(n− 1)

)∣∣∣∣∣ , (19)

denoting a flat pitch slope, increases the feature

F∆t
p (n) =

{
3−∆tp(n)

3
F0(n− 1) 6= 0 ∧ 3−∆tp(n)

3
> 0

0 else.
(20)

2.4. Pitch candidate selection

The extracted features are combined into a final pitch candidate
score

Sp(n) =
F∆f
p (n) + F ot

p (n) + F cp
p (n) + F∆t

p (n)

4
· F st

p (n).

(21)
It is assumed that the correct instantaneous fundamental frequency
equals at least one of the PLL output samples, provided that the
signal carries enough periodic and harmonic portions. Hence, the
output sample with the highest pitch candidate score is determined

k = arg max
p∈[0,...,7]

Sp(n) (22)

and added to the overall pitch track F0 if the score exceeds a certain
voicing threshold

F0(n) =

F0k(n) Sk(n) > T v
b k
2
c

0 else.
(23)

If none of the pitch samples exceeds the threshold, the audio signal
is assumed to be unvoiced. In this case a zero is appended to the
overall pitch track. Outliers caused by overtones, which appear
when overtone energy is present before the energy of the funda-
mental, are smoothed using a nonlinear median filter of order 200.
A F0 track, extracted by the Multi PLL, is depicted by the blue line
in Fig. 7.

In future implementations the median filter could be replaced
by a statistical model for post-processing purposes like a hidden
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Figure 6: Spectrogram overlayed with PLL candidate pitch tracks. Pitch tracks with identical color originate from a PLL pair and depend
on the same subband signal.
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Figure 7: Plot of the the annotated ground truth (grey), Multi PLL pitch track (blue), Single PLL pitch track (dotted red) and PYIN pitch
track (dotted black).

markov model. The first 4 extracted features could therefore be
used to derive observation probabilities, while the pitch slope could
be considered by given transition probabilities. In addition to that
the algorithm could be optimized by an explicit weighting of the
extracted features.

3. EVALUATION

The presented pitch tracker, its predecessor [4] and the PYIN [1]
algorithm (with Beta distribution mean of 0.15) are evaluated us-
ing the IDMT-SMT-GUITAR dataset 1. All monophonic guitar
lick recordings (one channel RIFF WAVE format, at 44.1 kHz, 24
Bit) and corresponding annotations of dataset 2, which are tagged
with playing style fingered, picked and muted as well as expression
style normal, are used for the comparison. The annotations deliver

1 http://www.idmt.fraunhofer.de/en/business_
units/smt/guitar.html

pitch information wrapped in the form of note events. A note event
contains data such as pitch quantized to midi notes, note onset and
note offset times. According to this data, a reference pitch track
(ground truth) is generated by

fm = 2
(m−69)

12 · 440 Hz, (24)

in order to convert midi notes to frequency values. The tracks of all
pitch detectors and the annotation are downsampled to a sampling
frequency of 100 Hz. In Fig. 7 pitch tracks of the annotation and
the 3 estimators are overlayed. The PYIN pitch tracker shows the
fastest reaction to onset events and is capable of determining the
fundamental frequency even during the attack phase of a tone. The
Multi PLL algorithm avoids the overtone errors of its predecessor
but exhibits delayed onset detections compared to the PYIN.
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3.1. Detection rates

Measures of binary classification as Precision and Recall cannot
be applied offhand in this case. Therefore they have to be de-
fined appropriately. In dependence on [1] we define Recall as the
proportion of actually voiced samples (according to ground truth),
which the extractor recognizes as voiced and tracks with a maxi-
mum deviation of±50 Cent. Precision is defined as the proportion
of pitch samples marked by the extractor as voiced which have a
maximum deviation of±50 Cent from reference pitch. F-Measure
can be derived as the geometrical mean of Precision and Recall.

Table 1: Detection scores for the examined pitch trackers based on
the IDMT-SMT-GUITAR dataset.

Pitch tracker F-Measure Precision Recall

Multi PLL 82.63% 92.24% 75.87%

Single PLL 56.37% 55.83% 57.22%

PYIN 88.23% 90.36% 86.41%

Table 1 shows that the F-Measure of the Multi PLL has in-
creased by approximately 26% compared to its predecessor. Espe-
cially Precision has risen by 36.41% due to less octave errors and
increased pitch stability. Recall has improved by 18.65% . How-
ever, the Multi PLL algorithm misses the F-Measure of the PYIN
by 5.60%. This is mainly due to a Recall which lies 10.54% below
the PYINs counterpart. Solely the Precision score of the PYIN has
been exceeded by 1.88%. Overall, the detection rates of the Multi
PLL show that most of the errors are missing detections which are
reflected in the low Recall score. These errors are mainly caused
by delayed onset recognitions and undetected tones of muted licks.

The PYINs F-Measure of 88.23% for the IDMT-SMT-GUITAR
dataset is lower than expected compared to other findings [1]. Re-
call mainly suffers from unvoiced detections for note on/off stages
and muted tones. Precision is decreased by false voiced detections.
Nevertheless, the PYIN algorithm depicts the best pitch tracker to
date and persuades with good detection rates and exactness which
is the reason why it is used as a comparative basis in the following
subsection.

3.2. Exactness of pitch estimates

The examined pitch trackers should not only be able to quantize
pitch to a semitone grid. If a pitch tracker is applied to audio sig-
nals emitted by vocal chords or instruments that enable intonation
in between the semitone grid (e.g. fretted and fret less stringed
instruments, winds etc.), it can be necessary to estimate the funda-
mental frequency as precise as possible. The annotations provided
by the database don’t qualify for the evaluation of exactness of
pitch estimates due to its coarse frequency quantization. Because
of this and the fact that the PYIN algorithm has already been ap-
plied to define the pitch ground truth for the Medley DB [8], its
pitch track is in the following regarded as comparative basis.

In order to determine the exactness of the PLL-based pitch
trackers, solely pitch samples which have been tagged as voiced
and correct (in ±50 Cent range) for all three pitch trackers are
used. For each of the pitch samples of the Single PLL and the
Multi PLL, the deviation in Cent to the corresponding samples of
the PYIN pitch tracks is determined. Based on these deviations,

the mean, the standard deviation (STD) and the median are cal-
culated and a histogram is generated which is depicted in Fig. 8.

Table 2: Statistical measures concerning the deviation between the
PLL-based pitch trackers and PYIN.

Pitch tracker Mean (Cent) STD (Cent) Median (Cent)

Multi PLL −2.57 7.21 −1.75

Single PLL −2.02 16.44 −1.31
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Figure 8: Histogram of the pitch deviations in the range of
±50 Cent between PYIN and Single PLL (top) as well as PYIN
and Multi PLL (bottom). The dotted lines depict mean (black),
median (red) and standard deviation (yellow).

Table 2 reveals that the mean of the pitch deviation vector is
negatively biased for both pitch trackers, which indicates a ten-
dency towards understated pitch estimates. This tendency is more
pronounced in the pitch estimates of the Multi PLL algorithm,
which is also supported by the median. The standard deviation
of the Single PLL is more than twice as high as the standard devi-
ation of the Multi PLL which indicates a considerably pronounced
spread around the mean value. The difference concerning the spread
is clearly visible in the histograms. The slope of the Multi PLL his-
togram is much steeper to both sides than the slope of the Single
PLL histogram. This deviating characteristic is caused by heavier
oscillations of the Single PLLs pitch track which are related to the
bigger frequency shift accounted for by the larger Kd value. Con-
sequently phase errors are amplified which lead to a more sensitive
and unstable tracking.

Further the histogram indicates that 77.84 % of Multi PLL
pitch samples lie below the reference pitch track. It is assumed
that the reason for this is a combination of the pitch trackers work-
ings and the inharmonic nature of the instrument whose emitted
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audio signal is analyzed. If an instrument has inharmonic proper-
ties, its overtones are non integer multiples of the fundamental fre-
quency. This is particularly recognizable for stringed instruments
like guitar and depends on the stiffness of actual strings [9]. The
PYIN algorithm is based on the difference function which com-
prises the autocorrelation function [10]. Therefore, the periodicity
of the whole signal, including overtones, is evaluated in order to
determine the corresponding frequency. This frequency is slightly
higher than the frequency of the fundamental depending on the
present level of inharmonicity. The thicker the core of the string,
the bigger the resulting inharmonicity [9]. Therefore, especially
for the bass strings of a guitar the pitch results of the PYIN al-
gorithm tend to be higher than the actual frequency of the funda-
mental. One can state that the definition of pitch varies between
PLL- and autocorrelation-based pitch trackers. While the PLL-
based implementations track the frequency of the fundamental, the
PYIN algorithm tracks the frequency which is characterized by the
periodicity of the overall signal.

The biases of the PLL-based estimators are similar and most
certainly emerge from the differing pitch definition of the PYIN es-
timator. Therefore, the exactness of pitch estimates of PLL-based
algorithms depends mainly on the spread, which is less definitive
for the Multi PLL. As a result the approach described in this pa-
per provides more precise pitch estimates than its predecessor. In
order to evaluate the exactness of PYIN and Multi PLL pitch es-
timates the nature of pitch has to be specified more precisely and
the dataset to be used needs to provide a ground truth with a finer
frequency quantization.

4. CONCLUSION

The goal of this study was to develop an efficient monophonic
pitch tracker, utilizing multiple PLLs, which delivers improved
robustness against overtone errors and enhanced pitch track sta-
bility. The access to multiple, variably parameterized PLLs al-
lows a much more comprehensive view of the presence, inten-
sity and positioning of partials than a single PLL could deliver.
Based on this information conclusions can be made that result in
a substantial improvement of the detection rate. For the IDMT-
SMT-GUITAR dataset the Multi PLL estimator has achieved a
F-Measure of 82.63 %, which corresponds to an improvement of
26.26% compared to the results of its predecessor.

In future implementations especially the Recall could be im-
proved by optimizing the individual PLL parameters and the weight-
ing of features in order to enhance the timing and rate of the voiced
detections. A problem that remains is the detection of pitch for
tones with missing fundamentals. Pitch trackers which exploit
the periodicity of the overall signal like autocorrelation-related
approaches are capable of detecting the perceived pitch of these
tones. The approach presented in this study however, requires ad-
ditional logic which considers the frequency spacing of partials in
order to provide this functionality. In addition to that a statistical
model could be implemented to further improve the correctness
and continuity of the overall pitch track. Finally, to provide real-
time-capability for future implementations, the filterbank needs to
be modified. An extension of the presented approach for appli-
cation to polyphonic audio signals seems not practical since the
configuration of the filterbank and the PLLs exploits the frequency
composition of monophonic audio signals.
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ABSTRACT 

This paper discusses the estimation of non-stationary sinusoidal 

parameters. We formulate a piecewise version of the distributive 

derivative algorithm, which is used to analyse non-stationary si-

nusoidal signals and estimate their frequencies and log amplitude 

derivatives over a long duration as spline functions, and apply 

this algorithm for the estimation of instantaneous frequencies, 

amplitudes and phase angles. Test results show that the piecewise 

derivative algorithm provides better estimation than the previous 

non-piecewise version at lower computation cost. 

1. INTRODUCTION 

The sinusoidal modelling technique [1][2] uses slow-varying si-

nusoids to model the “deterministic” parts of audio and speech, 

including harmonic partials of human/animal vocals, string, wind 

and brass instruments, and harmonic or inharmonic partials of 

percussion and electric instruments.  

Complex exponential functions, or complex sinusoids, are of 

the form er(t), where r(t)=p(t)+jφ(t), p(t), φ(t)C1(R) 1, is the ex-

ponent. ep(t) and φ(t) are known as the amplitude and phase angle, 

and ω(t)=dφ(t)/dt the angular frequency. We say er(t) is slow-

varying if p(t) and ω(t) vary slowly with time t. Slow-varying 

sinusoids have narrow short-time bandwidths [3], allowing con-

current sinusoids be accessed independently via adequate band-

pass mechanism, as long as their frequencies stand apart. In par-

ticular, the real sinusoid ep(t)cosφ(t) can be accessed via er(t). 

Many sinusoid estimators derived in the past estimate sinus-

oidal parameters at a point from waveform data in its close vicin-

ity. Several early estimators assuming short-term stationarity of 

amplitude and frequency were summarized in [4]. As real-world 

sinusoids are rarely stationary, more complex short-term para-

metric models, e.g. [5]-[9], were proposed, leading to the highly 

flexible estimation of arbitrary complex polynomial exponential 

functions [8][9], and more recently to an even higher degree of 

freedom by allowing an arbitrary complex polynomial multiplier 

on top of it [10]. 

A second family of algorithms addresses long-term amplitude 

and frequency modulations, e.g. with the spline model [11][12]. 

While most short-term algorithms engage closed-form computa-

tion, the long-term methods depend on iterative optimization, 

and are likely to suffer high computation cost and convergence to 

local optima. However, upon successful convergence the long-

term constraints help to fight overfitting and improve robustness. 

In this paper we show that the distributive derivative ap-

proach of [9] can be formulated to address long-term amplitude 

                                                           
1 Cm(R): space of real functions with continuous mth-order deriv-

atives. 

and frequency modulations using a spline exponential model. 

This leads to a non-iterative algorithm for the long-term estima-

tion of sinusoids, which combines the simplicity of the derivative 

method with the robustness of long-term parametric modelling. 

The rest of this paper is arranged as follows. Section 2 briefly 

reviews the distributive derivative algorithm; section 3 derives 

the piecewise formulation of the derivative algorithm, which es-

timates frequency and log amplitude derivative as splines; section 

4 presents an amplitude and phase handling scheme that helps 

make long-term and local estimates consistent; section 5 presents 

test results on a synthesized test set, and section 6 presents a real 

world example.  

2. THE DISTRIBUTIVE DERIVATIVE METHOD 

The distributive derivative algorithm, or derivative algorithm for 

short, estimates a time-varying exponent r(t) of s(t)=er(t) by tak-

ing the derivative of s(t). Early examples of the method include 

[13] and [14] used for estimating stationary sinusoids and linear 

chirps. Later the method was generalized by current author and 

Sandler [8] and Betser [9] to estimate r(t) as the linear combina-

tion of differentiable functions. This section gives a brief review 

of this algorithm, following the formulation of [9]. 

2.1. General framework (after [9]) 

Let h1(t), …, hM(t)C1(R) be M linearly independent complex 

functions and v1(t), …, vI(t)C1(R) be I linearly independent 

complex functions, and let all these functions have a common 

compact support D=[d1,d2], d1, d2R. We consider a complex 

sinusoid  

s(t)=er(t)    (1) 

on the interval D, so that the derivative of r(t) is a linear combi-

nation of h1(t),…hM(t): 

λh
T)()()(

1

tthtr
M

m

mm  


 , tD  (2) 

where h(t)=(h1(t), …, hM(t))
T
, λM=(λ1, ..., λM)

T
CM and the su-

perscript 
T
 denotes matrix and vector transpose. Now we consider 

this problem: given s(t) and h(t), how do we find λ? 

We take the derivatives of both sides of (1) and substitute (2): 

λh
T)()()( ttsts     (3) 

Taking the inner products of both sides of (3) with functions v1, 

…, vI we get 

λh
cc

,, ii vsvs T , i=1, …, I   (4) 

or 

λvhv
cc

,, Tss  ,   (5) 
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where v(t)=(v1(t), …, vI(t))
T
 and the continuous inner product 

operator ●,●c is defined for functions and function vectors as  

 dttxtyyx )()(, *

c
 and  dttt )()(, *

c

TT
xyyx ,  (6) 

respectively, where the superscript * denotes complex conjugate. 

Comparing (3) and (5) we see that sʹ,vc is the linear combina-

tion of vectors shm,vc, m=1, …, M, with the same coefficients as 

rʹ(t) is that of hm(t). This converts the decomposition of r'(t) in a 

function space { λh
T)(t |λCM} to that of s',vc in a vector space 

without the need for extracting r’(t) explicitly. We call the entries 

of h basis functions as they form a basis of the vector space 

above, and the entries of v test functions after [9]. 

2.2. Discrete computation 

If we define discrete inner products for functions and function 

vectors as  







1

0

* )()(,
T

n

nxnyyx , 





1

0

* )()(,
T

n

nn TT
xyyx ,  (7) 

then the following discrete version of (5) holds: 

λvhv ,, Tss     (8) 

One issue of using (8) to compute λ is that sʹ(t) is not availa-

ble as input. Both [8] and [9] suggested that if v(t) is differentia-

ble and vanishes at both ends of D, then sʹ,vc can be computed 

as -s,vʹc. For discrete computation however, -s,vʹ approxi-

mates sʹ,v with an error given in [9] as 

 


n

nttsss |)()(,, *
vvv   (9) 

In [8] we pointed out that this error equals the total (Shan-

non) sampling alias of (sv*)(t). To keep the error term in (9) low, 

(sv*)(t) must have negligible spectral energy density above the 

Nyquist frequency. Practically this is satisfied by choosing 

viC2(R), i, so that s(t)vi(t)
* is a base-band signal: for example, 

a Hann-windowed sinusoid tuned to the central frequency of s(t). 

In practice the coefficients of (8) may be contaminated by 

noise in s(t) (observation noise) and rʹ(t) (modelling noise). As a 

remedy it is often solved in a least-square sense using 

  vhvvhhvλ ,,,,
1

ssss 


TTT
,  (10) 

provided that v
T
,shsh

T
,v is invertible. 

The discrete inner products can also be written as matrix 

multiplications. Define t=(0,…,T-1)
T
, s=s(t)=(s(0),…,s(T-1))

T
, 

sʹ=sʹ(t), H=h(t
T
)=(h(0),…,h(T-1)), V=v(t

T
), then (8) has the ma-

trix formulation  

λHsVs'V
T)(** diag .   (11) 

2.3. Amplitude and phase angle 

The derivative algorithm only estimates rʹ(t). To complete the 

estimation of s(t)=er(t) we still need to estimate r(0), which repre-

sents global amplification and phase shift. The least-square esti-

mate of r(0) is computed by correlation with a unit-amplitude 

zero-phase sinusoid with exponent derivative rʹ(t): 

ss

ss
r ~,~

~,
log)0(  , 

t

dts
0

)(exp)(~  λh
T  (12) 

The instantaneous angular frequency, amplitude and phase angle 

at 0 are Im{rʹ(0)}, eRe{r(0)} and Im{r(0)}, respectively. 

3. PIECEWISE DERIVATIVE METHOD 

The derivative algorithm above assumes that rʹ(t) follows the 

same parametric model over the whole duration. [9] took h(t) as 

a polynomial basis, i.e. h(t)=(tM-1,tM-2,…,1)
T
, and asserted the 

validity of the signal model (2) by the Taylor expansion of rʹ(t). 

Since Taylor expansions are usually accurate only in the neigh-

bourhood of the origin, this model is not suitable for long dura-

tion. On the other hand, piecewise polynomials, or splines, can 

model arbitrary functions of arbitrary lengths using translations 

of the same local model. In this section we adapt the derivative 

algorithm to estimate rʹ(t) as a spline function. To distinguish 

between the original and adapted versions, we call them local 

and piecewise derivative algorithms, respectively. 

3.1. General framework 

We limit our discussion to splines with uniformly placed knot 

points, and let them be 0, T, …, LT. We assume that we know the 

waveform of a slow-varying sinusoid on [0,LT] and roughly 

know its instantaneous frequencies at 0, T, … LT, both of which 

can be obtained using a sinusoid tracker, e.g. [1].  

We formulate rʹ(t) as a spline function by expressing it as a 

(M-1)th-order polynomial on each [lT,lT+T), l=0, …, L-1:  

lttlTr λh
T)()(  ,  0t<T,  l=0, …, L-1,  (13) 

where h(t)=(tM-1,tM-2,…,1)
T
, λlCM. Vectors λ0, ..., λL-1 contain 

the polynomial coefficients on the L segments, which are con-

strained by boundary conditions specific to the spline type. For 

example, the continuity of rʹ(t) at lT requires  

llT λhλh
TT )0()( 1 

,  l=1, …, L-1.  (14) 

In this paper we consider the linear interpolative formulation2 

of splines, which expresses λl as a linear function of the spline 

samples at the knot points, i.e. r'=rʹ(t) =(r’(0),..., r’(LT))
T
: 

λl=Al r’,  l=0, …, L-1.   (15) 

A0, …, AL-1 are real matrices depending on L, T and the spline 

type. Substituting (15) into (13) we get 

r'Ah lttlTr T)()(  ,  0t<T,  l=0, 1, …, L-1.  (16) 

We call (13)~(16) the spline exponential model. A specific 

spline interpolator has a linear interpolative formulation (15) as 

long as all its boundary conditions are linear in terms of rʹ(t) and 

its derivatives. The matrices A0, …, AL-1 for linear, quadratic and 

cubic spline interpolators are derived in the Appendix.  

We further define a function vector ρ(t)=(ρ0(t),…, ρL(t))
T
 by 

lttlT Ahρ
TT )()(  ,  0t<T,  l=0, 1, …, L-1.  (17) 

If both h(t) and Al are known then so is ρ(t). The independent 

coefficients rʹ contribute to r’(t) through the entries of ρ(t): 

r'ρ
T)()( ttr  ,  0t<LT.   (18) 

Eq. (18) expresses the linear piecewise exponential model as a 

special case of the linear exponential model (2), with ρ(t) replac-

ing h(t) as the basis. We can therefore construct a linear system 

similar to (8) 

r'vρv ,, Tss  .   (19) 

where v(t)=(v1(t), …, vdim(v)(t))
T
 is the vector of test functions. If 

v
T
,sρsρ

T
,v is invertible, then (19) has a least square solution 

                                                           
2
 B-spline formulation is also a possibility. The interpolative ex-

pression is chosen because it preserves the task’s degree of free-

dom and allows us draw links with previous methods, like (18). 
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  vρvvρρvr' ,,,,
1

ssss 


TTT
.  (20) 

Equations (19) and (20) give the piecewise derivative algorithm 

for estimating sinusoids with model (16). Notice that although 

we focus on spline exponentials in this paper, the algorithm itself 

does not require h(t) to be a polynomial basis, and therefore can 

be applied to a larger class of piecewise models of rʹ(t), as long 

as they can be formulated as (16).  

3.2. Computing coefficient matrix sρ
T
,v 

While one can always compute ρ(t) explicitly with (17), the actu-

al estimation of r' only requires computing the matrix sρ
T
,v, 

which has a piecewise implementation: 
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t
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L
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T
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t

sttst

tlTtlTstlTttsts

AvhAhv

ρvρvvρ

TT

TTT

  (21) 

where v[l](t)=v(lT+t) and s[l](t)=s(lT+t) represent the parts of v(t) 

and s(t) sampled over interval [lT,lT+T).   

3.3. Separate models for amplitude and frequency 

We let h(t) be real and replace (15) with 

ωCp'Bλ lll j ,  l=0, …, L-1,   (22) 

where p'=Re{r'} and ω=Im{r'} contain the amplitude growth 

rates and angular frequencies at 0, T, ..., LT, respectively, and Bl 

and Cl, l=0, ..., L-1, are real matrices that implement linear inter-

polations of p' and ω via (13). This formulation allows the am-

plitude and frequency be modelled with independent spline types, 

and leads to the real implementation of the piecewise derivative 

method: 








































 

v

v

ω

p'

vρvρ

vρvρ

CB

CB

,Im

,Re

,Re,Im

,Im,Re

s

s

ss

ss

TT

TT

,  (23) 

where  

ρB(lT+t)
T
=h(t)

T
Bl, ρC(lT+t)

T
=h(t)

T
Cl, 0t<T, l=0, …, L-1.   (24) 

A least square solution to (23) is computed in the same way as to 

(8) using real arithmetic only.  vρ
B
,Ts  and  vρ

C
,Ts  are comput-

ed using (21) from the same set of intermediate results 

s[l]h
T
,v[l], l=0, …, L-1. 

3.4. Framing of test functions v(t) 

In this section we present a specific construction of the test func-

tions v(t) using overlapping frames. We wish the interval [0,LT] 

be uniformly covered by v(t), so that no part of s(t) is ignored or 

overemphasized. It is intuitive to divide this interval into uni-

formly spaced frames and apply the same subset of test functions 

to every frame. And as test functions must vanish at both ends, it 

is necessary to have overlapping frames. In this paper we place 

frame centres at the spline knots, i.e. T, 2T, …, (L-1)T, with 50% 

overlap between adjacent frames. This gives L-1 frames of length 

2T over the whole duration (Fig.1a). Given this framing scheme 

we can write v(t)
T
=[v1(t)

T
 v2(t)

T …vL-1(t)
T
], in which all entries of 

vl(t), l=1, …, L-1, are supported on [lT-T,lT+T], and are time-

shifted versions of the same local test functions: 

vl(lT+t)= v1(T+t),  l=1, ..., L-1,  -TtT.  (25) 

Eq.(25) reduces the design of v(t) to that of v1(t), for which the 

test functions in the local derivative method (section 2), e.g. win-

dowed Fourier atoms, can be used unchanged. 

 
Figure 1 . Framing without and with boundary frames 

(a) without boundary frames; (b)with boundary frames 

As Figure1(a) shows, the vanishing requirement of test func-

tions inevitably leads to poor frame coverage near 0 and LT. To 

make better use of data in these parts we add two boundary 

frames supported on [0,T] and [LT-T,LT], respectively, and con-

struct test functions on these frames as 

v0(t)= vL(LT-T+t)=v1(2t),   (26) 

as illustrated in Figure1(b).  

3.5. Computational complexity 

We examine the number of complex multiplications in the gen-

eral formulation of the piecewise derivative algorithm, finishing 

with solving (20) using boundary frames as shown in Figure1(b). 

Let I be the number of test functions per frame. The computation 

considered includes computing the coefficients of (19), and solv-

ing (19) using (20).  

Using boundary frames, 2I test functions are non-zero on 

each of the L sections of size T. Accordingly, 2TI(M+1) multipli-

cations are needed to compute s[l]h
T
,v[l] for each l. L(L+1)IM 

more multiplications are needed to compute sρ
T
,v using (21). 

Computing sʹ,v requires 2LTI multiplications, i.e. the total 

length of all test functions. The total number of multiplications 

for computing (19) sums up to 2LT(M+2)I+L(L+1)MI. Compu-

ting v
T
,sρsʹ,v and v

T
,sρsρ

T
,v require LNI and L(L+1)2I/2 

multiplications respectively; solving (20) by Gaussian elimina-

tion requires L(L+1)(2L+7)/6.  

In comparison, if we apply the local derivative algorithm 

over [0,LT] with boundary frames, i.e. applying the algorithm to 

each of the L-1 frames of size 2T plus 2 frames of size T, then the 

coefficients of (8) are computed L+1 times for a total signal dura-

tion of 2LT, and the linear system (8) is solved L+1 times.  

Table 1. Complexity of piecewise and local derivative algorithms  

 piecewise derivative alg. local derivative alg. 

computing co-

efficients 
2LTI(M+2)+L(L+1)MI 2LTI(M+2) 

solving linear 

system(s) 
L3(I/2+1/3) LM2(I+M/3) 

Table 1 compares the complexity of the two derivative meth-

ods, in which we have ignored less significant terms. In typical 

applications M and I are small numbers (usually below 10), T is a 

few orders of magnitude larger, while L has a flexible range. As 

long as L is not too large, the complexity of both algorithms are 

dominated by 2LTI(M+2). In this case the piecewise derivative 

algorithm saves computation by allowing I be as small as 1, 

while I≥M must be satisfied in the local derivative algorithm. 

This benefit will be lost when L grows near TM 2 , as the extra 

computation spent on solving (20) eventually outgrows the sav-

ing. 

… 

 0 T 2T 3T (L-3)T (L-2)T (L-1)T LT 

(a) 

… 

 0 T 2T 3T (L-3)T (L-2)T (L-1)T LT 

(b) 
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4. AMPLITUDE AND PHASE  

Like its local counterpart, the piecewise derivative algorithm on-

ly estimates r’(t). An alternative algorithm, such as the correla-

tion method (12) in 2.3, must be employed to determine the 

global amplification and phase shift. 

While in theory estimating r(t) at any point, e.g. r(0), is 

enough for reconstructing r(t) by integrating r’(t), doing so ac-

cumulates potential errors over time. As piecewise models are 

designed for long signals, the accumulated error can get dramatic. 

For this reason we propose to estimate r(t) locally from short in-

tervals at various measurement points, then adjust the r’(t) esti-

mates to fit the local r(t) estimates. We present the details using 

the separated formulation (22). 

4.1. Local estimation 

We estimate r(t) at knots lT, l=0, …, L,  by applying the correla-

tion method (12) to a short interval near lT: 

sws

sws
lTrr

l

l

l ~,~

~,
log)(~  ,  l=0, …, L,  (27) 

where rl is the local estimate of r(lT), wl is a window function on 

[lT-T,lT+T] for l=1, .., L-1, on [0,T] for l=0, and on [LT-T,LT] 

for l=L, and 

 
t

ll djttr
0

)()()(~ ωCp'Bh
T ,  )(~exp)(~ trts  .   (28) 

While these estimates can be used as they are, in applications like 

additive synthesis it is desirable that the local estimates of r(t) be 

coherent with the piecewise estimate of r’(t), i.e. klZ, l=0, …, 

L-1, so that 

lll

T

ll

TlT

lT

kjrrdtjtdttr 2)()()( 1

0






 ωCp'Bh
T .   (29) 

This is achievable using an adjustment step described below, 

which applies a fine tuning to (p',ω) to satisfy (29). 

4.2. Adjustment of ω and p' 

Let ω be the original frequency estimate and ω+ψ be the adjust-

ed estimate. Define  


T

ll dtt

0

)(hCu
T  ,  l=0, ..., L-1.   (30) 

Taking the imaginary part of both sides of (29) we get 

llll krr 2}Im{)( 1  ψωu
T ,  l=0, …, L-1.  (31) 

We start with a phase unwrapping process similar to that of 

[1] to implicitly determine kl in (31), which we rewrite as  

lllll krr 2}Im{ 1   ωuψu
TT ,  l=0, ..., L-1.  (32) 

ψu
T
l

 is the integral of an interpolation of ψ over [lT,lT+T]. As ψ 

represents a fine adjustment we choose the klZ that minimizes 

the right side of (32), which becomes 

)2,}(Im{ 1 ωuψu
TT

llll rrres  
,  l=0, ..., L-1,  (33) 

where res(x,2π) is the minimal-absolute residue of x modular 2π. 

Notice that this choice of kl coincides with that of [1] motivated 

by maximizing phase smoothness.   

Define )2,}(Im{ 1 ωu
T

llll rrresb  
, b=(b0, ...,bL-1)

T
, and 

U=(u0,...,uL-1), then (33) is simplified to 

U
T
ψ =b.   (34) 

This is a linear system of ψ with L equations and L+1 unknown 

variables. Since ψ is expected to be small, a simple choice is the 

minimal-norm solution, given by 

ψ = U(U
T
U)-1b.   (35) 

Finally the adjustment of ω is completed by 

ψωω  .   (36) 

It is trivial to verify the adjusted ω satisfies (31). 

Adjustment of p' follows the same procedure as above, ex-

cept that the phase unwrapping step is not needed. 

5. EXPERIMENTS 

We test the proposed algorithm on synthesized test signals and 

compare it to the local derivative algorithm [9], the QUASAR 

estimator [11], and original quadratic-interpolated fast Fourier 

transform magnitude (QIFFT) method [15]. The piecewise deriv-

ative algorithm is tested with cubic and linear splines (labelled 

PD3 and PD1), the local derivative algorithm is tested with cubic 

and linear polynomials (LD3 and LD1), while the QUASAR esti-

mator (Q) is piecewise linear by design (as "quadratic phase" 

means linear frequency).  

We use each estimator to estimate parameters of a slow-

varying sinusoid, then reconstruct the sinusoid from the estimates 

with a paired synthesizer. Errors are computed for estimated pa-

rameters and for sinusoids synthesized from them. The local es-

timators LD3, LD1 and QIFFT (QIF) do not come with “native” 

synthesizers for more than one frame. We pair LD3 and LD1 with 

natural cubic and linear spline interpolators respectively, and 

QIFFT with the original McAulay-Quatieri phase-aligned synthe-

sizer [1]. For the reconstruct errors we also test a few reference 

systems that synthesize from the true parameters. Reference sys-

tem using cubic and linear spline synthesizers are labelled R3 and 

R1 respectively. [11] provides its own least-square interpolator, 

which we also use as a reference ("RQ"). 

Both derivative algorithms use boundary frames. From 3.4, 

the standard frame size is 2T; standard frame hop and boundary 

frame size are T. Two test functions per frame are used in the 

piecewise derivative algorithms (PD3, PD1); four per frame are 

used in the local derivative algorithms (LD3, LD1).  

For each test signal we use its waveform and reference fre-

quencies at measurement points 0, T, …, LT as inputs. Test sig-

nals over [0,LT] are supplied to the derivative algorithms; test 

signals over [-T,LT+T] are supplied to the Q and QIF estimators 

which do not fully handle boundary frames. Reference frequen-

cies are rough frequency estimates to tell the estimators where in 

the T-F plane to expect the sinusoids. We provide these by 

rounding ground truth frequencies to nearest whole DFT bins, 

1bin=1/2T. The QUASAR estimator (Q) uses a single reference 

frequency, which we supply with the average ground value. 

For test functions of both derivative algorithms we follow [9] 

and use Hann-windowed complex sinusoids whose frequencies 

are tuned to the whole DFT bins closest to the reference frequen-

cies.  

5.1. Test set 

Frequency and amplitude-modulated sinusoids are used as test 

signals. The frequencies are modulated by a sinusoidal modulator 

of amplitude AM and period TM; the amplitudes are modulated by 

passing the modulated frequency through one of three real trans-

fer functions: a linear function H1(f) that assigns the central fre-

quency a medium amplitude, and two quadratic functions H2(f) 

and H3(f) that assign the central frequency either the minimal or 
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maximal amplitude. We summarize the test set by (37a)~(37f), 

where f, f0, AM are given in bins, and TM in frames, where 1 

bin=1/(2T), 1 frame=T. Constant coefficients in (37d)~(37f) are 

chosen so that the amplitude modulation depth is 2/3. For all 

tests we use L=10 and T=1024, so that the length of each test 

sample is 10240. For this choice of L and T the complexity of 

both derivative algorithms is dominated by computing sρ
T
,v, so 

that by using I=2 instead of 4 the piecewise algorithm saves near-

ly half the computation. 

Table 2. Synthesized test set 

)/2cos()( MMM0 TTtAftf   , (37 a) 

)/2sin(
2

)( MM

MM

0 TTt
AT

tf
T

t 


  , (37b) 

))(()( tfHta i ,  i=1, 2, 3;  (37c) 

 
MM01 /)5.1()( AAfffH  , (37d) 

 2

M

2

02 /)(25.0)( AfffH  , (37e) 

 2

M

2

03 /)(25.2)( AfffH  . (37f) 

For the tests we sample TM uniformly at 6 positions between 

5 and 15 frames, AM logarithmically at 6 positions between 1 and 

32 bins, φM uniformly at 6 positions between 0 and 5π/6, f0 uni-

formly at 10 positions between 155 and 155.9 bins. This makes a 

total of 6480 test signals. Apart from clean sinusoids, we also run 

tests on sinusoids contaminated by concurrent sinusoids or white 

noise. Reference systems are not tested with contaminated signals.  

5.2. Results 

We present the test results as accuracy measurements against se-

lected parameters (TM, AM, estimator) averaged over all relevant 

test results. The measurements are amplitude accuracy (Ea), fre-

quency accuracy (Ef) and signal-to-error ratio (SER). Ea is com-

puted from the ground truth log amplitude derivatives p0, …, pL 

and their estimates 
0

~p , …, 
Lp~  as  
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Ef is computed from the ground truth angular frequencies ω0, …,  

ωL and their estimates 
0

~ , …, 
L~  as 
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SER is computed from the test signal s(t) and resynthesized si-

nusoid )(~ ts  as 
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Higher values of Ea, Ef and SER indicate better amplitude, 

frequency and reconstruction accuracy, respectively. 

5.2.1. Clean sinusoids 

Figure 2 compares results of tested estimators on clean signals. 

Each curve presents the result from one estimator, as SER, Ef or 

Ea against FM period TM in (a)(c)(e), and against FM extent AM 

in (b)(d)(f), averaged over all φM, f0 and transfer functions 

H1(f)~H3(f) used in (37c). SER results of reference systems are 

included in (a) and (b). 

 
Figure  2 . Comparing estimators on FM signals (cycle 1) 

As may be expected, derivative estimators using cubic poly-

nomials outperform those using linear polynomials. Among esti-

mators using the same polynomial orders, the local derivative 

algorithm does best in estimating log amplitude and frequency. 

This can be attributed to that fact that it uses more parameters to 

model the sinusoid (LD1 uses 5 per frame, LD3 uses 9, QIFFT 

use 3, all others use less than 2.1). However, this advantage is 

not observed in the SER results, which treat the whole duration 

equally instead of focusing on the measurement points. Since the 

test signals are off-model, better parameter estimation alone does 

not guarantee better modelling accuracy. This is even more dis-

tinctively observed in Fig. 2(b), which shows that the reference 

systems, in spite of holding the ground truth at measurement 

points, do not always have the highest SER. On the whole the 

two derivative algorithms provide similar SERs, and both PD3 

and LD3 come close to R3. Good results are observed from 

QUASAR estimator (Q) only if both AM and 1/TM are low. This 

can be traced back to the heterodyne filtering technique it uses to 

obtain its preliminary estimates, which cannot handle large fre-

quency modulations. 

5.2.2. Test in the presence of other sinusoids 

In the presence of concurrent sinusoids, the main influence on 

the estimation comes from those with closest frequencies. In our 

experiments the test signal s(t) is mixed with two concurrent si-

nusoids, with the same amplitude and initial phase as s(t) and 

frequencies at ±B bins from s(t). The frequency gap B is sampled 

logarithmically at 6 positions between 4 and 128 bins.  
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Figure  3 .Comparing estimators on FM signals with additional sinusoids 

Figure 3 compares the results of all tested estimators, each curve 

presenting the result from one estimator, as SER, Ef or Ea against 

frequency gap B, averaged over all TM, AM, φM, f0 and transfer 

functions H1(f)~H3(f). While Ef and Ea results are averaged as 

they are, negative SERs are treated as 0 when computing the av-

erage. Results of direct synthesis R3 and R1 are included for ref-

erence. We see that concurrent sinusoids have significant impact 

on all tested estimators except QIF. For small values of B (i.e. 

strong interference) the piecewise derivative algorithm shows 

clear advantage in the presence of concurrent sinusoids: estima-

tor PD1 using a linear spline is already comparable to LD3 using 

trinomials when B≤16. This can be attributed to the fact that the 

piecewise derivative algorithm uses less free parameters, and 

therefore is less likely to overfit. This explanation is also con-

firmed by LD1 outperforming LD3 under strong interference. The 

apparent resistance of QIF to disturbance is related to the con-

struction of the test signals, as the choice of two symmetrical si-

nusoids on either side of ω(t)  by whole DFT bins helps to mini-

mize their total impact on the quadratic interpolation.  

5.2.3. Test in the presence of noise 

In this part we mix the test signals with Gaussian white noise at 6 

levels, specified by 6 signal-to-noise ratios (SNRs) from -15dB 

to 45dB. Typical Cramer-Rao bounds for parameter estimation 

from noisy data are not included because our test signals are not 

synthesized to fit the parametric models. 

Figure 4 compares the results of all tested estimators , each 

curve presenting the result from one estimator, as SER, Ef or Ea 

against input SNR, averaged over all TM, AM, φM, f0 and transfer 

functions H1(f)~H3(f). Negative SERs are treated as 0 when com-

puting the average. Again, for small values of SNR (i.e. strong 

noise) the piecewise derivative algorithms shows consistent ad-

vantage over their local counterparts, and LD1 once more outper-

forms LD3. In the lower end of SNR the QIFFT method returns 

the best frequency estimate. This is the result of the estimate be-

ing explicitly bounded near the reference frequency no more than 

0.5 bin from the ground truth, without much chance of large de-

viation even in extraordinary noise. 

 

 Figure  4 . Comparing estimators on FM signals with white noise 

5.3. Summary 

We have tested sinusoidal parameter estimation accuracy based 

on the piecewise derivative and local derivative algorithms, as 

well as the QUASAR estimator, using signals synthesized inde-

pendent of the parametric models. For clean sinusoids the local 

derivative algorithm has the best parameter estimation accuracy, 

but the piecewise algorithm has the best reconstruction SER. The 

QUASAR estimator has similar performance to PD1 only for very 

low modulation, and degrades quickly for high modulation. For 

sinusoids contaminated with noise or concurrent sinusoids, the 

piecewise derivative algorithm shows consistent improvement in 

estimation accuracy, which we attribute to long-term modelling 

and the reduction of the number of parameters. Notably, these 

improvements are achieved with half the computation cost of the 

local derivative method, making the piecewise version even more 

favourable.  

Although we have treated the non-iterative and iterative es-

timators as mutually exclusive in the experiments, in reality they 

are not. A good non-iterative method, such as the piecewise de-

rivative algorithm, can help provide an iterative algorithm an ini-

tial estimate close to global optimum, therefore relieves the latter 

of such potential disadvantages as heavy computation and con-

vergence at local optimum. 

6. REAL-WORLD EXAMPLE 

In this section we provide a real-world audio example using the 

two derivative algorithms to estimate frequencies and frequency 

slopes of sinusoidal partials.  

We run the local and piecewise derivative algorithms on a 

pure vocal recording of a soprano singing /a:/. The spectrogram 

of the three lowest partials is given in Figure 5(a). We use linear 

frequency for the local derivative algorithm and linear spline fre-

quency for the piecewise derivative algorithm.  

For the three lowest partials we draw the frequency results in 

Figures 5(b) and 5(c). The local derivative algorithm estimates 

the frequency over individual frames as short line segments, each 

covering the duration of 2T. The piecewise derivative algorithm 

estimates it over the whole duration as a linear spline. While no 
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frequency ground truth is available for real-world recordings, the 

disagreement of local estimates from adjacent frames provides an 

indication of the accuracy of the local derivative algorithm, while 

the smoothness of the frequency trajectories provides an indica-

tion of that of the piecewise algorithm. For the clean vocal signal 

both algorithms provide good frequency estimates. 

Figures 5(d) and 5(e) shows the results when 0dB white 

noise is added to the signal. In the presence of this noise only the 

strongest fundamental partial retains good estimates. For the 

weaker partials both algorithms suffer performance loss. Alt-

hough the drawings of Figs. 5(d) and 5(e) are not directly compa-

rable, 5(e) does show more stable frequency slope than 5(d), in 

which the frequency slope errors are large enough to turn local 

frequency trajectories into near-vertical spikes. Since the piece-

wise algorithm relies on a global signal model, it is reasonable to 

expect higher noise tolerance, because the global constraints help 

to reduce the number of free parameters and prevent overfitting 

to local noise sources. 

 

Figure  5 . Local and piecewise frequency estimation of vocal /a:/ 

7. CONCLUSION 

In this paper we have discussed the theory and implementation of 

a piecewise derivative algorithm, which approximates a slowly 

varying complex sinusoid as a spline exponential function. This 

algorithm is based on the recently developed distributive deriva-

tive algorithm, currently the state-of-the-art for non-stationary 

sinusoid estimation on short intervals. By adapting the derivative 

approach to piecewise models, we are able to estimate time-

varying sinusoids of flexible length. The algorithm is simple, 

non-iterative, and more robust against noise than the (local) dis-

tributive derivative algorithm.  

Apart from as the analyser of a sinusoidal modelling system, 

the proposed estimator may find applications wherever observa-

tion of sinusoidal parameters at a sequence of frames is required. 

For example, musicologists are interested in accurate tracing of 

vocal and instrumental vibratos and tremolos. In the frequency 

sweep test popular with audio, the proposed algorithm will allow 

faster sweep rate (since it does not assume stationarity) and will 

automatically return the result as a spline function. 

The piecewise derivative algorithm has no source separation 

capacity, therefore does not solve the more difficult problem of 

estimating sinusoids overlapping other sinusoids or noise in both 

time and frequency. However, our tests show that the piecewise 

algorithm is less susceptible to concurrent sinusoids and noise 

than the local derivative algorithm. 

Although we have focused our discussions on the spline ex-

ponential model, the piecewise derivative algorithm is also appli-

cable to other linear piecewise parameterizations of the complex 

exponent, as long as they are compliant to (16).  
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10. APPENDIX: PIECEWISE MATRIX FORMULATIONS 

OF LINEAR, QUADRATIC AND CUBIC SPLINES 

We denote a spline by x(t) and its samples at the knot points by 

x=(x0, …, xL)
 T

, xl=x(lT), l. The linear interpolative formulation 

expresses x(t) as linear functions of x0, …, xL. Accordingly, the 

polynomial coefficients over [lT,lT+T), i.e. λl, can be given as a 

linear transformation of x: 

λl=Alx, l.   (A1) 

10.1. Linear spline 

A linear spline is specified by 
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It has the closed-form expression 
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For this spline type we can immediately write  
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10.2. Quadratic spline 

A quadratic spline is specified by 
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The standard approach for quadratic spline interpolation com-

putes the polynomial coefficients from an intermediate vector 

z=(z0, …, zL-1)
T
, zl= ly , by 
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  (A6) 

or 

λl=(03×l  AZ  03×(L−l−1))z + (03×l  AC  03×(L−l−1))x ,  (A7) 

where AZ and AC replace the two matrices in (A6) for briefness. z 

is related to x by the linear system 
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Eq.(A8) is underdetermined by one equation. We introduce an 

additional constraint by minimizing the square norm of the 

spline’s derivative, i.e.  
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We call the specific quadratic spline that minimizes (A9) the 

minimal-variation quadratic spline. Let dI/dz=0, we get a new 

linear equation 
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Eq.(A10) pads up the matrix on the left of (A8) to L×L and the 

on the right to L×(L+1), after which (A8) takes the form 

MLz=MRx, ML being square and invertible. Substituting 

z=ML
−1MRx into (A7) we get 

λl=((03×l  AZ  03×(L−l−1))ML
−1MR + (03×l  AC  03×(L−l−1)))x .  (A11) 

This gives the formulation of Al in (A1) as 

Al=(03×l  AZ  03×(L−l−1))ML
−1MR + (03×l  AC  03×(L−l−1)).  (A12) 

10.3. Cubic spline 

A cubic spline is specified by 
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The standard approach for cubic spline interpolation computes 

the polynomial coefficients from an intermediate vector z=(z0,…, 

zL)
T
, zl= ly  , by 
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or 

   x0A0z0A0λ )1(4C4)1(4Z4   lLllLll
  (A15) 

where AZ and AC replace the two matrices in (A14) for briefness. 

z is related to x by the linear system 
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  (A16) 

This is an underdetermined system. Two more constraints are 

needed to uniquely specify z from x. The constraints typically 

concern the behaviour of z near 0 and L, referred to as the 

boundary mode, e.g. 

a) natural mode: z0=zL=0; 

b) quadratic run-out mode: z0=z1, zL=zL-1; 

c) cubic run-out mode: z0=2z1-z2, zL=2zL-1-zL-2. 

Whichever mode we choose, the constraints pad up the matrices 

on both sides of (A16) to (L+1)×(L+1), after which (A16) takes 

the form MLz=MRx, ML being invertible. Substituting 

z=ML
−1MRx into (A15) we get 

λl=((04×l  AZ  04×(L−l−1))ML
−1MR + (04×l  AC  04×(L−l−1)))x.  (A17) 

This gives the formulation of Al in (A1) as 

Al=(04×l  AZ  04×(L−l−1))ML
−1MR + (04×l  AC  04×(L−l−1)).   (A18) 
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ABSTRACT

The Fender Bassman model 5F6-A was released in 1958 and has
become one of the most revered guitar amplifiers of all time. It is
the progenitor of a long line of related Fender designs in addition
to inspiring Marshall’s first amplifier design. This paper presents
a Wave Digital Filter study of the preamplifier circuit of 5F6-A-
based amplifiers, utilizing recent theoretical advances to enable
the simultaneous simulation of its four nonlinear vacuum tube tri-
odes. The Dempwolf triode model is applied along with an itera-
tive Newton solver to calculate the scattering at the 25 port R-type
adapter at the root of the WDF tree. Simulation results are com-
pared to “ground truth” SPICE data showing excellent agreement.

1. INTRODUCTION

The Fender Bassman amplifier was first introduced in 1952, under-
going multiple revisions before culminating in the seminal 5F6-A
version in 1958. This model is one of the most revered and imi-
tated amplifier circuits of all time [1], inspiring countless related
designs including the first Marshall—the JTM 45. Introduced in
1962 by London music store owner Jim Marshall, the JTM 45’s
original design borrowed heavily from the 5F6-A, a popular seller
and employee favorite [2]. The JTM 45 quickly became a success-
ful and much-praised amplifier in its own right and was a crucial
ingredient in the heady brew of hard rock, blues, and psychedelic
music that was the sound of 1960s London. Our goal is to develop
efficient, re-configurable digital emulations of the 5F6-A, JTM 45
and related circuits to serve as a research and design tool for DIY
amp-designers, circuit benders, and sonic historians considering
the evolution of this historic circuit.

A number of different approaches have been taken to the nu-
merical simulation of vacuum tube guitar amplifier circuits over
the years. For an historical overview as well as an introduction to
the physical principles of operation of triode tubes see [3]. Re-
cent years have seen the increased use of Wave Digital Filters
(WDFs) [4] as an effective tool for virtual analog modeling of au-
dio circuits [5]. New theoretical advances have enabled WDFs to
model circuits with complex topologies [6] and multiple nonlinear-
ities [7], a category that includes many audio circuits of interest.
In this paper we apply these techniques to the construction of a
WDF model of Bassman 5F6-A-derived preamplifiers. These cir-
cuits provide an ideal case study—they contain multiple vacuum
tube triodes in a complex circuit topology but with a modest part
count, limiting overall system complexity to a reasonable level.

The remainder of this work is structured as follows: Sec. 2
explores the circuit in detail, Sec. 3 reviews necessary background
information and derives the structure of the WDF simulation in-
cluding the novel application of the Dempwolf triode model and a

Newton-based root finder, Sec. 4 presents simulation results, and
Sec. 5 summarizes future work and conclusions.

2. BASSMAN 5F6-A PREAMPLIFIER CIRCUITS

This work defines the 5F6-A’s “preamplifier circuit” as consisting
of the following stages: the 12AY7 preamp, 12AX7 voltage amp,
and 12AX7 cathode follower (as in [1]) driving a nominal load
resistance RL. The circuit schematic is shown in Figure 1 with
component values listed in Table 1. The tone stack is not included
in the simulation as it is buffered from the preceding sections by
the cathode follower stage. The tone stack has already been con-
sidered in the context of WDFs [8, 9] and in an earlier non-WDF
study [10]. Nominal values cited in the remainder of Sec. 2 are
taken from [1] and are presented solely to provide insight into the
circuit’s operation.

Edge Comp Value Edge Comp Value
1 RGB1A 68 kΩ 14 RV BP αRvol

2 RGB1B 68 kΩ 15 RV BN (1− α)Rvol

3 RIB 1 MΩ 16 RV NN (1− α)Rvol

4 RK1 1 MΩ 17 RV NP αRvol

5 CK1 250 µF 18 CB1 100 pF
6 RGN1A 68 kΩ 19 RGB2 270 kΩ
7 RGN1B 68 kΩ 20 RGN2 270 kΩ
8 Vin − 21 RP2 100 kΩ
9 RIN 1 MΩ 22 RK2 820 Ω
10 RPB 100 kΩ 23 RL 100 kΩ
11 RPN 100 kΩ 24 VP 310 V
12 CON 20 nF 25 CB2 556 pF
13 COB 20 nF − Rvol 1 MΩ

Table 1: Circuit Components

2.1. The Preamp Section

The preamp’s first stage is a dual channel inverting amplifier pow-
ered by a 12AY7 tube consisting of triodes T1B and T1N for bright
and normal channels respectively. The grid stopper resistorsRGB1A,
RGB1B , RGN1A, RGN1B combine with the triodes’ Miller ca-
pacitances [11] to form a low-pass filter that suppresses RF inter-
ference. Each channel has two inputs: high sensitivity #1 with
input resistances RIB and RIN and voltage gain of −32.2 and
low sensitivity #2 with input resistances of RGB1A +RGB1B and
RGN1A + RGN1B and voltage gain of −16.1 (−6 dB attenuation
relative to #1). With no cables inserted in the input jacks, their tip
and switch terminals are shorted as shown on the left-hand side of
Figure 1. When a cable is inserted, this connection is broken and
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Figure 1: 5F6-A/JTM 45 preamplifier circuit with no inputs (left) and using Normal 1 input with a jumper between Normal 2 and Bright 1
(right). Circuit element values are listed in Table 1.

the tip terminal is routed into the larger circuit as shown on the
right. The cathode resistor RK sets the bias point of the triodes
and is fully bypassed by the capacitor CK at audio frequencies.
The output voltage of this section is developed across plate resis-
tors RPB1 and RPB2 and is transmitted to the next stage through
the output coupling capacitors COB and CON .

2.2. The Voltage Amp Section

The second stage consists of a 12AX7 triode T2 in an inverting am-
plifier configuration with a net voltage gain of−20.7 at maximum
volume. Bright and normal volume levels are set via 1 MΩ po-
tentiometers parameterized by αB and αN respectively with 0 ≤
α ≤ 1, sub-dividing the pots into resistorsRV BN = (1−α)·Rvol,
RV BP = α ·Rvol,RV NN = (1−α) ·Rvol, andRV NP = α ·Rvol.
In practice these resistors are restricted to R ≥ 1 Ω and we con-
sider only the case αB = αN = α. Capacitors CB1 and CB2

provide the treble boost that gives the bright channel its name and
RGB1 and RGB2 are again grid stopper resistors. Cathode resis-
tor RK2 sets T2’s bias, with average plate current on the order
of 1 mA. As will be seen in the results section, this triode’s grid
current can grow to an appreciable fraction of the overall cathode
current at higher volume settings.

2.3. The Cathode Follower Section

The third section employs a 12AX7 triode T3 in a non-inverting
cathode follower configuration with slightly below unity gain (≈
0.984). This stage presents a low output impedance of 615 Ω, ef-
fectively decoupling it from the tone stack and making it an ideal
final stage in our WDF simulation. Even more dramatically than in
the case of T2, T3’s grid current can become appreciable at higher
volumes. This has a significant impact on the preamplifier’s out-
put waveform, leading to asymmetric clipping and its concomitant
even order harmonics. For this reason, models that fail to take
grid current into account are unable to satisfactorily reproduce the

sound of an over-driven guitar preamplifier.

2.4. Marshall JTM 45

The pre-amp of the JTM 45 is nearly identical to the 5F6-A with
three important exceptions. First, a higher gain ECC83 (12AX7)
replaces the Bassman’s 12AY7 triodes T1B and T1N in the preamp
section producing more overall gain and slightly different loading
characteristics. Second, the lead version of the JTM 45 includes
an additional bypass capacitor CB2 across the bright input to T2

that is not present in the 5F6-A, leading to a more pronounced tre-
ble boost for the bright channel. Third, the plate supply voltage
VP is reduced from 325 V to 310 V [1]. For reasons discussed in
Sec. 3.4, this work will specifically consider the JTM 45 preampli-
fier.

2.5. Jumpers

It is common for guitar players to explore different tones by em-
ploying a jumper cable between two of the unused input chan-
nels. This practice can appreciably alter the amplifier’s overall re-
sponse and further complicate the circuit’s already complex topol-
ogy. This case study specifically considers only one of the most
common configurations [12] using the Normal #1 input with a
jumper between Normal #2 and Bright #1 inputs as shown in Fig-
ure 1. A more general model incorporating real-time switchable
jumpers will be the subject of future work.

3. WDF CIRCUIT SIMULATION

3.1. Previous Work

Wave Digital Filters (WDFs) are efficient, modular filter structures
with attractive numerical properties including low sensitivity to co-
efficient round-off and guaranteed incremental passivity of passive
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circuit elements (capacitors, inductors, resistors, etc.) when sim-
ple rounding rules are applied [4]. Using other numerical methods
these "passive" elements can become locally active with rounding
error pumping energy into the system if care is not taken to ensure
energy conservation. WDFs were invented to facilitate the design
of digital emulations of analog ladder and lattice filters, which not
coincidentally also feature low sensitivity to component value vari-
ance. Recent years have seen steady growth in the application of
WDFs to other areas of study removed from their original intended
use, including virtual analog modeling of audio circuits [5].

Early WDF tube amplifier studies [13] often modeled triodes
as one port devices, ignoring grid current completely and using
grid voltage as a cross-control on the plate port current. The clas-
sic Fairchild 670 compressor was modeled [14] using a similar
approach with additional unit delays to decouple the push/pull am-
plifier sections. An enhanced model [15] more accurately captured
triode behavior, modeling the plate-to-cathode port via a nonlin-
ear resistor parametrized by Koren’s model [16] and grid current
via a diode model. However, this approach still relies on unit de-
lays to yield computable structures. A case study by Pakarinen et
al. [17] applies this model to the output chain of a vacuum tube
amplifier. An iterative secant-method based solver has also been
employed [18] to simultaneously solve the coupled equations of
the Cardarilli triode model [19].

Two recent theoretical developments have enabled the use of
WDFs to model vacuum tube circuits without making any of the
ad-hoc assumptions of earlier work. First, an approach informed
by Modified Nodal Analysis (MNA) [20] was developed to model
complex circuit topologies that cannot be decomposed into simple
series and parallel combinations [6]. Second, the use of this ap-
proach was extended to circuits containing multiple non-adaptable
nonlinear ports [7]. Crucially these new developments separate
nonlinearities from topology, ensuring that the most challenging
part of the problem (solving for the scattering at the root) scales
with the number of nonlinear ports instead of the total system size.

3.2. WDF Simulation Structure

Following the methodology of [6] the first step is to translate the
schematic into the biconnected graph shown in Figure 2 with nodes
representing physical circuit nodes and edges representing circuit
components. The three unlabeled nodes in Figure 2 have been
added to group the nonlinearities into a nonseparable replacement
graph. The separation methods described in [21] can then be ap-
plied to reduce the graph into the set of split components show in
Figure 3. These split components are used to construct the SPQR-
tree representation shown in Figure 4 with the R-type node at the
root of the tree, connected via real edges to the Q-type nodes and
virtual edges to the S-type and P-type nodes.

This representation directly yields the WDF structure shown in
Figure 5 with the R-type node at the root and 17 child sub-trees.
The problem then becomes solving for the scattering of incoming
waves a to outgoing waves b at the rootR-type node governed by
the equation

b = Sa . (1)

The topological scattering matrix S can be calculated [6] using

S = I + 2
[
0 R

]
X−1 [0 I

]T
, (2)

where R is the diagonal matrix of port resistances and X is the
MNA matrix. Omitted here due to space constraints, a full deriva-
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Figure 2: Biconnected circuit graph. Node labels correspond to
those in figure 1, edge numbers are defined in table 1.

tion of X for the JTM 45 can be found in the supplemental mate-
rials online [22]. Note that the nonlinearities have been absorbed
into the R-type node and are considered to be connected to the
topological scattering via “internal ports” while “external ports”
connect the root element to its sub-trees. Internal incoming and
outgoing wave variables are denoted as aI and bI respectively,
external waves as aE and bE . We can then decompose equation
(1) in terms of the vector nonlinear function aI = f (bI) that
maps aI to bI and the partitioned S-matrix as

aI = f (bI) (3)wave nonlinearity
{
bI = S11aI + S12aE (4)

scattering

{
bE = S21aI + S22aE . (5)

These equations comprise a non-computable, delay-free loop as
the outgoing internal wave variables depend instantaneously on the
incoming waves that in turn depend instantaneously on bI .

The vast majority of nonlinear circuit elements lack a closed-
form wave domain description and are therefore most commonly
and straightforwardly defined in the Kirchhoff domain. We denote
the vector Kirchhoff nonlinear function that maps voltage into cur-
rent as h (vC). In the case of the 5F6-A preamplifier this function
is eight dimensional, consisting of four identical two-port triode
models of two equations each (discussed in 3.4). When utilizing a
Kirchhoff nonlinearity a wave-to-Kirchhoff conversion matrix C
must be included and is partitioned into internal and external com-
ponents as with the scattering matrix S. These further definitions
yield the following set of equations:


iC = h (vC)

vC = EaE + FiC

bE = MaE + NiC

with

H = (I−C22S11)−1

E = C12 (I + S11HC22)S12

F = C12S11HC21 + C11

M = S21HC22S12 + S22

N = S21HC21 . (6)

By setting up the problem in this way, the delay-free loop has
been confined to a set of equations whose size equals the number
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Figure 3: S-, P-, andR-type split components of the biconnected
circuit graph.

of nonlinear ports. Werner et al. chose to resolve the delay-free
loop by applying the K-method to shear the nonlinearity [6]. As
the sheared nonlinearity has no closed-form solution, its values
are tabulated and interpolated at run-time. This approach has the
drawback that as the number of nonlinear ports in the circuit grows
a compromise between table resolution and an increasingly rapidly
ballooning memory footprint must be made.

3.3. Newton’s Method with Backtracking

For this study we take a different approach, directly applying a
Newton solver to the set of nonlinear equations (6), eliminating the
need to store and interpolate tables. Newton solvers have the fur-
ther benefit of giving the algorithm designer access to the tradeoff
space between accuracy and computation time via a single tunable
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Figure 4: SPQR tree representation of the circuit graph.

tolerance parameter. The relevant entries of (6) can be re-arranged
to make it clear that the problem can be stated in terms of finding
the roots of the eight-dimensional equation

f (vC) = EaE − vC + Fh (vC) . (7)

Specifically a form of Newton’s method is used that includes back-
tracking to improve convergence robustness for a wide range of
operating conditions. Initial guesses for the port voltages at the
beginning of each audio sample’s Newton iterations are calculated
using the current value of the incoming external waves and the
previous value of the internal port currents according to

vC0[n] = FiC [n− 1]−EaE [n]. (8)

A more detailed discussion of the use of Newton’s method with
backtracking in the context of WDFs is presented in [23]. Again, it
is emphasized that the dimensionality of the iterative Newton root-
finding in the current work is limited to the number of nonlinear
ports.

3.4. Triode Model

The final step required to arrive at a working WDF simulation is to
define an appropriate triode model. We consider the three-terminal
electrical device as a two-port nonlinear WDF element with port
voltages VPK and VGK and corresponding port currents IPK and
IGK . We adopt the convention of amplifier texts such as [1] with
the letter “P” referring to plate, “G” to grid and “K” to cathode.
Further, we use a two-letter naming convention to make explicit
that all voltages are referenced to the cathode voltage. See Fig-
ure 6) for a graphical representation of these port definitions.

Previous WDF triode circuit studies have employed the Car-
darilli model [19] which defines grid and plate currents in a piece-
wise manner above and below a critical grid voltage VGK = 0.2 V
as shown in Figure 7. The piece-wise nature of the model can
lead to poor performance with Newton-based root finders near
this critical voltage. Therefore this study employs the Dempwolf
model [24] which features a smooth transition across the critical
voltage. Cathode, grid, and plate currents are defined as follows:

IK = G ·

(
log

(
1 + exp

(
C ·
( 1

µ
· VPK + VGK

)))
· 1

C

)γ

IGK = G ·
(

log
(

1 + exp
(
Cg · VGK

))
· 1

Cg

)ξ
IPK = IK − IGK .

(9)
The model parameters are perveances G, Gg, adaption parameters
C, Cg and (positive) exponents γ, and ξ. For a discussion of the
physical interpretation of these parameters and how to extract them
from measured triode data see [24]. As the paper presents only
12AX7 triode parameters we choose to begin our investigation of
the Bassman family of preamplifiers with the JTM 45. Evaluation
of the perceptual accuracy of the Dempwolf model in the current
work will be limited as it is impossible without physical measure-
ments with which to compare. A comparison of various triode
models to measurements of a physical amplifier will be the subject
of future work.
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4. RESULTS

For rendered example audio output see the supplemental materials
online [22]. All simulation results presented here were performed
in MATLAB at 4× oversampling of a typical base audio sampling
rate of 44.1 kHz (176.4 kHz) using 1 kHz, 125 mV peak-to-peak si-
nusoids as input signals unless otherwise noted. This voltage was
chosen as a middle ground between the output level of a hot single
coil and a lower-output humbucker pickup [25]. WDF results are
compared to LTspice simulations carried out with an identically
parameterized Dempwolf triode model. Time domain results for α
values of 0.25, 0.5, 0.75, and 1.0 are presented in Figure 8, show-
ing excellent agreement with SPICE results for all volume settings.
For α = 0.25, the output waveform is still highly sinusoidal but
as volume is raised to α = 1.0 soft clipping distortion character-
istic of tube-based amplifiers becomes increasingly apparent. As
α raised further the soft-clipping of the output waveform becomes
increasingly asymmetric with positive excursions being noticeably
flatter than negative excursions.

Figure 9 provides a more detailed view of the time domain
simulation results for α = 1.0, showing the output voltage wave-
form, currents IPK and IGK for triodes T2 and T3, error signal
(defined as the sample-by-sample difference between the resam-
pled SPICE and WDF data), and per-sample Newton iteration and
backtrack counts. While T1B and T1N draw negligible grid cur-
rent for all volume settings and input voltages studied T2 and T3’s
grid currents reach appreciable fractions of the corresponding total
cathode currents. Furthermore, the maximum values of these two
grid currents are achieved with a 180◦ relative phase shift. This
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Figure 7: Comparison of Cardarilli and Dempwolf grid (IGK , left)
and plate (IPK , right) currents (above) and their derivatives (be-
low) with respect to VGK for fixed plate voltage VPK = 150 V.

makes sense since the inputs to these two stages are 180◦ out of
phase, the voltage amp stage involving T2 being an inverting stage.
The regions where T3’s grid current reaches its maximum are the
more heavily clipped positive output excursions. This asymmetric
clipping is crucial to the generation of even order harmonics and
emphasizes the importance of including the effects of grid currents
in triode simulations if they are to capture this expected behavior.

The maximum error signal is approximately 30 mV for an out-
put signal with a peak-to-peak voltage of approximately 165 V,
representing an error of less than 0.2%. The SPICE results have
been resampled onto the regular time grid of the WDF simulation
in order to calculate the error signal. The Newton solver shows
a remarkably low 3.03 average iterations and 0.08 backtracks per
audio sample for α = 1.0.

The WDF and SPICE simulation results are compared in the
frequency domain for α = 1.0 in Figure 10. Again, the SPICE
results have been resampled onto the WDF simulation’s time grid
(fs = 176.4 kHz) to enable spectral analysis and a Blackman win-
dow has been applied. Additionally, the SPICE data have been
offset horizontally by 100 Hz to improve intelligibility, as other-
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iteration/backtrack count per audio sample (1 kHz, 125 mV peak-
to-peak input, α = 1.0).

wise the peaks were more or less indistinguishable. The presence
of strong even-order harmonics is characteristic of the asymmet-
ric soft-clipping attributed to the inclusion of grid currents in the
Dempwolf triode model. The relatively higher noise floor of the
SPICE results is probably due to LTspice’s tolerance settings (de-
fault values were used) and error introduced by resampling the
variable-time-step SPICE data. No claims are made here as to the
perceptual significance of this noise floor discrepancy, as psycho-
acoustic effects are not considered in this work.

QIFFT interpolation [26, 27] is applied to the spectral peaks
revealing the first twenty harmonic peak frequencies to be identical

to within less than 1 mHz. The interpolated dB peak magnitudes
are listed in Table 2 and show remarkable agreement, differing by
0.1 dB or less up to the 17th harmonic with a maximum deviation
of 0.63 dB for the 18th harmonic.

Harmonic SPICE WDF Harmonic SPICE WDF
DC 143.31 143.31 11 73.61 73.54

1 130.72 130.72 12 79.08 79.09
2 114.76 114.76 13 70.99 70.99
3 113.57 113.57 14 73.52 73.55
4 104.53 104.52 15 67.74 67.70
5 91.24 91.23 16 64.81 64.81
6 86.96 86.94 17 64.32 64.22
7 89.42 89.42 18 53.80 53.17
8 81.37 81.37 19 57.29 57.55
9 80.28 80.28 20 55.93 56.21
10 73.41 73.46 − − −

Table 2: SPICE and WDF frequency response interpolated peak
values in dB (1 kHz, 125 mV peak-to-peak input, α = 1.0).

Finally, exponential sine sweeps [28] ranging from 20 Hz to
20 kHz over a 10 s time interval are used as inputs to the WDF
simulation. Results for α = 0.25 and α = 0.75 are shown in the
spectrograms of Figures 11 and 12 respectively. These results con-
firm that the model is well-behaved for input frequencies across the
audible range and that the model’s response features the expected
increase in intensity of higher harmonics as volume is increased.

5. CONCLUSION AND FUTURE WORK

5.1. Future Work

As the current work models a single fixed jumper cable configura-
tion, a future expanded preamplifier study will focus on including
a fully general, real-time switchable jumper model. This will rely
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Figure 10: WDF and SPICE frequency domain responses, SPICE offset by 100 Hz for clarity (1 kHz, 125 mV peak-to-peak input, α = 1.0).

Figure 11: Exponential sine sweep response spectrogram. 125 mV
peak-to-peak input, α = 0.25.

on recent theoretical developments that enable WDFs to accom-
modate multiple non-adapted linear root elements [29]. The effects
of stray pin capacitance will also be considered, most significantly
the enhanced Miller equivalent capacitance [11] between plate and
grid. It is our hope that Dempwolf model parameters for 12AY7
triodes can be obtained to facilitate comparison of the 5F6-A cir-
cuit’s response to that of the JTM 45. Further triode models will
also be evaluated and compared to the Dempwolf results presented
here. To yield a complete, stand-alone preamplifier model the tone
stack will also be incorporated into the WDF structure.

The current WDF simulation is in the process of being imple-
mented and optimized in RT-WDF—a C++ real-time framework
for WDF simulation described in [30]. Though the simulation is

Figure 12: Exponential sine sweep response spectrogram. 125 mV
peak-to-peak input, α = 0.75.

currently running slightly slower than real-time in an offline ren-
dering utility, it is our hope and belief that further optimization will
yield better-than-real-time performance.

Finally, it is worth noting that the most significant deviations
of the JTM 45 design occur later in the amplifier’s signal chain.
For one thing, the Marshall utilizes significantly more negative
feedback to drive the long-tail pair that feeds the push-pull power
amp [1]. Also, while early JTM 45’s utilized Radio Spares Deluxe [2]
output transformers, the 5F6-A featured the Triad model 45249.
Perhaps most significantly, the first Marshall cabinets made to ac-
company the JTM 45 were closed-back 4 × 12 designs loaded
with Celestions G12 speakers whereas the Bassman 5F6-A was
an open-backed 4 × 10 combo featuring Jensen P10Q’s. There-
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fore in addition to continued refinement of the preamplifier model
it is our aim to keep moving down the signal path, producing WDF
models of as many of these elements as possible.

5.2. Conclusion

The WDF simulation results for the JTM 45 preamplifier show ex-
cellent agreement with SPICE “ground truth” results for a range
of input signals and volume settings. In contrast to other WDF
tube amplifier studies no ad-hoc assumptions are made, obviating
the necessity for domain knowledge in analyzing the circuit and
setting up the simulation. The only simplification is the use of
a simple load resistance RL to represent the downstream circuit.
When considered alongside a previous study of the Fender tone
stack [6], the entire preamplifier circuit of Bassman-derived am-
plifiers has now been accurately modeled using WDFs. The use of
Newton solver to calculate the nonlinear scattering at the root in-
stead of tabulated methods leads to a much more compact memory
footprint. It further allows the algorithm designer to trade simu-
lation accuracy for computation time in a dynamic way by tuning
the solver’s tolerance parameter.
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ABSTRACT

We present a computational model of the Hammond tonewheel
organ vibrato/chorus, a musical audio effect comprising an LC
ladder circuit and an electromechanical scanner. We model the
LC ladder using the Wave Digital Filter (WDF) formalism, and
introduce a new approach to resolving multiple nonadaptable lin-
ear elements at the root of a WDF tree. Additionally we formal-
ize how to apply the well-known warped Bilinear Transform to
WDF discretization of capacitors and inductors and review WDF
polarity inverters. To model the scanner we propose a simpli-
fied and physically-informed approach. We discuss the time- and
frequency-domain behavior of the model, emphasizing the spectral
properties of interpolation between the taps of the LC ladder.

1. INTRODUCTION

The Hammond tonewheel organ’s vibrato/chorus1 (Fig. 1, Table 1)
is a crucial ingredient of its unique sound. Its sonic character is
highly valued by musicians, having even been made into a gui-
tar effect [2]. The vibrato/chorus consists of an LC ladder circuit
(Fig. 1) and an electromechanical “scanner” [3], with three user-
selectable “vibrato” (V1, V2, V3) and “chorus” (C1, C2, C3) set-
tings. In this paper, we introduce a model of the Hammond organ
vibrato/chorus comprising a Wave Digital Filter (WDF) [4] model
of the LC ladder circuit and a simplified model of the scanner.

WDF theory was originally developed to facilitate the design
of digital filters based on analog ladder prototypes [5]. In that
context, the low coefficient sensitivity of these prototypes leads
to attractive numerical properties in the WDF. Recent years have
seen an expansion of the use of WDFs into new fields including
virtual analog circuit modeling [6]. Interestingly, ladder topologies
also show up in electro-mechanical equivalent circuit models of
the torsional modes of spring vibration relevant to spring reverb
units [7], another effect common in Hammond organs.

Modeling the Hammond organ LC ladder as a WDF presents
an issue that suggests an extension to WDF theory, and an oppor-
tunity to discuss finer points of polarity handling and reactance
discretization. First, the ladder circuit has two non-adaptable lin-
ear elements (a voltage source and a switch), one more than clas-
sical WDF methods can handle. To address this, we extend the
method of [8] to the case of multiple linear nonadaptable elements
at the root of a WDF tree. Second, the circuit’s 36 reactances cre-
ate magnitude responses with numerous salient features. We apply
the well-known frequency-warped bilinear transform to the wave-
digital capacitor and inductor to help control magnitude response
matching. Finally, polarity bookkeeping of port connections and
the 19 outputs of the LC ladder is non-trivial. Since it is essential

1We study the version used in late-model Hammond B-3s [1]

to get each port’s polarity correct and to simplify the calculation
of node voltages, we review the derivation of wave-digital polarity
inverters and illustrate their systematic use.

Although the vibrato/chorus has not been studied in the vir-
tual analog context, there exists extensive related work on mod-
eling other aspects of the complex and pleasingly idiosyncratic
sound of the Hammond organ. For the practicing musician, a se-
ries of five Sound on Sound articles (beginning with [9]) details
how to mimic each sub-system of the Hammond from tonewheel
to Leslie speaker using standard synthesis tools. [10] points out the
difficulty of emulating the vibrato/chorus using a standard digital
chorus. Numerous commercial emulations known as “clonewheel
organs” have been released over the years. Academic papers have
covered various aspects of the Hammond sound. Pekonen et al. [11]
propose efficient models of the organ’s basic apparatus including
tonewheels draw-bars. More abstractly, a novel “Hammondizer”
effect by Werner and Abel [12] imprints the sonic characteristics
of the organ onto any input audio, extending effect processing [13]
within a modal reverberator framework [14]. An important part
of the organ’s sound, the Leslie rotating speaker [15] has been
the subject of the majority of Hammond-related academic work.
Its simulation has been tackled using a perceptual approach [16],
modulated and interpolated delay lines [17,18]2, Doppler shift and
amplitude modulation [19, 20], a measurement-based black box
approach [21], and spectral delay filters [11].

The paper is structured as follows. Section 2 details the Ham-
mond vibrato/chorus. Section 3 presents a simplified model of the
scanner. Section 4 presents a WDF model of the LC ladder circuit.
Section 5 characterizes these models.

2. REFERENCE SYSTEM DESCRIPTION

This section details the Hammond Organ vibrato/chorus, which in-
cludes a LC ladder circuit (Fig. 1, bottom, Section 2.1) and an elec-
tromechanical “scanner” apparatus (Fig. 1, top, Section 2.2). The
gray box on Fig. 1 represents a bank of switches that connect the
tap node voltages v1 · · · v19 on the ladder to the terminals t1 · · · t9
on the scanner. The setting (V1/V2/V3/C1/C2/C3) controls these
switches according to Table 2.

In principle, the LC ladder serves the same purpose as the de-
lay line in a standard digital chorus effect [22]. The LC ladder
differs from a delay line in that the LC ladder is not strictly uni-
directional and that it filters as it delays a signal. This filtering
features pronounced non-uniform passband ripples and a lowpass
cutoff that depends on the inductor and capacitor values.

On the other hand, the scanner serves the same purpose as in-
terpolation in a standard digital modulated-delay effect [22]. Stan-

2https://ccrma.stanford.edu/ jos/pasp/Leslie.html
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Figure 1: Vibrato/Chorus Schematic.
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Figure 2: Vibrato/Chorus Schematic Partitioned.

Table 1: Component values.

Name value units
Rc 22 kΩ
R1+ 27 kΩ
R1− 68 kΩ
R2+ 56 kΩ
R3+ 39 kΩ
R2−,R3− 0.15 MΩ
R4+ 33 kΩ
R5+ 18 kΩ
R6+ 12 kΩ
R4− · · ·R6− 0.18 MΩ
L1 · · ·L18 500 mH
C1 · · ·C17 0.004 µF
C18 0.001 µF
Rt 15 kΩ

dard digital linear interpolation has a well-known lowpass charac-
teristic [18]3 that digital audio effect designers often try to avoid
by using, e.g., allpass interpolation [18]4. Ironically, the scanner of
the Hammond Organ vibrato/chorus essentially implements linear
interpolation—meaning it does not have an allpass characteristic.

Table 2: Taps for different depth settings.

depth t1 t2 t3 t4 t5 t6 t7 t8 t9
V1/C1 v1 v2 v3 v4 v5 v6 v7 v8 v9

V2/C2 v1 v2 v3 v5 v7 v9 v11 v12 v13

V3/C3 v1 v2 v4 v7 v10 v13 v16 v18 v19

2.1. LC Ladder Circuit

The input signal is represented as an ideal voltage source vin. 19
LC ladder stages are composed of inductors L1 · · ·L19, capac-
itors C1 · · ·C19, and voltage divider pairs Rk+ and Rk−, k ∈
[1 · · · 6]. A termination resistor Rt ends the ladder. A switch con-
trols whetherRc is shorted or not. Electrical component values for
the circuit are given in Table 1 [1].

3https://ccrma.stanford.edu/~jos/pasp/
Fractional_Delay_Filtering_Linear.html

4https://ccrma.stanford.edu/~jos/pasp/First_
Order_Allpass_Interpolation.html

This highly structured circuit is partitioned into four subcir-
cuits as shown in Fig. 2. The first subcircuit includes vin, Rc, and
the switch and presents a port “D” to the rest of the circuit.

The second subcircuit has 6 stages indexed by x ∈ [1 · · · 6]:
inductor Lx, capacitorCx, and voltage divider pairRx+ andRx−.
The tap node voltage vx is the output of each stage. Each stage
presents a left-facing (“x, l”) and right-facing (“x, r”) port to the
rest of the circuit. Ports “D” and “1, l” are connected and the 5
port pairs “(k + 1), l” and “k, r”, k ∈ [2 · · · 6] are connected.

The third subcircuit has 12 stages indexed by y ∈ [7 · · · 18]:
inductor Ly and capacitor Cy . The tap node voltage vy is the
output of each stage. Each stage presents a left-facing (“y, l”) and
right-facing (“y, r”) port to the rest of the circuit. Ports “6, r” and
“7, l” are connected and the 11 port pairs “(k + 1), l” and “k, r”,
k ∈ [7 · · · 17] are connected.

The fourth subcircuit is simply the termination resistance Rt
that presents port t to the rest of the circuit and has the tap node
voltage v19 as an output. Ports “18, r” and “t” are connected.

2.2. Scanner Device

The vibrato scanner consists of a moving rotor with node volt-
age vout that cyclically scans a stack of keystone-shaped output
plates across 16 fixed stacks of identical plates arranged in a cir-
cle. At any given time, 2 of these 16 stacks partially overlap the
rotor stack, forming two capacitors whose capacitances are pro-
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Figure 3: Gain applied to each scanner terminal t1 · · · t9.

portional to the overlapping area between each fixed stack and the
rotor stack. Conceptually, these two capacitances form a time-
varying capacitive voltage divider, which crossfades between the
node voltages of these 2 stacks. The 16 fixed plate stacks are con-
nected to the 9 terminals t1 · · · t9 which sets their respective node
voltages to the node voltages of the corresponding terminals. As
the rotor undergoes a complete rotation, it “scans” from t1 to t9
and back. The “there-and-back-again” form of the tap gains pro-
duces various cyclic vibrato effects.

3. SCANNER MODEL

In this section, we propose a simplified model of the scanner. Since
the scanner capacitances are small compared to the ladder capac-
itors, it is reasonable to assume that they don’t load the ladder
circuit. Therefore, we are justified in modeling the LC ladder
and scanner separately. The scanner takes the 19 node voltages
v1 · · · v19 as input and produces a single output voltage vout.

At any given time, two plates overlap the rotor plate, creating
two distinct capacitors. We assume that only these two capacitors
have a non-negligible contribution to the output voltage. Under
that assumption, those two form a capacitive voltage divider. To re-
flect this, we model the scanner output as a crossfade between two
node voltages vα and vβ according to vout = η vα+(1−η)vβ . The
mixing coefficient η ∈ [0.0, 1.0] varies with the two capacitances
Cα and Cβ as η = Cα/(Cα +Cβ). Assuming circular symmetry
of each plate and ignoring the small gap between stacks, Cα +Cβ
is a constant. Since each capacitance is theoretically proportional
to the overlap area, the gain is modeled as a simple function of
the rotor angle, according to Fig. 3. The variation of rotor angle
over time follows the one in the physical organ, where the rotor is
driven at a constant rate of ≈ 6 Hz by a synchronous motor [3].

4. WDF MODEL OF LC LADDER

In this section, we detail WDF simulation of the LC ladder circuit.
The structure for subcircuits two, three, and four is outlined in Sec-
tion 4.1. The first subcircuit contains multiple nonadaptable linear
elements and cannot be handled with standard WDF techniques.
We introduce a new approach to resolving this issue in Section 4.2
and apply it to the LC ladder in Section 4.3. In Section 4.4 we
use the frequency-warped bilinear transform for WDF discretiza-
tion of capacitors and inductors; in Section 4.5 we review WDF
polarity inverters which are essential for proper bookkeeping.

4.1. WDF Tree (Subcircuits 2–4)

To model the LC ladder circuit, we derive the WDF structure of its
circuit. Fig. 4 shows the partitioned schematic rearranged to high-
light the underlying topology (with polarities labeled) and Fig. 5
shows the resulting WDF structure.

The 6 stages in the second subcircuit can be decomposed into
standard WDF one-ports (Rx−, Rx+, Lx, and Cx) and adaptors
(Sx, Sx′, Px, and Px′). The presence of the two inverters Ix and
Ix′ warrants explanation. We have already assigned polarities to
the ports that connect stages, and series and parallel adaptors have
inherent port polarities. Inverters Ix reconcile the discrepancy be-
tween the polarity of the right-facing port of each parallel adaptor
Px and the left-facing port of P(x+1)′ or S7. Inverters Ix′ sim-
plify the extraction of node voltages vx, which are calculated by
combining port voltages across resistors Rc and Rx− as

vx = vc + vx− =
1

2
(ac + bc + ax− + bx−) , (1)

where vc, ac, and bc are the port voltage across, incident wave, and
reflected wave at resistor Rc in the first subcircuit.

The 12 stages in the third subcircuit can be decomposed into
standard WDF one-ports (Ly and Cy) and adaptors (Sy and Py).
Again inverters Iy reconcile the discrepancy between the polar-
ity of the right-facing port of each Py and the left-facing port of
Sy+1 or Rt. Node voltages vy in this subcircuit are extracted by
combining the port voltages of resistor Rc and the left-facing port
voltage of each stage vy,l as

vy = vc + vy,l =
1

2
(ac + bc + ay,l + by,l) . (2)

The fourth subcircuit is decomposed simply into a WDF resis-
tor Rt. Node voltage v19 is extracted by

v19 = vc + vt =
1

2
(ac + bc + at + bt) . (3)

4.2. Root with Multiple Elements

Reference circuits such as the Hammond organ vibrato/chorus cir-
cuit commonly include multiple nonadaptable elements (linear and
nonlinear). Trying to accomodate multiple nonadaptable elements
in a standard WDF connection tree causes unavoidable delay-free
loops which leads to computability problems.

Historically, algorithm designers commonly use one of two
tactics to ameliorate these issues. One tactic is to alter the ref-
erence circuit to make the structure computable. It is common to
approximate ideal voltage sources as resistive voltage sources with
small series resistances and to approximate ideal current sources as
resistive current sources with large parallel resistances. The same
principle can be used to approximate short circuits or the closed
state of switches as small resistances and to approximate open cir-
cuits or the open state of switches as large resistances. Further-
more, certain nonlinear elements can be reasonably approximated
by linearizing them with controlled sources and immitances [6,23].
A second tactic is to alter the WDF by introducing fictitious unit
delays to resolve delay-free loops. Fettweis used this approach [5]
before developing reflection-free ports [24], and it is still common
in virtual analog [25, 26]. Of course, altering the reference circuit
through these tactics introduces error (e.g. dissipation, dispersion)
and can have adverse effects on stability.
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Figure 4: LC ladder Schematic, rearranged towards WDF.
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Figure 5: WDF structure of LC ladder.

In [8], Werner et al. propose a method for handling multiple
nonlinearities that does not resort to these tactics. All of the non-
linearities are grouped as sub-elements of a WDF structure at the
root of the WDF tree. Inside that structure, and after proper modifi-
cation of the circuit graph, those elements end up being connected
to each other through a complex R-type adaptor that also inter-
faces those elements to the rest of the circuit. The method of [27]
is used to solve for the scattering behavior of this R-type adap-
tor. Because of the non-adaptable nature of the root elements, the
response of the root adaptor structure from the perspective of the
rest of the tree forms an implicit loop that we can resolve using ei-
ther a tabulated solution [8] or an iterative solution [28,29]. These
approaches extends readily to nonadaptable linear elements, but is
unnecessarily complex. Here we propose a novel more efficient
approach for the case of multiple nonadaptable linear elements.

Consider a complex root topology with “external” incident
waves ae and reflected waves be facing the rest of the circuit and
“internal” incident waves ai and reflected waves bi facing the non-
adaptable linear elements, related by the scattering relationship[

bi
be

]
=

[
S11 S12

S21 S22

] [
ai
ae

]
(4)

The vector of nonadaptable linear elements relates the incident

waves aroot and inputs xroot to reflected waves broot by

broot = Φaroot + Ψxroot , (5)

where Φ and Ψ embody the wave-domain behavior of the linear
elements. aroot and broot are related to the ai and bi by

aroot = bi and ai = broot . (6)

Combining (4), (5), and (6) and solving for be yields

be = Γae + Θxroot with

Γ = ΘS12 + S22 , Θ = S21 (I−ΦS11)−1 Ψ, .
(7)

4.3. WDF Root (Subcircuit 1)

Here, we apply the theory developed in Section 4.2 to the first sub-
circuit of the Hammond vibrato/chorus. The first subcircuit con-
tains two non-adaptable elements, a voltage source and a switch.
As a result, those two elements need to be grouped at the root of
the WDF structure following the method outlined in Section 4.2,
connecting them through anR-type adaptor [27] with incident and
reflected waves

a =
[
a>i a>e

]> and b =
[
b>i b>e

]>
, (8)

DAFX-274



Proceedings of the 19th International Conference on Digital Audio Effects (DAFx-16), Brno, Czech Republic, September 5–9, 2016

GB 0 0 0 −GB 0 0 −1 0 −1 0

0 GA +GD 0 −GA 0 0 −GD 0 0 0 −1
0 0 GC 0 0 −GC 0 0 −1 0 0

0 −GA 0 GA 0 0 0 1 0 0 0
−GB 0 0 0 GB 0 0 0 1 0 0

0 0 −GC 0 0 GC 0 0 0 1 0

0 −GD 0 0 0 0 GD 0 0 0 1
−1 0 0 1 0 0 0 0 0 0 0
0 0 −1 0 1 0 0 0 0 0 0
−1 0 0 0 0 1 0 0 0 0 0
0 −1 0 0 0 0 1 0 0 0 0





0 1 2 3 4 5 6 A B C D

0

1

2

3

4

5

6
A
B
C
D

v 0©
v 1©
v 2©
v 3©
v 4©
v 5©
v 6©
jA
jB
jC
jD




=

0
0
0
0
0
0
0
eA
eB
eC
eD





Figure 6: MNA matrix. Red and blue cells respectively show examples of resistor and voltage source “stamps” [27].

“external” wave vectors

ae =
[
aC aD

]> and be =
[
bC bD

]>
, (9)

and “internal” wave vectors

ai =
[
aA aB

]> and bi =
[
bA bB

]>
. (10)

Using the method of [27], we can solve for the scattering matrix S
that relates the incident waves a and reflected waves b as b = Sa.
To do so, we attach instantaneous Thévenin port equivalents to
each of the ports A · · ·D (Fig. 4b) and confront Modified Nodal
Analysis (the MNA system for Fig. 4b is shown in Fig. 6) with the
standard voltage wave definition, yielding

S = I + 2
[
0 R

]
X−1 [0 I

]> (11)

where R = diag ([RA · · ·RD]) is the diagonal matrix of port re-
sistances and X is the MNA system matrix.

The vector of nonadaptable linear elements includes the volt-
age source vin and the switch, which relate “root” wave vectors

aroot =
[
aA′ aB′

]> and broot =
[
bA′ bB′

]>
. (12)

As before, port connections enforce aroot = bi and ai = broot.
The ideal voltage source vin has the wave-domain relationship

bA′ [n] = aA′ [n] + 2 vin[n]. (13)

An ideal switch has the wave-domain relationship

bB′ [n] = w aB′ [n] , w =

{
−1 open switch
+1 closed switch

. (14)

In the context of (5), (13)–(14) define

Φ =

[
−1 0
0 w

]
, Ψ =

[
2 0
0 0

]
, xroot =

[
vin

0

]
. (15)

Plugging (15) and (11) into (7) yields be, solving the root topology
with multiple nonadaptable linear elements.

4.4. Frequency-Warped One-Port Linear Reactances

Having solved the issue of realizing the WDF, we now turn our
attention to discretization schemes for its reactances. The LC lad-
der’s 36 reactances combine to create magnitude responses with
numerous salient features, especially a sharp lowpass cutoff. To

control the magnitude response’s match to the reference domain,
we apply the well-known frequency-warped bilinear transform to
the wave-digital capacitor and inductor.

WDFs involve one-port ideal linear reactances: the capacitor
(of capacitance C) and inductor (of inductance L). Their current–
voltage relationships are:

Cv̇(t) = i(t) and v(t) = Li̇(t) (16)

where v is the port voltage, and i is the port current. Their corre-
sponding Laplace transforms are:

CsV(s) = I(s) and V(s) = LsI(s) . (17)

Plugging in the standard WDF voltage-wave definitions

a = v +Ri and b = v −Ri (18)

parameterized by arbitrary port resistance R yields continuous-
time transfer functionsH(s) = B(s)/A(s):

HC(s) =
1−RCs
1 +RCs

and HL(s) =
R− Ls
R+ Ls

(19)

To simulate the system, we discretize reactive elements to ob-
tain H(z−1) = B(z−1)/A(z−1) for each. WDFs commonly
use the bilinear transform (BLT) [4], which substitutes 2

T
1−z−1

1+z−1

for s in H(s) to form H(z−1) (T is the sampling period). The
BLT’s desirable numerical properties include transfer function or-
der preservation, unconditional stability, and passivity in the WDF
domain, but it suffers from a well-known frequency distortion [18].

A common extension to the BLT is the warped (or generalized)
BLT which is identical except T is replaced by T ′ [30] so as to
substitute 2

T ′
1−z−1

1+z−1 for s. This degree of freedom is used to alter
the BLT’s frequency distortion and ensure that, by selecting T ′

properly, one continuous-time frequency Ω0 is mapped correctly,
i.e., H(jΩ0) = H(e−jΩ0T ). The coefficient T ′ that achieves the
correct mapping is given by:

T ′ = 2 tan (Ω0T/2) /Ω0 . (20)

The warped BLT has the same desirable numerical properties as
the BLT. Since it is not common in the WDF context, we briefly
develop warped BLT discretization of WDF one-port reactances.

One-port linear reactances have a first-order continuous-time
transfer function, so the warped BLT yields a first-order transfer
function in discrete time with z-transform

H(z−1) =
B(z−1)

A(z−1)
=
β0 + β1z

−1

α0 + α1z−1
. (21)
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For a capacitor C and inductor L, these coefficients are:

C: β0 = α1 =
T ′

2C
−R , β1 = α0 =

T ′

2C
+R (22)

L: β0 = −α1 = R+
2L

T ′
, β1 = −α0 = R− 2L

T ′
. (23)

To eliminate delay-free loops, all one-port leaf elements of a
WDF require adaptation: picking a value of R that satisfies β0 =
0. The port impedances that adapt a capacitor and inductor are

RC = T ′/(2C) and RL = 2L/T ′ (24)

which yield discretized transfer functions

HC(z−1) = z−1 and HL(z−1) = −z−1 . (25)

Interestingly, the discretized transfer functions of the capacitor
and inductor do not depend on C, L, or T ′. However, all of these
do affect their adapted port resistance.

i1

i2v1
−

+
v2

+

−

(a) Kirchhoff domain.

b2

a2

a1

b1

+�−

(b) Wave domain.

Figure 7: WDF 2-port series adaptor / inverter.

4.5. Wave-Digital Inverter

We saw above that wave-digital polarity inverters must necessarily
be employed for proper bookkeeping of port connection polarity
and to simplify the calculation of node voltages. Here, we review
the derivation of those inverters.

Consider two connected ports 1 and 2 with port voltages v1

and v2 and port currents i1 and i2; these ports can be connected in
two ways. In the Kirchhoff domain, a two-port parallel connection
is characterized by v1 = v2 and i1 = −i2 and a two-port series
connection by i1 = i2 and v1 = −v2. Plugging in the standard
WDF voltage wave definition (18) yields a scattering relationship[

b1
b2

]
=

[
s11 s12

s21 s22

]
︸ ︷︷ ︸

S

[
a1

a2

]
, (26)

parameterized by the two port resistances R1 and R2. These two-
port adaptors scatter according to

S =

[
−R1−R2
R1+R2

2λR1
R1+R2

2λR2
R1+R2

R1−R2
R1+R2

]
, λ =

{
−1 series
+1 parallel

(27)

and are both rendered reflection-free by setting R1 = R2:[
s11 s12

s21 s22

]
=

[
0 λ
λ 0

]
. (28)

Notice that the reflection-free two-port parallel connection is sim-
ply a normal WDF port connection [4] with each incident wave
equal to the opposite reflected wave. The two-port series connec-
tion inverts the reflected wave from each port to form the inci-
dent wave at the other port; it is in fact the wave-digital inverter
(Fig. 7) [27, 31].

5. RESULTS

Here we discuss some results that characterize our model of the
Hammond vibrato/chorus, including the impulse and magnitude
responses of each tap in the LC ladder (Section 5.1), a study on
the spectral aspects of scanner interpolation (Section 5.2), and the
response to a single sinusoid (Section 5.3). These results reveal a
variety of effects, including delay-length modulation, phaser-like
effects, amplitude modulation, and modulated comb filter effects.

5.1. Impulse and Magnitude Responses of LC Ladder

Figs. 8 and 9 show the impulse and magnitude responses at each
tap v1 · · · v19 under two different WDF discretizations compared
to a reference “ground truth” SPICE simulation.

In Fig. 8, we use a sampling rate of fs = 44100 Hz, with the
capacitors and inductors discretized using the standard BLT with
no frequency warping, i.e., T ′ = T = 1/fs ≈ 2.2676× 10−5. In
Fig. 9, use use instead a warped BLT with T ′ chosen to match the
frequency Ω0 = 7075 Hz, approximately the passband edge of the
ladder, yielding T ′ ≈ 2.2724× 10−5 (20).

In the time domain plots, it can be seen that the LC ladder ap-
proximates a delay line. In theory, LC ladders have an idealized
total delay time of

√∑
L×

∑
C [32], meaning ≈ 0.85 ms for

the Hammond vibrato/chorus. It can be seen in the SPICE simula-
tions that the impulse is delayed and “smeared” progressively as it
travels down the line, and indeed experiences ≈ 0.85 ms of delay
by tap 19. To understand the complex nature of this smearing, we
turn to the magnitude response.

In the magnitude response, the lowpass characteristic of the
LC ladder is apparent. In the SPICE simulations, the passband
edge frequency is ≈ 7075 Hz. The amount of attenuation in the
stopband depends on tap index: v1 has no attenuation, and the
slope increases as tap index increases. Notice that in the simula-
tion using the unwarped BLT, dc is matched perfectly, while fre-
quency distortion builds up as frequency increases. Specifically,
the passband edge is depressed by almost 500 Hz compared to the
SPICE simulation. Using the warped BLT, 7075 Hz is matched
perfectly. While matching the passband edge may be preferable
due to its perceptual salience, a mismatch remains for the rest of
the magnitude response, most noticeably between dc and the pass-
band edge. While the passband has dozens of features, the warped
BLT can only match one. Notice that, back in the time domain, the
frequency warpings of different discretizations manifests as dif-
ferent smearings. Alternatively, applying 4× oversampling is an
effective though expensive way to achieve good agreement from
dc to the passband edge.

5.2. Magnitude Response of Scanner Model Interpolation

Fig. 10 shows the magnitude response of scanner model interpo-
lation between terminals for the V1 (Fig. 10a), V2 (Fig. 10b), and
V3 (Fig. 10c) settings (using the unwarped BLT). dB markings are
shown on the color axis. The horizontal axis represents the scanner
angle θ. At the vertical markings with tap indices labeled under-
neath, the scanner is exactly on one of the terminals. Between tap
indices are interpolations between them.

In addition to providing a time-varying delay, the ladder circuit
and scanner impart complex spectral coloration. First, the sharp
passband edge is modulated slightly over the course of each vi-
brato cycle. The passband ripples also follow complex trajecto-
ries during each cycle. Since the ripples are relatively deep (many

DAFX-276



Proceedings of the 19th International Conference on Digital Audio Effects (DAFx-16), Brno, Czech Republic, September 5–9, 2016

0 0.5 1 1.5 2 2.5
−7.5

−7

−6.5

−6

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

time (ms)

ta
p
 v

o
lt

ag
e 

(V
)

(a) Impulse response.

1000 2000 3000 4000 5000 6000 7000 8000

−252

−228

−204

−180

−156

−132

−108

−84

−60

−36

−12

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

frequency (Hz)

m
ag

n
it

u
d

e 
(d

B
)

 

 

SPICE

WDF

(b) Magnitude response.

Figure 8: Responses of the LC ladder, using unwarped BLT.

around 6 dB and some larger), they create an audible phaser-like
effect on broadband input signals. The voltage dividers Rk− and
Rk+, k ∈ 1 · · · 6, produce amplitude modulation during each cy-
cle of θ [10]. Table 3 shows the gain of each stage’s divider.

Table 3: Voltage divider gains (in dB) at each tap.

tap 1 2 3 4 5 6 7 · · · 19
gain −2.9 −2.8 −2.0 −1.5 −0.83 −0.56 0

Since the Hammond vibrato/chorus approximates a delay line
it is not surprising that the magnitude response of the scanner inter-
polation exhibits comb-filter-like features. Assuming the idealized
delay time discussed earlier, linear interpolation would produce
notches halfway through each crossfade at frequencies dictated by
the separation between taps, at the locations indicated by × sym-
bols. The actual minima in the Hammond response are very close
to these notches, as predicted.

5.3. Sinusoid Study

We study a single 1760 Hz (A6 in scientific pitch notation) sinu-
soidal input for the three vibrato depth settings (Fig. 11). Notice
that the V1 setting produces the narrowest vibrato, the V2 setting
produces a medium vibrato, and the V3 setting produces the widest
vibrato. Notice also that each setting produces a differently shaped
vibrato. The vibrato width and shape are a consequence of the dif-
ferent tap spacings of each setting; the time-varying phase shift
for a given frequency, which manifests as frequency modulation,
is proportional to the time derivative of its group delay [19]. The
combination of amplitude modulation and frequency modulation
is visible as 6× 16 Hz spaced sidebands around the main signal.
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Figure 9: Responses of the LC ladder, using warped BLT.

6. CONCLUSION

In this study on modeling the Hammond organ vibrato/chorus, we
introduced new theoretical tools enabling the inclusion of multi-
ple linear nonadaptable elements at the root of a WDF tree, ap-
plied the well-known frequency-warped bilinear transform to the
derivation of wave-digital capacitors and inductors, and illustrated
the systematic use of wave-digital polarity inverters. Although be-
yond the scope of this paper, the complex spectral properties and
frequency-dependent vibrato of the Hammond organ vibrato/chorus
deserve further study (cf. the complexities of vocal vibrato, includ-
ing “spectral modulation” [33]).
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ABSTRACT

In this paper, iterative zero-finding techniques are proposed to
resolve groups of nonlinearities occurring in Wave Digital Filters.
Two variants of Newton’s method are proposed and their suitabil-
ity towards solving the grouped nonlinearities is analyzed. The
feasibility of the approach with implications for WDFs containing
multiple nonlinearities is demonstrated via case studies investigat-
ing the mathematical properties and numerical performance of ref-
erence circuits containing diodes and transistors; asymmetric and
symmetric diode clippers and a common emitter amplifier.

1. INTRODUCTION

The Wave Digital Filter concept is a method for digitizing ana-
log reference circuits. WDFs were originally developed in the
1970s with the intention of realizing digital lattice and ladder filter
topologies [1] and, as such, were developed to preserve modular-
ity and properties analogous to passivity and losslessness inher-
ent in the analog prototype circuits being modeled [2]. Currently,
WDFs are used extensively in virtual analog and physical model-
ing [3–11] for those same reasons. In 2015, a more general ap-
proach has been developed that deals with both multiple/multiport
nonlinearities and arbitrary network topologies [12, 13].

The purpose of this paper is to build upon this general ap-
proach by incorporating an iterative solver into the WDF structure
to solve the system of multiple/multiport nonlinearities. Newton’s
Method with backtracking is employed because it is a classic and
robust zero-finding technique. Common models of the diode and
transistor are studied to learn about the convergence properties us-
ing Newton’s method of the underlying mathematical functions.
Lastly, a case study of three simple reference circuits is presented
which demonstrates the generality and promise for WDF imple-
mentation of circuits with multiple nonlinearities.

Section 2 summarizes the previous work related to WDFs with
nonlinearities and reviews the general approach which the itera-
tive method will be incorporated into. In Section 3, the setup of
the iterative solver within the general approach is presented and
the iterative techniques are introduced. Sections 4–5 present case
studies of circuits containing a single diode, pair of diodes and a
bipolar junction transistor. Section 6 summarizes the results.

2. PREVIOUS WORK

2.1. Nonlinear WDFs and Iterative Techniques

Many interesting musical devices contain nonlinear circuit ele-
ments and topologies which cannot be decomposed into only serial
and parallel connections. Early approaches to developing WDF

models with nonlinearities focused on reference circuits with cer-
tain types of single nonlinearities [14, 15]. Other solutions use
domain knowledge about the device or circuit to make simplifying
assumptions to realize computability of the WDF structure. These
include combining multiple nonlinearities into a single one-port
nonlinearity [5, 6, 9] and simplifying multiport nonlinearities into
cross-control models [4,7,10]. A comprehensive overview of early
nonlinear WDF implementations can be found in [15].

The first example of including a nonlinear circuit element in a
WDF [14] involved attaching the nonlinearity to an adapted port
at the root of the WDF. This is necessary because the model of the
nonlinearity is delay free, and a port reflection back to the nonlin-
earity would create a delay-free loop. In addition, the nonlinearity
studied was modeled with an invertible function in the Kirchhoff
domain from which it was possible to map to a corresponding in-
vertible function in the wave domain which was then able to be
solved explicitly. In modern WDF structures, child elements in the
WDF tree are adapted so that their upward-facing port is reflection
free. The root element cannot be adapted so if the reference circuit
contains a non-adaptable nonlinear or linear element it is placed at
the root of a binary connection tree [4].

In [5], the LambertW function is used to solve a single diode
equation or approximate the solution to an anti-parallel diode equa-
tion. In particular, a lookup table is used to determine an initial
guess at the solution which is then refined through iteration on an
approximation of the Lambert W function. The case of multiple
diodes is generalized and improved in [6].

In [3], a WDF implementation of a triode tube amplifier using
the Cardarilli triode model is introduced. This method involves
solving one or two nonlinear equations depending on whether or
not grid current is taken into account. In both cases, the authors
use the secant method to solve the nonlinear equations and, in the
case where grid current is taken into account, multidimensional
zero finding is avoided by solving one of the nonlinear equations
first and using that result to determine whether or not the second
nonlinear equation needs to be iterated on. This model was found
to be more computationally efficient than previous attempts [7,10]
and perform more realistically, especially when in saturation.

Another approach to WDFs with multiple nonlinearities is pro-
vided in [16] where the passivity property of WDFs is exploited to
show that WDFs are contractive systems which are guaranteed to
converge to a fixed point under global iteration. Using this, they
introduce an iteration time dimension and at each sample iterate
along this dimension until the steady-state solution for that sam-
ple has been reached for each nonlinearity with all other circuit
values held constant. While this approach can be applied to com-
plex topologies that are expressible as non-tree-like arrangements
of series and parallel adapters and models with multiple nonlin-
earities, the convergence of the fixed-point iteration is only linear
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and the speed of convergence is highly dependent on the choice of
port resistance. Additionally, the contractivity property only holds
if the nonlinear elements are also contractive which excludes non-
contractive nonlinearities such as transistors.

This approach is expanded upon in [17] where the unrelaxed
fixed point iteration scheme is replaced with the secant method.
They additionally modify the secant method to control the step in
the search direction in a way such that it always moves in the direc-
tion of the zero. For multidimensional nonlinearities, two iteration
schemes are proposed. In the first, the iteration of all nonlineari-
ties is performed simultaneously in a vector formulation whereas
in the second each nonlinearity is iterated on individually.

The first method was found to be faster when it did converge
and the second method was found to converge in situations where
the first method did not converge. The primary benefits of the
methods in these two papers are that they preserve the modularity
of the WDF structure whilst the second paper’s results improves
the convergence of the iterations from linear to superlinear.

Another iterative approach based on a graph theoretic analy-
sis is given in [18]. In this approach, the entire circuit topology
is represented with a single scattering parameter matrix and power
waves are propagated between the circuit element ports. From this
representation a fixed point iteration can then be performed to re-
solve the delay-free loops introduced by nonlinear elements.

An example of iterative techniques being used in the imple-
mentation of circuits containing single nonlinearities as state space
filters is given in [19, 20]. This approach involves using the K-
method to linearize the nonlinearities into a system of equations
which can then be iterated on until convergence is reached with
the desired unknown quantity. Newton’s method is used to solve
single antiparallel diode nonlinearities whereas pretabulated tables
are suggested for realization of triodes and bipolar junction tran-
sistors (BJTs) in amplifier circuits.

2.2. A General Approach for Multiple/Multiport Nonlineari-
ties with Arbitrary Topologies

We review a general approach to set up a WDF structure with
any number of multiport nonlinearities as well as with any gen-
eral topology [12, 13].

First, the prototype circuit must be analyzed and decomposed
into parallel, series and rigidly connected components. This can
be accomplished using graph theoretic techniques [12, 21]. For
circuits containing multiple/multiport nonlinearities, all nonlinear-
ities are rigidly connected using the replacement graph technique
in [21] so that they are kept together as a single entity. The results
of this process is an SPQR tree where all nonlinear elements are
grouped together at the root of the tree in anR-type node.

To deal with the nonlinearities in the R-type node, all of the
nonlinearities are pulled out of the R-type node. This results in a
system of vector nonlinearities attached to aR-type adapter repre-
sented mathematically by the following system:

wave nonlinearity = {aI = Fw(bI) (1a)

scattering =

{
bI = S11aI + S12aE

bE = S21aI + S22aE
(1b)

S matrix =

[
S11 S12

S21 S22

]
, (1c)

where Fw represents the wave domain nonlinear equation(s), aI
and bI represent the vectors of internal incident and reflected waves

and aE and bE represent the external incident and reflected waves.
More specifically, all incident and reflected waves are defined in
terms of theR-type adapter with external waves propagating from
the WDF subtree and internal waves from the nonlinearities.

As described in [13], to calculate the S matrix, it is first nec-
essary to form an X matrix. This is done by attaching an instanta-
neous Thévenin port equivalent to each port of theR-type adapter
and then using Modified Nodal Analysis (MNA) to determine the
contents of the X matrix. It follows from the definitions of waves
and Thévenin port equivalents that S is given by the following ma-
trix equation:

S = I+ 2
[
0 R

]
X−1 [0 I

]T
, (2)

where R is a diagonal matrix of port resistances and I is the iden-
tity matrix.

Next, since most nonlinear circuit models are defined in the
Kirchhoff domain and Fw may be hard to obtain, it may be easier
to work with iC = Fk(vC). In that case a w–K converter matrix
C to convert incident and reflected waves aI and bI into voltage
and currents vC and iC is typically used. The C matrix is given
by:

C =

[
C11 C12

C21 C22

]
=

[
−RI I
−2RI I

]
, (3)

where RI is a diagonal matrix of internal port resistances. This
process results in three vector delay-free loops which can then be
reduced to one vector delay-free loop by combining the submatri-
ces of S and C into matrices E, F, M and N:

E = C12(I+ S11HC22)S12 (4a)
F = C12S11HC21 +C11 (4b)
M = S21HC22S12 + S22 (4c)
N = S21HC21 , (4d)

with H = (I−C22S11)
−1.

This formulation yields a structure in which all nonlinearities
in the circuit can be isolated together at the top of the WDF tree
above theR-type adapter. This leads to the following system with
the nonlinearities represented in the Kirchhoff domain:

iC = Fk(vC) (5a)
vC = EaE + FiC (5b)
bE = MaE +NiC , (5c)

where E, F, M and N are given in (4). If trying to work directly
from (5), dealing with the nonlinearity in the Kirchhoff domain,
it must be determined how to evaluate the nonlinearity as it still
contains a delay-free loop.

In [12], this delay-free loop is eliminated by means of the K-
method. With the K-method, the nonlinearity is solved either using
iteration or table lookup with pretabulated values of the nonlinear
function.

The general approach proposed in [12, 13] allows any proto-
type analog circuit to be turned into a computable WDF structure
regardless of topology or number of nonlinearities as long as the
nonlinearities possess a functional model representation. Use of
the K-method, however, implies a shear transformation of the non-
linearity models from the Kirchhoff domain to a domain consisting
of pseudo-wave variable p and current iC . Thus, if solutions are
tabulated in either domain, the table of solutions must be shear
transformed to the other domain. Finding the correct value in the
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sheared space can require complex search and interpolation meth-
ods. Additionally, the storage and computational requirements of
multidimensional tables quickly becomes challenging as the num-
ber of dimensions increases.

3. ITERATIVE TECHNIQUES

3.1. The General Approach with Nonlinear Solver

An iterative solution to the nonlinearities contained in (5a) is pre-
sented as an alternative to storing tables and to introduce generality
and the abilityto obtain solutions of a desired numerical precision.
The zero-finding formulation of the system in Section 2.2 is ob-
tained by substituting (5a) into (5b):

vC = EaE + FFk(vC) , (6)

and then solving the equation for zero to obtain:

H(vC) = EaE + FFk(vC)− vC . (7)

This nonlinear function H(vC) will give the values of vC and iC
that solve the instantaneous relationship.

Consequently, using an iterative technique such as Newton’s
method to find the zero of (7) presents itself as a natural method for
resolving the delay-free loop in the general framework presented
in Section 2.2.

In using such a technique, having a good initial guess is crucial
to the success of the zero-finding algorithm. In the context of (6)
and (7), a typical choice would be:

v0
C(n) = EaE(n− 1) + FFk(vC(n− 1)) , (8)

where v0
C(n) is the initial guess at the value of vC(n). However,

considering that vC(n−1) has already been propagated down and
back up the tree structure, the most current value of aE is already
known. Thus, another possible initial guess would be:

v0
C(n) = EaE(n) + FFk(vC(n− 1)) . (9)

In the case studies in Sections 4 and 5 both initial guess choices
will tested and investigated.

3.2. Newton’s Method

The basis of Newton’s method in a single dimension to find the
zero x∗ of a function f comes from the Taylor series expansion of
f about x∗ which leads to the recursive series of approximations
of x∗:

xn+1 = xn −
f(xn)

f ′(xn)
, (10)

for which xn → x∗ as n→∞ given that f and the initial guess x0
satisfy certain assumptions. The multivariate equivalent of New-
ton’s method is:

Xk+1 = Xk − J(Xk)−1F (Xk) , (11)

with X = (x1, x2, . . . , xn)
T , F = (f1, f2, . . . , fn)

T and where
J is the Jacobian matrix of F and the superscript represents the
current iterate.

In order for Newton’s method to converge quadratically in the
univariate case, it is necessary that f be twice continuously differ-
entiable, that x∗ is a simple zero of f (meaning that f ′(x∗) 6= 0

and f ′′(x∗) 6= 0) and the initial guess x0 is in a close enough
neighborhood of the zero [22, p. 85].

The condition for having global convergence is given by f
again being twice continuously differentiable as well as being an
increasing, convex function that has a zero [22, p. 86]. For a func-
tion meeting these assumptions, the zero x∗ is unique and can be
reached with any initial guess.

In order to have superlinear convergence in the multivariate
case, F must be continuously differentiable in a convex open set
around a simple zero X∗ as well as having a sufficiently close ini-
tial guess X0. Additionally, if F is Lipschitz continuously differ-
entiable near X∗ then, for sufficiently close X0, the convergence
is quadratic [23, p. 276].

3.3. Newton’s Method with Backtracking

Since the convergence of Newton’s method depends on the prox-
imity of the initial guess to a zero, attempts have been made to
alter Newton’s method to improve the convergence. One such al-
gorithm is called Newton’s method with backtracking or damped
Newton’s method.

The main idea behind the univariate version of this algorithm
is to keep the linear approximation of the function from overshoot-
ing the zero. This is accomplished by performing a backtracking
line search on the linear approximation of the function and ensur-
ing that the norm of the function is being reduced at each iteration.
Thus, rather than setting xn+1 = xn − f(xn)/f ′(xn) , the new
iterate is set to xn+1 = xn − αf(xn)/f ′(xn) where α ∈ (0, 1] .
Starting with α = 1 , α is multiplied by 0.5 – or any value in (0, 1)
– until the following condition is met:∣∣f (xn − αf ′(xn)−1f(xn)

)∣∣ ≤ (1− αµ)|f(xn)| , (12)

where µ ∈ (0, 1). This condition is called the sufficient decrease
condition and ensures that the next guess is moving closer to x∗.

In the multivariate case, the sufficient decrease criterion is
given by∥∥∥F (XK − αkJ(Xk)−1F (Xk)

)∥∥∥ ≤ (1− αµ)‖F (Xk)‖ . (13)

Newton’s method with backtracking does achieve global conver-
gence under certain assumptions about f [24]. Unfortunately, how-
ever, there are still a wide range of smooth functions for which
global convergence is not guaranteed.

3.4. Improving the Initial Guess

As previously noted, Newton’s method and Newton’s method with
backtracking depend on a good initial guess and being in a close
neighborhood of the zero in order to achieve quadratic conver-
gence.

In addition to the initial guess types discussed Section 3.1, an
additional enhancement would be to use another more globally
robust method to hone in on a better initial guess for Newton’s
method and then switch methods when the refined guess is suffi-
ciently closer to the region of quadratic convergence. One way to
accomplish this is by starting the iterations using a method called
Steepest Descent.

The univariate Steepest Descent method [25, pp. 654–659]
works by finding a value x̂ that minimizes a merit function g. The
merit function is chosen in such a way that g(x̂) = f(x∗) = 0
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Table 1: Diode Clipper Circuit Component Values

Component
Circuit R1 C1 C2

Clipper 1 2.2 kΩ 0.01 µF N/A
Clipper 2 2.2 kΩ 0.01 µF 0.47 µF

and, thus, is also the solution to the original problem at hand. The
following merit function is typically chosen:

g(x) =
1

2
f(x)2 . (14)

Successive approximations of x̂ are found by moving in the di-
rection of greatest decrease which is −g′(x), the negative of the
derivative of g. Backtracking is also employed so that the newest
estimate of the minimizer does not overshoot and move away from
the minimizer.

In the multivariate case, the merit function is given by

G(X) =
1

2
F (X)TF (X) , (15)

and the direction of greatest decrease is given by the negative gra-
dient −∇G(X) .

This method used by itself will eventually converge to the min-
imum of the merit function (which corresponds to the zero of the
original function, if it exists), but the convergence is only linear.
Even given that, it still approaches the zero quickly enough that a
few iterations can be enough to generate an initial guess for New-
ton’s method which will quickly converge to the zero.

In the implementation of Steepest Descent used in this paper,
a maximum number of iterations as well as a tolerance on the size
of the norm of the merit function are given. Thus, the algorithm
stops if the merit function has been sufficiently minimized or when
the maximum number of iterations has been reached.

Other methods exist, such as the Secant method and Broyden’s
Method, which numerically approximate the derivative and Jaco-
bian. Additionally, quasi-Newton methods exist which only eval-
uate the Jacobian once and then perform incremental numerical
updates of it at each iteration. These methods can reduce the com-
putational complexity of their corresponding algorithms but this
may sometimes be at the expense of reduced convergence speed
and/or loss of the roundoff error correction typically exhibited by
Newton’s method [25, ch. 10.3].

In the following case studies, the performance of methods from
Sections 3.3 and 3.4 will be evaluated on a circuit containing a
single diode, one containing antiparallel diodes and one contain-
ing a transistor. Additionally, the mathematical characteristics of
the nonlinear models of the diode and transistor will be examined
to determine whether any guarantees can be given to their conver-
gence using the proposed iterative methods.

4. DIODE CLIPPER CIRCUITS

The wave-domain solution of the diode has been well-studied in
literature [4–6, 8, 9, 12, 16, 17, 26–28] and an explicit solution ex-
ists using the Lambert W function [5, 6] (although the Lambert
W function requires an iterative method to either precalculate for
table lookup or solve at runtime). While the solution to the diode
can be tabulated in the wave domain, as has been previously done,
it will be informative to demonstrate the method of Section 3.1 on
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Figure 1: Diode Clipper Schematics and WDF Structures
(Dark Grey: Nonlinearities; Light Grey: R-type Adapter)

a circuit containing a single nonlinearity. Additionally, the mathe-
matical properties of Shockley’s diode model can be investigated.

An asymmetric diode clipper circuit consists of a resistive volt-
age source in parallel with a capacitor and a diode (Fig. 1a). We
model the diode using the Shockley diode equation:

iD = Is
(
evD/ηVT − 1

)
, (16)

where Is = 2.52 × 10−14 represents the reverse bias saturation
current, VT = 0.02585 represents the thermal voltage, η is the
ideality factor of the diode and vD is the voltage across the diode.

The scattering behavior of a parallel three-port adapter, which
is already known in explicit form [29], immediately gives us the S
matrix from the formulation of Section 2.2:

S =

[
S11 S12

S21 S22

]
=

 δA − 1 δB δC
δA δB − 1 δC
δA δB δC − 1

 . (17)

where
δm =

2Gm
GA +GB +GC

. (18)

From (3) it follows that the C matrix is:

C =

[
−RA 1
−2RA 1

]
. (19)

The WDF (Fig. 1c) is formed by placing the diode at the unadapted
port of the parallel adapter and then forming the system from (5).

From (7), the following equation representing the nonlinearity
is determined:
h(vC(n)) = EaE(n) + Ffk(vC(n))− vC(n)

= EaE(n) + F
[
Is
(
e
vC (n)/ηVT − 1

)]
− vC(n) .

(20)

From (20) it follows that

h′(vC(n)) = F
Is
ηVT

evC(n)/ηVT − 1 , (21)

h′′(vC(n)) = F
Is

(ηVT )2
evC(n)/ηVT , (22)
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Table 2: Newton’s Method with Backtracking Diode Clipper

Iterations Backtracking Output Error
Circuit Upsamp Mean Peak Mean Peak RMSE Peak

Clipper 1 1×fs 3.88 9 1.50 13 0.40 0.88
Clipper 1 2×fs 3.01 9 0.57 9 0.14 0.47
Clipper 1 4×fs 2.61 8 0.22 6 0.05 0.25
Clipper 1 8×fs 2.32 7 0.07 5 0.02 0.05
Clipper 2 1×fs 5.63 9 1.46 7 0.21 0.60
Clipper 2 2×fs 4.61 7 0.74 5 0.08 0.26
Clipper 2 4×fs 3.97 7 0.27 5 0.01 0.04
Clipper 2 8×fs 3.23 6 0.08 2 0.01 0.04

Input signal: 10 kHz, 4.5 peak amplitude sinusoid at 44.1 kHz sampling rate,

are the equations for the first and second derivatives, respectively.
Since IS , (ηVT )2 and evC(n)/ηVT are all positive, it is clear that
as long as F 6=

[
0
]
, then the diode model is either strictly convex

or strictly concave. In either case, from the results in Section 3.2
it follows that (20) is globally convergent if that condition holds
for the F matrix. In particular, the only way for F =

[
0
]

is if
S11 =

[
−1
]

which should never happen in practice. In the case of
a parallel adapter, that condition would only be possible ifGA, the
inverse of the port resistance RA, of the diode’s port, is equal to
zero. The requirement that RA > 0 prevents that from happening.
In any arbitrary circuit topology, one should be able to explicitly
set GA to avoid the degenerate condition F =

[
0
]
.

A symmetric diode clipper circuit (Figs. 1b, 1d) contains two
antiparallel diodes which (if identical) can be represented with the
following model:

iD = IS
(
evD/ηVT − e−vD/ηVT

)
. (23)

While the derivative is nonnegative:

d
dvD

iD =
IS
ηVT

(
evD/ηVT + e−vD/ηVT

)
> 0 (24)

⇐⇒ evD/ηVT > −e−vD/ηVT , (25)

from the equation for the second derivative:

d2

dv2D
iD =

IS
(ηVT )2

(
evD/ηVT − e−vD/ηVT

)
, (26)

it is easy to see that the second derivative takes on all values in R
and so the function is not convex.

In the general setting of a circuit containing Mfwd parallel
diodes and Mrev antiparallel diodes [6], the function for the non-
linearity is:

iD = IS [e
vD/MfwdηVT − e−vD/MrevηVT ] , (27)

from which the same conclusions can be reached. Therefore, global
convergence is not guaranteed for any combination of parallel and
antiparallel diodes.

Numerical simulations were run for WDF implementations of
both diode clipper circuits. The numerical values used in the sim-
ulations are given in Table 1 where Clipper 1 refers to the asym-
metric diode clipper and Clipper 2 refers to the symmetric diode
clipper. The device values and ideality factor of 1.75 are the same
as were used in [9].

For both diode clipper circuits, an LTspice [30] simulation was
ran for use as a baseline comparison to the WDF simulations. The
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Figure 2: Initial Guess Type Performance Comparison
(I.G. 1 refers to (9) and I.G. 2 refers to (8))

input voltage was a 10 kHz sinusoid with peak amplitude of 4.5 V
which was used to test the performance of the iterative technique
in response to a numerically challenging input signal. The LT-
spice simulations were generated using default LTspice configura-
tion values with a maximum timestep frequency 176.4 kHz which
reduces the interpolation error resulting from converting the adap-
tive timestep of the LTspice output to a fixed timestep.

Both Newton’s method with backtracking and the hybrid Steep-
est Descent–Newton’s method with backtracking algorithms were
compared. For both algorithms, the tolerance (which is calculated
as the L2 norm of (7)) was set to 1.42 × 10−8 V 1 and maximum
Newton iterations and backtracking steps were set to 200 and 50,
respectively.

The results of the simulations for Newton’s Method with back-
tracking are given in Table 2 where the error value is calculated as
the difference in output voltage between the LTspice simulation
and the WDF. RMSE is the root-mean-square error which is given
by

ERMSE =

√∑N−1
n=0 (xLT(n)− xWDF(n))2

N
, (28)

where xLT is the LTspice output voltage signal and xWDF is the
WDF output voltage. The peak error is calculated as the L∞ norm
of the difference in output voltages and is given by

EPEAK = max
n
|xLT(n)− xWDF(n)|. (29)

In both error formulas (28) and (29), xLT refers to the LTspice
output voltage, xWDF refers to the WDF output voltage and N is
the length of the signal in samples.

Even with this relatively high voltage and high frequency test
signal, acceptable iteration counts are achieved after 4 to 8 times
oversampling. The error values are the result of a combination of
factors including linear interpolation and the fact that WDFs use
the bilinear transform while LTspice does not. Results with lower
amplitude and lower frequency test signals yielded extremely fast
convergence with mean iterations typically between 1 or 2.

The results of the hybrid Steepest Descent–Newton’s method
(using the same 10 kHz sinusoid input signal) are given in Table 4.

1approximately the square root of machine epsilon in Matlab R2015b
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Table 3: Newton’s Method Common Emitter Amp Simulation
Results

Iterations Backtracking Error
Freq. Amp. Avg Peak Avg Peak Avg Peak
10 Hz 0.01V 1.00 2 0.00 0 0.0001 0.0004
10 Hz 0.1V 1.14 2 0.00 0 0.0015 0.0045
10 Hz 1V 1.69 2 0.00 0 0.0168 0.0630

100 Hz 0.01V 1.90 2 0.00 0 0.0025 0.0039
100 Hz 0.1V 1.98 2 0.00 0 0.0273 0.0588
100 Hz 1V 1.59 11 0.01 5 0.0835 1.1007
1 kHz 0.01V 2.00 2 0.00 0 0.0086 0.0137
1 kHz 0.1V 2.56 3 0.00 0 0.0889 0.4006
1 kHz 1V 2.31 30 0.45 105 0.1063 1.6206

10 kHz 0.01V 2.87 3 0.00 0 0.0093 0.0169
10 kHz 0.1V 3.48 5 0.00 0 0.1609 0.6769
10 kHz 1V N/A N/A N/A N/A N/A N/A

The number of maximum Steepest Descent algorithm iterations
were set to 2, 4 and 8 to illustrate the impact that Steepest Descent
has on reducing the mean number Newton iterations. The amount
of backtracking required by the Steepest Descent portion of the al-
gorithm did appear to increase somewhat rapidly with the increase
in maximum allowable iterations. There are, however, a number of
ways to perform the backtracking line search portion of the algo-
rithm so it may be possible to reduce the amount of backtracking
by implementing one of those different methods.

Overall, the hybrid algorithm achieves a significant reduction
in the number of Newton’s method iterations required, particularly
when combined with oversampling and a modest amount of Steep-
est Descent iterations.

Regarding choice of initial guess, Fig. 2a shows that Newton’s
method required fewer iterations for the asymmetric diode clipper
when using the incident wave value from the previous timestep
in the initial(8). This result was observed over a wide range of
frequencies for tests being run using half-second long sinusoidal
signals with peak amplitude of 4.5 V and was also seen when the
same tests were ran on the symmetric diode clipper WDF.

5. MULTIPORT NONLINEARITIES–BIPOLAR
JUNCTION TRANSISTOR

In this section, a common emitter amplifier is simulated using the
method developed in Section 3.1. The circuit contains an NPN
BJT which has base, collector and emitter terminals (Fig. 3a) and
can be viewed as a two-port network device with ports BC and
BE (Fig. 3b). The BJT’s behavior is completely described by the
voltages across the two terminals: vBE and vBC, which are the volt-
age from base to emitter and base to collector, respectively. The
nonlinear behavior of the BJT was simulated using the Ebers–Moll
model:

iE = −Is[evBC/VT − 1] +
Is
αF

[evBE/VT − 1] (30a)

iC = − Is
αR

[evBC/VT − 1] + Is[e
vBE/VT − 1] (30b)

iB =
Is
βR

[evBC/VT − 1] +
Is
βF

[evBE/VT − 1] , (30c)

where

βF =
αF

1− αF
and βR =

αR
1− αR

. (31)
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E
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Figure 3: Circuit element and network two-port of BJT

Since any one of the three equations in (30) can be derived
from the other two, only two of them are needed to completely
characterize the system. The values iC and iE are chosen in order
to determine the current at the collector and emitter in terms of the
current at the base.

The polarity of the currents given by the Ebers–Moll model
(Fig. 3a) are not identical to the polarities of port currents when
viewing the transistor as a two-port device (Fig. 3b). Port currents
itextBC and iBE are found from the terminal currents iC and iE by

iBC = −iC and iBE = iE .

Following the method of Section 2.2, the reference circuit (Fig. 4a)
was decomposed by isolating the two ports of the transistor above
an R-type adapter with series and parallel connections of linear
components hanging below it (Fig. 4b).

Once the scattering behavior of the R-type adapter was de-
termined, the nonlinear equations were set up in the form of (7)
leading to a complete WDF system; albeit one containing an im-
plicit multidimensional delay-free loop.

The zero-finding equation Fk for (7) is:

Fk(vC) =

 Is
αR

(
evBC/VT − 1

)
− Is

(
evBE/VT − 1

)
−Is

(
evBC/VT − 1

)
+ Is

αF

(
evBE/VT − 1

) , (32)

and vC = (vBC, vBE)
T .

The device parameters used for the simulations are given in
Table 5 and component values for a 2N2222 transistor were used
in the BJT model. Those values are Is = 1.0×10−14 , βF = 200
and βR = 3. The WDF digitization of the common emitter ampli-
fier was analyzed by running a variety of sinusoidal input signals
at different frequencies and peak amplitudes with a sampling rate
of 44.1 kHz. The results are given in Table 3. Figure 2b shows
that using the initial guess given by (9) results in fewer iterations
with this circuit for an input sinusoid with peak amplitude of 0.5
V at a variety of frequencies. This is contrast to the result for both
diode clipper circuits in which (8) performed better.

Newton’s method with backtracking performed very well at
frequencies up to 1 kHz with peak amplitudes up to 1 V. The
method began to break down at higher frequency and amplitude
combinations due to the procedure producing numbers which were
unable to be represented by Matlab’s double precision data type.
Thus, the breakdown was not in Newton’s method being unable
to converge based on the provided initial guess but in a limitation
of the numerics of the system being used for simulation. Using
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Figure 4: Common Emitter Amplifier Schematic and WDF Structure

Table 4: Hybrid Steepest Descent–Newton’s Method Diode Clipper Iteration Results

Steepest Descent Newton’s Method
Iterations Backtracking Iterations Backtracking

Circuit Oversampling Max Mean Mean Peak Mean Peak Mean Peak
Clipper 1 1×fs 2 2.00 2.39 25 2.61 9 1.42 13
Clipper 1 1×fs 4 3.07 22.54 89 1.55 8 0.77 11
Clipper 1 1×fs 8 3.99 43.65 135 0.35 5 0.00 0
Clipper 1 8×fs 2 2.00 7.45 31 1.20 6 0.03 3
Clipper 1 8×fs 4 2.60 36.32 95 0.18 3 0.00 0
Clipper 1 8×fs 8 2.63 42.09 107 0.00 1 0.00 0
Clipper 2 1×fs 2 2.00 5.37 25 3.79 7 0.76 4
Clipper 2 1×fs 4 3.73 36.60 91 1.50 5 0.01 1
Clipper 2 1×fs 8 4.44 78.80 121 0.01 1 0.00 0
Clipper 2 8×fs 2 2.00 11.05 29 2.01 5 0.01 1
Clipper 2 8×fs 4 2.92 57.84 81 0.15 2 0.00 0
Clipper 2 8×fs 8 2.94 61.60 99 0.03 1 0.00 0

Table 5: Common Emitter Amp
Component Values

Component Value
B1 18 V
Rin 1 kΩ
Cin 50 µF
R1 27.35 kΩ
R2 2.65 kΩ
RE 220 Ω
CE 100 µF
RC 1.78 kΩ
C2 10 µF
RL 1 kΩ

Steepest Descent to improve the initial guess provided to Newton’s
method had no affect on the numerical limitation.

It should also be noted that the common emitter amplifier is
designed to purely amplify small amplitude signals and is not de-
signed to clip them. Since asymmetry can be seen in the peaks
of a sinusoidal signal with amplitude of 0.2 V, it should be noted
that a 1 V peak amplitude test signal would probably not be used
in this circuit in practice and was used as a means of investigat-
ing the limits of the performance of Newton’s method on a WDF
containing an Ebers–Moll transistor model. A time domain out-
put comparison of LTspice and the WDF simulation is given in
Figure 5.

6. CONCLUSION

In this paper an iterative zero-finding technique was incorporated
into a generalized WDF approach to digitizing analog reference
circuits of arbitrary topology containing multiple/multiport nonlin-
earities. We elaborated on the work in [12, 13] by introducing two
variations of Newton’s method that show promise towards the real-
ization of real-time WDFs with multiple nonlinearities. Newton’s
Method with backtracking was employed in addition to a variant
where the Steepest Descent algorithm obtains better initial guesses
and increases the speed of convergence.

Two different types of initial guesses were proposed for which
(8) resulted in fewer iterations in both the asymmetric and symmet-
ric diode clipper WDFS and (9) resulted in fewer iterations for the
common emitter amplifier WDF. For the circuit simulated in [11],
tests also indicated fewer iterations using (9) 2. Both initial guess

2Private Communication with W. Ross Dunkel, Jun. 10, 2016

Common Emitter Amplifier Output

0.2505 0.251 0.2515 0.252

Time (s)

-6

-4

-2

0

2

A
m

p
lit

u
d
e

SPICE

WDF

Figure 5: Two cycles of output voltage from 1 kHz input sinusoid

types should be tested to determine which one performs better for
a particular WDF implementation.

We were able to show that the Shockley diode equation meets
the requirements for global convergence with Newton’s Method
and that both algorithms employed in this paper yielded rapid con-
vergence in an asymmetric diode clipper test circuit. Numerical
results additionally indicated that a pair of identical antiparallel
diodes treated as a singular nonlinearity exhibited good conver-
gence characteristics even when tested with high frequency and
amplitude test signals in a symmetric diode clipping circuit.
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Additionally, the numerical performance of the Ebers–Moll
model of a BJT was studied via implementation of a common emit-
ter amplifier circuit. Newton’s Method with backtracking performs
efficiently for signals that fall within and slightly outside the stan-
dard operating range of the amplifier circuit.

While the recent work of Schwerdtfeger and Kummert [17]
preserves the modularity of the WDF structure, the convergence
rate of the methods can be sensitive to the values chosen for the
port resistances of the nonlinear elements.

The choice of port resistances for nonlinearities in the pro-
posed approach does not exhibit that same sensitivity. Since the
delay-free loop being resolved is restricted to the system of non-
linearities and isolated from the rest of the WDF, impedance mis-
matching does not occur in the presented approach. The only re-
striction on the nonlinear port resistances is that they must be cho-
sen such the F matrix does not get set to zero. There is no inherent
restriction on the number of nonlinearities that can be included.

While this paper focused on developing the theory and simple
examples illustrating the proposed technique, higher dimensional
nonlinearities have already been successfully tested. These include
the first clipping stage of the Big Muff Pi distortion pedal [12] and
the preamp of the Fender Bassman amplifier [11]. A real-time
WDF software library using the presented approach has also been
recently developed [31].

The only caveats of the presented method for handling nonlin-
earities in WDFs are that the properties of the multivariate nonlin-
ear systems must allow them to be solved with iterative techniques
and that the iterative techniques are computationally tractable.

7. ACKNOWLEDGMENTS

Michael Jørgen Olsen would like to acknowledge fruitful discus-
sions with both W. Ross Dunkel and Maximilian Rest.

8. REFERENCES

[1] A. Fettweis, “Wave digital filters: Theory and practice,” Proc. IEEE,
vol. 74, no. 2, pp. 270–327, Feb. 1986.

[2] A. Fettweis, “Pseudo-passivity, sensitivity, and stability of wave dig-
ital filters,” IEEE Trans. Circuit Theory, vol. 19, no. 6, pp. 668–673,
Nov 1972.

[3] S. D’Angelo, J. Pakarinen, and V. Välimäki, “New family of wave-
digital triode models,” IEEE Trans. Audio, Speech, Language Pro-
cess., vol. 21, no. 2, pp. 313–321, Feb. 2013.

[4] G. De Sanctis and A. Sarti, “Virtual analog modeling in the wave-
digital domain,” IEEE Trans. Audio, Speech, Language Process., vol.
18, no. 4, pp. 715–727, May 2010.

[5] R. C. D. Paiva, S. D’Angelo, J. Pakarinen, and V. Välimäki, “Emula-
tion of operational amplifiers and diodes in audio distortion circuits,”
IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 59, no. 10, pp. 688–
692, Oct. 2012.

[6] K. J. Werner, V. Nangia, A. Bernardini, J. O. Smith III, and A. Sarti,
“An improved and generalized diode clipper model for wave digital
filters,” in Proc. 139 Int. Audio Eng. Soc. (AES), New York, NY, Oct.
29 – Nov. 1 2015.

[7] M. Karjalainen and J. Pakarinen, “Wave digital simulation of a
vacuum-tube amplifier,” in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Process., Toulouse, France, May 14–19 2006, vol. 5.

[8] D. T. Yeh, J. S. Abel, and J. O. Smith III, “Simulation of the diode
limiter in guitar distortion circuits by numerical solution of ordinary
differential equations,” in Proc. Int. Conf. on Digital Audio Effects
(DAFx-07), Bordeaux, France, Sept. 10–15 2007.

[9] D. T. Yeh and J. O. Smith III, “Simulating guitar distortion circuits
using wave digital and nonlinear state-space formulation,” Espoo,
Finland, Sept. 1–4 2008.

[10] J. Pakarinen and M. Karjalainen, “Enhanced wave digital triode
model for real-time tube amplifier emulation,” IEEE Trans. Audio,
Speech, Language Process., vol. 18, no. 4, pp. 738–746, May 2010.

[11] W. R. Dunkel, M. Rest, K. J. Werner, M. J. Olsen, and J. O. Smith III,
“The Fender Bassman 5F6-A family of preamplifier circuits—a wave
digital filter case study,” in Proc. Int. Conf. on Digital Audio Effects
(DAFx-16), Brno, Czech Republic, Sept. 5 – 9 2016.

[12] K. J. Werner, V. Nangia, J. O. Smith III, and J. S. Abel, “Resolving
wave digital filters with multiple/multiport nonlinearities,” in Proc.
Int. Conf. on Digital Audio Effects (DAFx-15), Trondheim, Norway,
Nov. 30 – Dec. 3 2015.

[13] K. J. Werner, J. O. Smith III, and J. S. Abel, “Wave digital filter adap-
tors for arbitrary topologies and multiport linear elements,” in Proc.
Int. Conf. on Digital Audio Effects (DAFx-15), Trondheim, Norway,
Nov. 30 – Dec. 3 2015.

[14] K. Meerkötter and R. Scholz, “Digital simulation of nonlinear cir-
cuits by wave digital filter principles,” in Proc. IEEE Int. Symp. Cir-
cuits Syst., Portland, OR, May 8–11 1989, vol. 1, pp. 720–723.

[15] A. Sarti and G. De Poli, “Toward nonlinear wave digital filters,” IEEE
Trans. Signal Process., vol. 47, no. 6, pp. 1654–1668, June 1999.

[16] T. Schwerdtfeger and A. Kummert, “A multidimensional approach to
wave digital filters with multiple nonlinearities,” in Proc. European
Signal Process. Conf., Lisbon, Portugal, Sept. 1–5 2014, vol. 22.

[17] T. Schwerdtfeger and A. Kummert, “Newton’s method for
modularity-preserving multidimensional wave digital filters,” in
IEEE 9th Int. Workshop Multidimensional (nD) Syst. (nDS), Vila
Real, Portugal, Sept. 7–9 2015.

[18] C. Christoffersen, Transient Analysis of Nonlinear Circuits Based on
Waves, pp. 159–166, Springer, Berlin, Germany, 2010.

[19] D. T. Yeh, J. S. Abel, and J. O Smith III, “Automated physical mod-
eling of nonlinear audio circuits for real-time audio effects—part I:
Theoretical development,” IEEE Trans. Audio, Speech, Language
Process., vol. 18, no. 4, pp. 728–737, May 2010.

[20] D. T. Yeh, “Automated physical modeling of nonlinear audio circuits
for real-time audio effects—part II: BJT and vacuum tube examples,”
IEEE Trans. Audio, Speech, Language Process., vol. 20, no. 4, pp.
1207–1216, May 2012.

[21] D. Fränken, J. Ochs, and K. Ochs, “Generation of wave digital struc-
tures for networks containing multiport elements,” IEEE Trans. Cir-
cuits Syst. I, Reg. Papers, vol. 52, no. 3, pp. 586–596, Mar. 2005.

[22] D. Kincaid and W. Cheney, Numerical Analysis, Mathematics of
Scientific Computing. American Mathematical Society, Providence,
RI, 3rd edition, 2002.

[23] J. Nocedal and S. J. Wright, Numerical Optimization, Springer, New
York, NY, 2nd edition, 2006.

[24] O. P. Burdakov, “Some globally convergent modifications of New-
ton’s method for solving systems of nonlinear equations,” Dokl.
Akad. Nauk SSSR, vol. 254, no. 3, pp. 521–523, 1980.

[25] R. L. Burden and D. J. Faires, Numerical Analysis, Brooks/Cole,
Cengage Learning, Boston, MA, 9th edition, 2010.

[26] A. Bernardini, K. J. Werner, A. Sarti, and J. O. Smith III, “Multi-port
nonlinearities in wave digital structures,” in Proc. IEEE Int. Symp.
Signals, Circuits, Syst. (ISSCS), Ias, i, Romania, July 9–10 2015.

[27] A. Bernardini, K. J. Werner, A. Sarti, and J. O. Smith III, “Modeling a
class of multi-port nonlinearities in wave digital structures,” in Proc.
European Signal Process. Conf. (EUSIPCO), Nice, Italy, Aug. 31 –
Sept. 4 2015, pp. 664–668.

[28] K. J. Werner, V. Nangia, J. O. Smith III, and J. S. Abel, “A general and
explicit formulation for wave digital filters with multiple/multiport
nonlinearities and complicated topologies,” in Proc. IEEE Workshop
Appl. Sig. Process. Audio Acoust., New Paltz, NY, Oct. 18–21 2015.

[29] A. Sarti and G. De Sanctis, “Systematic methods for the implementa-
tion of nonlinear wave-digital structures,” IEEE Trans. Circuits Syst.
I, Reg. Papers, vol. 56, no. 2, pp. 460–472, Feb. 2009.

[30] A. Vladimirescu, The SPICE Book, John Wiley & Sons, NY, 1994.
[31] M. Rest, W. R. Dunkel, K. J. Werner, and J. O. Smith III, “RT-

WDF—A modular wave digital filter library with support for arbi-
trary topologies and multiple nonlinearities,” in Proc. Int. Conf. on
Digital Audio Effects, Brno, Czech Republic, Sept. 5 – 9 2016.

DAFX-286



Proceedings of the 19th International Conference on Digital Audio Effects (DAFx-16), Brno, Czech Republic, September 5–9, 2016

RT-WDF—A MODULAR WAVE DIGITAL FILTER LIBRARY WITH SUPPORT FOR
ARBITRARY TOPOLOGIES AND MULTIPLE NONLINEARITIES

Maximilian Rest †∗, W. Ross Dunkel ∗, Kurt James Werner ∗, Julius O. Smith ∗

∗Center for Computer Research in Music and Acoustics (CCRMA), Stanford University, California, USA
†Fakultät Elektrotechnik und Informatik, Technische Universität Berlin, Berlin, Germany
m.rest@e-rm.de, [chigi22,kwerner,jos]@ccrma.stanford.edu

ABSTRACT
Wave Digital Filters (WDF) [1] are a popular approach for vir-
tual analog modeling [2]. They provide a computationally effi-
cient way to simulate lumped physical systems with well-studied
numerical properties. Recent work by Werner et al. [3, 4] enables
the use of WDFs to model systems with complicated topologies
and multiple/multiport nonlinearities, to a degree not previously
known.

We present an efficient, portable, modular, and open-source
C++ library for real time Wave Digital Filter modeling: RT-WDF
[5]. The library allows a WDF to be specified in an object-oriented
tree with the same structure as a WDF tree and implements the
most recent advances in the field. We give an architectural overview
and introduce the main concepts of operation on three separate
case studies: a switchable attenuator, the Bassman tone stack, and
a common-cathode triode amplifier. It is further shown how to
expand the existent set of non-linear models to encourage custom
extensions.

Index Terms— wave digital filter, software, real time, virtual
analog modeling, multiple nonlinearities

1. INTRODUCTION

There are numerous methods for virtual analog modeling of ana-
log audio circuits on a digital system. While some of them operate
in the Kirchhoff i–v domain with (non)-linear state space mod-
els [6, 7], the framework presented in this paper operates in the
wave domain.

Though historically developed for the design of digital im-
plementations of analog ladder/lattice filters, Wave Digital Fil-
ters (WDF) [1] have in recent years become a popular approach
to virtual analog circuit modeling [2]. WDFs benefit from well-
studied numerical properties and stability conditions. They have
been used to successfully model lumped systems, including me-
chanical systems, electromechanical systems, and especially elec-
tronic circuits.

Among other benefits, they are attractive to algorithm develop-
ers due to their modularity, and desirable numerical behavior [1].
The efficiency of WDFs make real time simulation a possibility.

In this paper, we present the modular Real Time Wave Digi-
tal Filter C++ software library: RT-WDF [5]. This library allows
for more computationally efficient WDF simulation than existing
frameworks and, most importantly, incorporates the field’s recent
theoretical advances. The goal of this paper is not to exhaustively
document every feature of the library, but to introduce its main
principles of operation and demonstrate its application to repre-
sentative circuits. Full documentation accompanies the sourcecode
(see Section 8).

The rest of the paper is structured as follows: Section 2 re-
views recent theoretical advances and existing circuit simulation
software packages. Section 3 gives an overview of the RT-WDF
library. Section 4 details the use of the library to simulate rep-
resentative circuits: a switchable attenuator, the Fender Bassman
tone stack, and a common cathode triode amplifier. Section 5 com-
pares the performance of the RT-WDF library with SPICE [8] and
Matlab [9], Section 6 concludes and presents an outlook on future
work.

2. PREVIOUS WORK

2.1. Recent Theoretical Advances

Recent work by Werner et al. [4] vastly expanded the class of
circuits that could be systematically modeled with WDF to in-
clude those with complex topologies as well as multiport linear el-
ements [3]. This approach has been successfully applied to model
op-amps at various degrees of complexity [10] and has recently
been extended to accommodate multiple non-adaptable linear ele-
ments [11].

These topological advances also yielded a general method for
handling circuits with multiple nonlinearities [4] with WDFs, pre-
viously restricted to a special case. In this formulation, the nonlin-
earities are solved via table lookup [4] or iteration. Properties of
Newton-based iterative approaches are studied in [12] and applied
to a complex preamplifier circuit involving four nonlinear triode
tubes in [13].

One of the main motivations for the creation of the RT-WDF
library was to provide a reference implementation of these theo-
retical advances, which are not represented in existing software
packages.

2.2. Existing Software Packages

Apart from generic signal processing environments like Matlab,
platforms for systematically implementing real time virtual ana-
log and physical modelling algorithms in the wave domain have
existed for more than a decade now. A review of some of the
packages mentioned here can be found in [14].

Even though it was not specifically designed for WDFs, Block-
Compiler [15] was one of the first environments which was used
for their implementation [16].

An approach more specifically tailored to WDFs was a pro-
gram called BCT with its own GUI to graphically arrange and con-
figure circuit elements in binary connection trees [17].

Both software packages are reviewed together with case stud-
ies in [16]. One advantage of BlockCompiler is its ability to gener-
ate optimized C-code of algorithms whereas an advantage of BCT
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Figure 1: General RT-WDF framework overview: (a) involved classes and their dependencies, (b) high level functions involved to initialize
and run a WDF structure, (c) call graph of a simple WDF root implementation, (d) call graph of a nonlinear root with iterative solver.

is its intuitive and user-friendly approach. None of them is fully
modular in terms of their supported elements, portable to different
computer architectures or supports arbitrary topologies and multi-
ple/multiport nonlinearities.

The first public WDF programming library was published in
[18] and features a modular, object-oriented class hierarchy written
in Matlab. It acted as a blueprint for the release of a first public
C++ implementation in the audio developer community around
the JUCE framework [19]. This library was later refined and pub-
lished by the same author as WDF++ [20]. It features architectural
modularity and portable code but necessarily could only reflect the
state of the art at the time of its development.

Other virtual analog modeling approaches operate in the Kirch-
hoff i–v domain. LiveSPICE [21] builds up on nonlinear state-
space models [22] and has support for common nonlinear multi-
port electrical elements. Another program, Signaldust ‘Salt’ [23],
is only available as a closed source preview within the audio DSP
developer community and was never fully published.

3. FRAMEWORK OVERVIEW

The framework presented in this paper comes in the form of a pub-
licly available library written in C++. This ensures compatibility
with popular frameworks for audio applications like JUCE [24]
and audio plugin APIs such as LV2, VST, AU and AAX. It also

allows for a structure of hierarchical classes that clearly reflect
WDF tree topologies and thus also serves an educational purpose
to access the field. Linear algebra functionality is supplied by
the third-party Armadillo library [25] and all example circuits (see
Section 8) are implemented in a standalone host written in JUCE.

An overview of the class structure is given in Figure 1a. Within
RT-WDF, the two main elements in all WDF structures are
wdfTreeNode and wdfRoot. Every WDF tree consists of one
or more subtrees that are formed by adaptors and leafs as exten-
sions of wdfTreeNode. These parallel (P), series (S) and rigid
(R) adaptors scatter the waves correctly between the root and the
leafs. The leafs represent linear electrical components such as re-
sistors, reactances and non-ideal sources which are the endpoints
of each branch. The other end of such a subtree is connected to a
wdfRoot embodying the unadapted circuit components. If these
unadapted elements have a closed-form wave domain description
they can be implemented as a wdfRootNode. Nonlinear ele-
ments without closed-form representations are implemented as an
nlModel which is solved iteratively using an nlSolver.

A particular WDF implementation of a circuit with all its adap-
tors, components and root elements is contained in a user-imple-
mented extension of the wdfTree class, the application specific
wdfApplTree. This class contains all elements and circuit val-
ues and provides the API necessary to operate the WDF towards
the host application. The required sequence and call graph of these
standard methods can be seen in Figure 1b. All functions are initi-
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ated from the host by calling methods on such a wdfApplTree
object as shown in Listing 1.

These methods clearly divide into setup and processing tasks.
The first step after instantiation of an wdfApplTree is initializa-
tion, accomplished by calling initTree(). This method itself
calls the recursive createPorts() function on the entry nodes
of the subtrees extending from the root node. This assigns each
tree node its up- and down-facing wdfPort object which keeps
track of wave values and port resistances. Setting the sample rate
is necessary for the next step, adaptPorts(), as the adaptation
of reactive elements depends on the sample rate fs = 1/T .

1 //create wdf
2 wdfApplTree myWdfTree( );
3

4 //set up wdf
5 myWdfTree->initTree( );
6 myWdfTree->setSamplerate( Fs );
7 myWdfTree->adaptTree( );
8

9 //process samples
10 for ( int n=0; n<numSamples; n++ ){
11 myWdfTree->setInValue( inSample[n] );
12 myWdfTree->cycleWave( );
13 double outSample[n] = myWdfTree->getOutValue( );
14 }

Listing 1: High level usage of a user-implemented WDF struc-
ture from a host.

Listing 2 illustrates the pattern of recursive function calls that tra-
verse a subtree from the root to the leafs by considering the exam-
ple of the adaptPorts() function.

The adaptation is carried out by first traversing down to the
leafs, calculating their up-facing port resistances and then succes-
sively passing them on to the parent nodes while keeping also these
parent nodes always adapted towards the root. Similar recursive
schemes are implemented for example in pullWaveUp() and
pushWaveDown() too.

1 double wdfTreeNode::adaptPorts( double T ){
2 for ( wdfPort* dport : downPorts ){
3 dport->Rp = dport->connectedNode->adaptPorts( T );
4 }
5

6 upPort->Rp = calculateUpRes( T );
7 return upPort->Rp;
8 }

Listing 2: Recursive adaptation of the tree.

After initialization, processing of each audio sample in the WDF is
initiated by three function calls: setInValue(), cycleWave()
and getOutValue(). The first and the latter have to be over-
written by the user in wdfApplTree to correctly assign the in-
put value to the desired source component and collect the output
value correctly. Cycling the wave is readily implemented in the
wdfTree base class as shown in Listing 3.

This listing illustrates the concept of subtrees that hang off the
root and again utilizes recursive methods to push and pull wave
components to and from all of the leafs of the tree. The tree nodes
which are connected to the root are handled as subtree entry nodes
and act as the starting point of recursive traversals.

Between pulling and pushing, ascending wave components are
processed in the root as specified in wdfApplTree and the re-
sult is returned as descending waves. The different root configu-
rations are explained in detail with examples in Sections 4.1–4.3.
The object and method dependencies of a root with a single un-

adapted one-port (wdfRootSimple) and one with multiple non-
linearities (wdfRootNL) are shown in Figure 1c/1d respectively.
Of course it is worth noting that all these function calls and their
dependencies are hidden from the host application and the user-
implemented application tree by using a strong hierarchical ap-
proach and exposing the internal behaviour of the library only via
a few generic high level functions and constructors.

1 void wdfTree::cycleWave( ){
2 int treeNo = 0;
3 for ( wdfTreeNode* subtree : subtreeEntryNodes ){
4 (*ascWaves)[treeNo++] = subtree->pullWaveUp( );
5 }
6

7 root->processAscendingWaves( ascWaves, descWaves );
8

9 treeNo = 0;
10 for ( wdfTreeNode* subtree : subtreeEntryNodes ){
11 subtree->pushWaveDown( (*descWaves)[treeNo++] );
12 }
13 }

Listing 3: WDF cycle wave function.

4. EXAMPLES

This section contains three example circuits that have been mod-
eled using RT-WDF to create real time audio algorithms. The host
application is based on JUCE, which readily provides all audio in-
put and output functionality in a callback function by default and
allows the simple creation of graphical user interfaces.

The examples are chosen to highlight several modular con-
cepts of the framework and introduce the three available root types
in detail.

4.1. Switchable Attenuator

The first example illustrates the usage of the wdfRootSimple
object, which supports a single unadapted one-port element at the
root. The circuit under examination is a switchable attenuator (Fig-
ure 2a) that consists of a voltage source Vin, a resistive voltage di-
vider formed by R1 & R2 and a switch SW1 to short the upper
resistor R1. This circuit could obviously also be modeled with
less sophisticated approaches than WDF but we chose it here to
introduce the library’s main concepts on a simple example.

To turn this circuit into its WDF representation, all indepen-
dent nodes and elements are first labeled with a letter and a digit
respectively. These nodes, elements and their interconnections are
transformed into a graph representing the circuit (Figure 2b). The
graph separation techniques of [26] are applied, after which the
graph is transformed into an SPQR tree (Figure 2c). This tree
directly yields the WDF representation of the circuit. It consists
of adaptors P1 and S1 that were introduced by the replacement
graphs and the circuit elements SW1, Vin, R1 and R2 (Figure 2d).
Listing 4 shows the extensions of the wdfTree class necessary to
model this particular circuit in RT-WDF. Such a class always be-
gins with the declaration of pointers for all adapted tree nodes in-
volved, in this case for the resistorsR1,R2, voltage source Vin

1 and
adaptors S1 and P1. The switch SW1 is a non-adaptable but linear

1Please note that an arbitrary 1Ω resistor in series with the voltage
source was necessarily introduced to yield a non-ideal, adaptable voltage
source that can serve as a leaf component of the WDF tree. It would al-
ternatively be possible to combine R2 and the voltage source Vin into a
non-ideal source and omit S1.
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Figure 2: Deriving a WDF adaptor structure for the switchable
attenuator: (a) circuit, (b) graph, (c) SPQR tree, (d) WDF adaptor
structure.

WDF element, which has a closed-form reflection coefficient. It is
thus treated as a non-adaptable rootNode in this framework and
can be implemented using a wdfRootSimple

1 class wdfAttenTree : public wdfTree
2 {
3 private:
4 wdfAdaptedRes* R1;
5 wdfAdaptedRes* R2;
6 wdfAdaptedResVSource* Vres;
7 wdfAdaptedSeries* S1;
8 wdfAdaptedParallel* P1;
9 wdfUnadaptedSwitch* SW1;

10 public:
11 wdfAttenTree( ){
12 //treeNodes
13 Vres = new wdfAdaptedResVSource( 0,1 );
14 R1 = new wdfAdaptedRes( 250e3 );
15 R2 = new wdfAdaptedRes( 250e3 );
16 S1 = new wdfAdaptedSeries( Vres, R2 );
17 P1 = new wdfAdaptedParallel( S1, R1 );
18 //rootNodes
19 SW1 = new wdfUnadaptedSwitch( 0 );
20

21 subtreeEntryNodes.push_back( P1 );
22 root = new wdfRootSimple( SW1 );
23 }
24 void setInValue( double voltageIn ){
25 Vres->Vs = voltageIn;
26 }
27 double getOutValue( ){
28 return Res2->upPort->getPortVoltage( );
29 }
30 void setParams( std::vector<double> params ){
31 SW1->setSwitch( (int)params[0] );
32 }
33 };

Listing 4: Switchable attenuator tree.

type root. A pointer for the switch is declared as a private member
of the class.

The constructor of the class begins with the creation of the
tree and root nodes. Adapted elements are created and initialized
according to their physical parameters and the unadapted switch
is initialized to be ‘open’. The next step is conceptually impor-

tant: the pointer to the single subtree entry node needs to be stored
in a wdfTree base class member, subtreeEntryNodes. It
is used to initiate recursive calls that traverse the subtrees as de-
scribed in Section 3 and Listing 3. The pointer to the root node
SW1 is handed over to the root’s constructor to register it as the
root element. The pointer to this root is stored in another member
of the base class, the root pointer.

The initialization of the WDF elements is followed by the re-
quired definitions of the functions setInValue() and
getOutValue(), virtual methods of the wdfTree base class.
They are used to set and get the input and output samples. In-
put samples can usually be directly set as voltages or currents of
sources. Output samples are retrieved as (a combination of) port
voltages or currents for which the port object holds a
getPortVoltage() and getPortCurrent() function. In
this case the voltage from the up-facing port of Res2 is collected,
which is the voltage across resistor R2. The last method demon-
strates the ability to further extend the base class to manipulate in-
dividual circuit elements: setParams() implements the switch-
ing functionality of our circuit. It can be called at runtime between
samples to effectively configure the reflection coefficient of the
root element on the fly. This functionality is necessary to model the
circuit in Figure 2a in RT-WDF. The resulting wdfAttenTree
class can now be operated as shown in Listing 1 as a real time
algorithm.

4.2. Bassman Tone Stack

The second example makes use of the wdfRootRtype class,
which allows multiport adaptors with arbitrary topologies in the
form of an R-type adaptor at the root. The Fender Bassman tone
stack circuit is taken as an example as it is well studied [27] and has
a rigid topology that has only recently been supported in WDFs [3].
The circuit’s schematic as well as graph-, tree- and WDF-repre-
sentations are shown in Figure 3. The same process as in the first
example is carried out to transform the circuit into an SPQR tree2.
The additional step here is to capture the rigid connections be-
tween the subtree ports of theR-type adaptor in a scattering matrix
S using instantaneous Thévenin port equivalents [3] and modified
nodal analysis (MNA) [28].

Listing 5 shows an excerpt of the implementation of the cir-
cuit. The setup of the tree nodes is similar to the previous example
and not repeated here. Three extra steps must be carried out to
set up the R-type root: in contrast to the former example, this
time six subtrees need to be registered with their respective en-
try nodes. These are pointers to the six elements that are directly
connected to the R-type adapter at the root, namely Vin_R3m,
S2, S3, C2, R4 and C3. Secondly, the root object must be cre-
ated with the number of subtrees as a parameter. This ensures
sufficient memory allocation for the scattering matrix S within the
root. In the last step the setRootMatrData() function is over-
written. This is an empty function in the wdfTree base class and
needs to be implemented for specific root class types, including the
one used here. Within this function, a matData struct is config-
ured to hold the correct values for all required matrices in the root.
setRootMatrData() is called by adaptTree() if the cur-
rent root requires it. For theR-type root, the Smatmember of this

2TheR-type adaptor is chosen here as the root of the tree. It could also
reside further down as a tree node adaptor, but this requires an inherent
adaptation rule for the up-facing port that depends on the topology and the
down-facing port resistances. See [3] for an example.
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Figure 3: Deriving a WDF adaptor structure for the Fender Bass-
man tone stack: a) circuit, b) graph, c) SPQR tree, d) WDF adap-
tor structure. Modified from [3]

struct needs to be correctly initialized to embody the scattering be-
haviour. Dynamic coefficients that depend on the R-type adapter
port resistances are supported and enable the user to vary compo-
nent values in the subtrees (thus affecting the circuit’s behaviour)
in real time during operation. This functionality is utilized in the
code resources of this example.

At the end of the listing, the composition of the output voltage
is shown in detail again to demonstrate the flexibility to collect
several voltages across circuit elements and adaptors.

1 class wdfTonestackTree : public wdfTree
2 {
3 private:
4 // pointers for tree elements
5 ...
6 public:
7 wdfTonestackTree( ){
8 // create tree elements
9 ...

10 // collect subtree entry points
11 subtreeEntryNodes.push_back( Vin_R3m );
12 subtreeEntryNodes.push_back( S2 );
13 subtreeEntryNodes.push_back( S3 );
14 subtreeEntryNodes.push_back( C2 );
15 subtreeEntryNodes.push_back( R4 );
16 subtreeEntryNodes.push_back( C3 );
17 // create new root
18 root = new wdfRootRtype( numSubtrees );
19 }
20 int setRootMatrData( matData* rootMats,
21 double* Rp[] ){
22

23 // populate rootMats->Smat according to
24 // R-type scattering behaviour and subtree
25 // port resistances Rp[]
26 ...
27 }
28 double getOutValue( ){
29 return R1m->upPort->getPortVoltage( ) +
30 S2->upPort->getPortVoltage( ) +
31 R3m->upPort->getPortVoltage( );
32 }
33 ...

Listing 5: (partial) Bassman Tone Stack tree class with multiple
subtrees and root matrix data update function.

4.3. Common Cathode Triode Amplifier

The final example highlights the ability of the RT-WDF library to
handle multiple/multiport Kirchhoff-nonlinearities in circuits via
the wdfRootNL and nlModel classes. Here we model the com-
mon cathode triode tube amplifier shown in Figure 4a which has
been studied for example in [29] as well. The results of recent
WDF research [3, 4] to support arbitrary topologies enable us to
extend the model from [29] to include the parasitic capacitances
Cgk, Cgp and Cpk as well as continuously evaluated triode grid cur-
rent Ig. Deriving the WDF adaptor structure is again accomplished
as in the previous two examples, the result of which is shown in
Figure 4b. The extension of the wdfTree class for this circuit
again implements all elements and their topology in the form of
tree nodes and registers all subtree entry nodes (not shown).

1 wdfCCTATree( ){
2 ...
3 root = new wdfRootNL( numSubtrees,
4 {12AX7_DW},
5 NEWTON );
6 }
7 int setRootMatrData( matData* rootMats,
8 double* Rp[] ){
9

10 // populate rootMats->{Emat,Fmat,Mmat,Nmat}
11 // according to R-type scattering behaviour
12 // and subtree port resistances Rp[]
13 ...
14 }
15 ...

Listing 6: (partial) Common Cathode Triode Amplifier tree
class with nonlinear root element and appropriate root matrix
data update function.

The root is created as a wdfRootNL object with the number of
subtrees, a vector to specify the nonlinear models and the desired
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Figure 4: Common Cathode Triode Amplifier: a) circuit, b)
WDF adaptor structure with Kirchhoff nonlinearity. Grey:
wdfRootNL; Dark Grey: 12AX7DwModel.

solver (Listing 6). In its current state the library supports a multi-
dimensional Newton Solver as described in [12] in detail. For this
type of root, the setRootMatrixData() method must config-
ure the root’s system matrices correctly [4]. These matrices im-
plicitly contain a w–K converter to transform the wave variables
into the Kirchhoff domain and back. All iterative nonlinear models
are currently evaluated in the i–v domain. For this circuit the ac-
tual nonlinearity is specified from a user expandable list of models
as 12AX7_DW, a triode model after Dempwolf et al. [30].

ik = G ·
(

log
(
1 + exp

(
C · ( 1

µ
· vpk + vgk)

))
· 1
C

)γ
(1a)

ig = Gg ·
(

log
(
1 + exp

(
Cg · vgk

))
· 1

Cg

)ξ
+ ig0 (1b)

ip = ik − ig (1c)

The model is described by Equations (1a)–(1c) with perveances
G, Gg, adaption factors C, Cg and positive exponents γ, ξ. The
nonlinear two port model is defined in terms of the port voltages
vpk = vp − vk, vgk = vg − vk and port currents ip, ig . To be
used with the Newton solver in this library, it is desirable that the
modeling equations are continuously differentiable with respect to
their port voltages in a region around the solution and the Jacobian
must be invertible [12].

In general, these nonlinear model objects are managed by the
nlNewtonSolver as shown in Figure 1a / 1d. They always con-
sist of a calculate() function that reflects the physical behav-
ior and a getNumPorts() method in the base class for house-
keeping.

1 12AX7DwModel::12AX7DwModel()
2 : nlModel (2){
3

4 }
5 void 12AX7DwModel::calculate( vec* fNL, mat* JNL,
6 vec* x, int* port ){
7

8 double Vpk = x->at( *port);
9 double Vgk = x->at((*port)+1);

10

11 // calculate triode currents & their derivatives
12 // and assign them to the vector / matrix entries
13 ...
14

15 fNL->at( *port ) = Ip;
16 JNL->at( (*port), (*port) ) = dIp_dVpk;
17 JNL->at( (*port), ((*port)+1) ) = dIp_dVgk;
18

19 fNL->at( (*port)+1 ) = Ig;
20 JNL->at( ((*port)+1), (*port) ) = dIg_dVpk;
21 JNL->at( ((*port)+1), ((*port)+1) ) = dIg_dVgk;
22

23 (*port) = (*port)+getNumPorts( );
24 }

Listing 7: Implementation of the nonlinear 12AX7 triode
model.

fNL(v) =

[
ip
ig

]
with v =

[
vpk

vgk

]
(2)

and its Jacobian matrix

JNL =

[ ∂ip
∂vpk

∂ig
∂vpk

∂ip
∂vgk

∂ig
∂vgk

]
. (3)

The Newton Solver iteratively evaluates its specified models for
each sample, converging towards a solution of the nonlinear sys-
tem within a certain tolerance. This solution is then transformed
back into the wave domain and returned as descending waves from
the root down into the subtrees.

It must be noted that modeling of any nonlinear part in a circuit
may introduce drastic aliasing and sufficient oversampling might
be necessary to achieve the desired spectral results in the output
signal [13]. Also, care must be taken that the selected physical
models meet certain criteria in the operating range of the circuit or
(fast) convergence of the Newton Solver is not guaranteed [12].

5. PERFORMANCE

All three example circuits from Sections 4.1–4.3 were also imple-
mented in the SPICE distribution LTSpice and a CCRMA-internal
object-oriented Matlab WDF framework. RT-WDF and Matlab
WDF simulations were performed at double precision and a sam-
ple rate of fs = 44 100Hz. LTSpice simulations were carried
out as a transient analysis with waveform compression disabled.
All parameters were left at their default values except .OPTIONS
numdgt=10 to enable internal double precision too. The maxi-
mum time step was set to tmax = 20 µs ≈ 1/fs.

All processing times were captured on a laptop computer from
2013 with Intel i7 2,4 GHz CPU (4 cores) and 8GB RAM run-
ning OS X 10.11.4. The RT-WDF binaries were built with Apple
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quantity input RT-WDF SPICE Matlab

duration 8.717 s 0.042 s 15.498 s 252.120 s
1norm. dur. 1 0.005 1.778 28.923

ratio – 1 369 6003

duration 8.717 s 0.149 s 31.172 s 670.107 s
2norm. dur. 1 0.017 3.576 76.874

ratio – 1 209 4522

duration 2.961 s 0.272 s 16.411 s 324.652 s
3anorm. dur. 1 0.092 5.543 109.643

ratio – 1 60 1192

duration 2.961 s 1.035 s 50.014 s 1279.034 s
3bnorm. dur. 1 0.350 16.893 431.960

ratio – 1 48 1235

1 switchable attenuator 2 fender tone stack

3a triode amplifier 3b triode amplifier @ 4×fs

Table 1: Comparison of processing times of WDF and SPICE cir-
cuit simulations for all case studies.

LLVM 7.1 at optimization level -O3 and ran with a single pro-
cessing thread without any other considerable applications in the
background.

The results of the benchmarking are shown in Table 1. The
first row of each simulation holds the absolute processing times
in seconds for all three approaches. For RT-WDF, the value de-
scribes the subsumed processing times of a block-wise operation,
for SPICE, the value is taken from the logfile. In Matlab, the time
to finish the sample processing loop is measured with tic and
toc. The second row shows the normalized times with respect
to the length of the input signal. This can be seen as an esti-
mate of CPU load for a real-time operation, as it describes the
relative amount of time needed by the simulation to process a cer-
tain amount of input samples. A normalized duration > 1 could not
catch up with the input signal at full CPU load and the algorithm
is thus not real-time capable. The last row correlates the perfor-
mance of all three approaches in terms of “× times slower than”
with respect to the least demanding candidate.

It is clear that for all case studies the RT-WDF simulation is by
far the most performant approach to model this circuit as a modu-
lar, physically informed algorithm. As indicated by the normalized
processing times, all of them could run in real-time applications,
even with ×4 oversampling enabled for the common cathode tri-
ode amplifier3.

6. CONCLUSIONS

We presented the modular WDF C++ library RT-WDF [5] which
implements recent research advances in the field. It provides great
opportunities for both researchers and audio algorithm developers
to approach WDFs for analog modeling of lumped systems.

Due to its custom tailored codebase it greatly decreases com-
putational demands compared to other implementations and is port-
able to many hardware platforms. Many classic WDF elements
(such as resistors, capacitors, parallel and series adapters, etc.) are

3For the SPICE comparison of the ×4 simulation, the maximum time
step was set to tmax = 5 µs ≈ 1/(4× fs).

already implemented in the library and future extensions can be
easily added due to its strictly modular, hierarchical approach.

The authors encourage and highly appreciate contributions to
the codebase to keep up with current research and further improve
the performance of the library.
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ABSTRACT

What influence does the directivity of a sound source have on
the perceived distance impression in a room? We propose differ-
ent directivity pattern designs able to modify the auditory source
distance. The idea is accompanied with a comprehensive experi-
mental study investigating the audio effect and its behavior by au-
ralization of directional sound source and room using a 24-channel
loudspeaker ring inside an anechoic chamber. In addition to the
proposed directivity designs, the study covers influence of aural-
ized room, source-to-receiver distance, signal, and single-channel
reverberation. Moreover, simple room acoustical measures perform
well in predicting the new effect.

1. INTRODUCTION

Our ability to localize sound sources with regard to distance is
generally much less accurate than it is with direction. Literature
suggests that humans underestimate distant sources while overesti-
mating sources closer than 1 m [1]. Nevertheless, auditory source
distance is a decisive feature when shaping auditory scenes with au-
dio effects, reverberation, or new variable-directivity sound sources
such as the icosahedral loudspeaker [2].

In audio technology and electro-acoustic music, the distance
impression is often controlled by the amplitude and the direct-to-
reverberant energy ratio (D/R-ratio). While listener are exquisitely
sensitive to small amplitude changes in fine distance discrimina-
tion, recent studies suggest that the D/R-ratio provides coarse but
absolute distance information [5].

As well as modifying the D/R-ratio, in extension of what has
been presented by Laitinen [6], our contribution proposes directivity
pattern designs able to control the room response in a greater variety.
In doing so, the proposed designs are considered as an audio effect
altering the auditory source distance.

This paper is arranged as follows: It briefly introduces di-
rectivities to affect the perceived auditory distance in section 2,
subsequently outlines an exhaustive listening test design based on
an auralized rooms and directivities in section 3, presents detailed
results in section 4, and discusses influence of room and signal
in sections 5, 6. Section 7 discusses the influence of additional
single-channel reverberation, and the last section presents models
of the experimental results.

2. DIRECTIVITY-CONTROLLED AUDITORY DISTANCE

An elegant solution to control auditory source distance has been
proposed by Laitinen [6] and employs a variable-directivity source.
Such a source generally influences the spatial structure of energy
arriving at the listening position. In particular, this also affects the
D/R-ratio, as a temporal structure.

We obtain a great variety of control by employing a direc-
tional source of various higher-order Ambisonics directivity pat-
terns. Frequency-independent beampatterns up to the 3rd order are
obtained by a combination of Legendre polynomials Pn(cosϑ)

gi(ϑ) =

∑i
n=0(2n+ 1)Pn(cos 137.9◦

i+1.51
)Pn(cosϑ)√∑i

n=0(2n+ 1) [Pn(cos 137.9◦
i+1.51

)]2
(1)

using the so-called max-rE weights, cf. [7, 8], which yield a rela-
tively narrow main lobe and sufficiently suppressed side lobes for
any beam order i.
Fig. 1 shows the proposed beampattern designs that modify

A the beam order i from three to zero for gi(ϑ) and gi(π−ϑ),

B the ratio a/b of two opposing beams: a g3(ϑ)+b g3(π−ϑ),

C the angle α of a beam pair: g3(ϑ− α/2) + g3(ϑ+ α/2).
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Figure 1: Directivity designs A, B, C controlling the D/R-ratio.
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Table 1: Properties of tested directivity designs A, B, and C.

A

A1/7 3rd-order max rE beam to/off listener
A2/6 2nd-order max rE beam to/off listener
A3/5 1st-order max rE beam to/off listener
A4 omnidirectional beampattern

B B1...7
3rd-order max rE beams to and off listener lin-
early blended at [∞, 6, 3, 0,−3,−6,−∞]dB

C C1...7
two 3rd-order max rE beams horizontally ar-
ranged at ±30◦ · [0, 1, . . . 6] wrt. the listener

Table 1 lists all tested directivity designs in particular, which
differently modify the amount of diffuse, lateral, and direct energy,
thus the D/R-ratio. Each directivity indicated by the index 1 and 7
corresponds to a 3rd-order beam facing towards and away from the
listening position (A1 = B1 = C1,A7 = B7 = C7). Furthermore,
directivity pairs indicated by indices 1/7, 2/6, and 3/5 of each
design are identical in their shape but horizontally rotated by 180◦.
Figure 1 shows the directivity patterns A1...4, B1...4, and C1...4

normalized to constant energy.

3. EXPERIMENTAL SETUP

The effect is evaluated in a listening experiment, in which the
variable-directivity source in a room is auralized using the image
source method. The room is shoebox shaped with a frequency-
independent absorption coefficient ā. Specular reflections up to 3rd

order are considered [9] and diffuse reflections are simulated as
spherical harmonics using the software tool MCRoomSim [10]. For
simplicity, diffuse reverberation of an omni-directional excitation
is considered.

Playback employed a ring of 24 equally-distributed Genelec
8020 loudspeakers with a radius of r = 1.5 m placed in an anechoic
laboratory. Each listener was sitting in the center of the arrangement
with ear height adjusted to the loudspeaker ring (see Figure 3).

On the circular setup, specular reflections are auralized by the
loudspeaker with nearest azimuth angle. This avoids timbral ef-
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Figure 2: Room and source constellation for R1 ( ), R2 ( )
and R3 ( ) together with loudspeaker ring used for auralization.

Table 2: Properties of tested rooms R and signals S.

ro
om

R1 IEM CUBE, T60 = 700 ms, d1 = 1.7 m
R2 IEM CUBE, T60 = 700 ms, d2 = 2.9 m
R3 IEM Lecture Room, T60 = 570 ms, d3 = 1.7 m

si
gn

al S1 female speech, taken from CD B&O 101, 1992
S2 sequence of irregular artificial bursts
S3 speech-spectrum noise w/ increased kurtosis

fects of amplitude panning [11]. Elevated specular reflections are
attenuated in the auralization by the cosine of their elevation. The
impulse response hl(t) of the lth loudspeaker is obtained after su-
perimposing specular and diffuse reflections using MATLAB.
Obviously, a two-dimensional representation of a three-dimensional
sound field is not optimal, but findings in [12] indicate that reflec-
tions from floor and ceiling do not have a significant influence on
the auditory source distance.

Each impulse response was convolved with the sounds S1...3,
yielding a 24-channel audio file for each condition. Audio playback
was controlled by the open source software Pure Data on a standard
PC with RME MADI audio interface and DirectOut D/A converters.

To monitor the influence of room acoustics, three different
layouts were tested, including two rooms and two source-listener
distances, see R1...3 in Tab. 2.
Geometry and reverberation time of the auralized rooms are based
on the IEM CUBE, a 10.3 m × 12 m × 4.8 m large room with
T60 = 700 ms and the IEM Lecture Room, 7.6 m × 6.8 m × 3 m
with T60 = 570 ms.
The simulated sound source was placed near the corners of the
room at a distance of 2 m and 3 m (IEM CUBE) and 1 m and 2 m
(IEM Lecture Room). The listening position was chosen at a virtual
distance of d = 1.7 m to the sound source, which already lies
outside of the loudspeaker ring. Additionally, for the IEM CUBE
an increased source-listener distance of d = 2.9 m was tested.
The listener was facing the sound source and the constellation,
simulated at height of 1.8 m above the floor, had an angular offset
of ∆φ = 15◦ with regard to the sidewalls. Figure 2 shows the
setup of the auralized room using the 24-channel loudspeaker ring
and Table 2 lists rooms and source-listener distances tested.

The sounds fed into auralization were female speech (S1), a
sequence of irregular bursts (S2), and Gaussian white noise shaped
to speech spectrum (S3) as listed in Table 2. For S3, envelope
fluctuations were slightly accentuated by multiplying the noise with
its Hilbert envelope and by restriction to its original bandwidth,
cf. [13]. By this procedure, S1 and S3 have similar spectra and kur-

Figure 3: Experimental setup in the anechoic laboratory.
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Table 3: Composition of tested sets, consisting of 7 and 9 samples.
se

tn
o.

de
si

gn

in
de

x

so
un

d

ro
om

re
ve

rb
.

le
ve

l

1 A 1 . . . 7 S1 R1 0
2 A 1 . . . 7 S2 R1 0
3 A 1 . . . 7 S3 R1 0
4 B 1 . . . 7 S1 R1 0
5 B 1 . . . 7 S2 R1 0
6 B 1 . . . 7 S3 R1 0
7 C 1 . . . 7 S1 R1 0
8 C 1 . . . 7 S2 R1 0
9 C 1 . . . 7 S3 R1 0

10 A 1 . . . 7 S1 R2 0
11 A 1 . . . 7 S1 R3 0
12 A 1 . . . 7 S1 R1 1
13 A 1, 4, 7 S1...3 R1 0
14 A 1, 4, 7 S1 R1...3 0
15 A 1, 4, 7 S1 R1 0, 1, 2

tosis, which measures the envelope fluctuation, whereas S2 is more
transient with more energy at higher frequency (f > 1kHz). All
sounds were normalized to their RMS value for level equalization.

The above sounds are anechoic. To monitor potential influence
of additional reverberation for some conditions, sound samples were
reverberated before auralization. Two levels of reverberation were
tested, of which level 1 corresponds to a room impulse response
with a reverberation time of T60 = 0.5 s, level 2 to one of T60 = 1 s,
and level 0 to the anechoic signal.

The listening test was carried out as a multi-stimulus test where
listeners had to comparatively rate multiple samples, denoted as
sets. Tested sets comprise 7 samples, each representing a directivity
pattern, room, sound, and reverberation level (set 1 to 12, see
Table 3).
To keep the testing time decent the influence of room, signal, and
reverberation level was examined with the directivity designA only.
In order to allow comparability and due to the absence of common
reference, the data need to be normalized. Therefore additional
sets comparing multiple rooms, signals and reverberation levels
with directivity patterns A1,4,7 were included. Each of these sets
consists of 9 samples and is listed in Table 3 (set 13 to 15).
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Figure 4: Direct sound and specular reflections arriving at the
listening position for C4 and C7, normalized wrt. C1.

The subjects’ task was to indicate the perceived distance on
a graphical user interface displaying a continuous slider for each
sample of a set to permit comparative rating along the ordinal scale
very close (vc), close (c), moderate (m), distant (d), and very distant
(vd). The subjects were allowed to repeat each sample at will, and
the sound files were played back in loop.

During the listening session, the subject was requested to face
loudspeaker 1 (φ = 0◦), which corresponds to the direction of the
auralized sound source.

At the beginning of the experiment, each subject was given a
short training to familiarize with the evaluation scale. The training
set included expected extreme values with regard to the perceived
distance. Subjects were asked to rate along the whole scale and use
extremes as an internal reference for further evaluations.
After the training phase, multi-stimulus tasks were presented. Each
time a multi-stimulus set was displayed, the arrangement of its
stimuli was an individual random permutation. The user could have
the stimuli sorted by own ratings to facilitate comparative rating.
The first part of the experiment consisted of the sets with 7 stimuli
(set no. 1 to 12) in an individual random permutation, and the
second part of the sets consisting of 9 samples (set no. 13 to 15) in
an individual random permutation.

Fifteen subjects participated in the test. All of them were
experienced listeners with normal hearing.

4. INFLUENCE OF DIRECTIVITY DESIGN

Fig. 5 shows a detailed analysis of the auditory source distance
for the directivity designs A1...7, B1...7, and C1...7 according to
Table 1 and Fig. 1, based on the responses to the sets 1 . . . 3, 4 . . . 6,
and 7 . . . 9 of Table 3, using all signals S1...3 and the roomR1. The
direct comparability of all curves in Fig. 5 is feasible as all designs
were determined to include reference patterns corresponding to a
3rd-order beam facing to (A1 = B1 = C1) and off (A7 = B7 =
C7) the listening position, respectively. This allowed to linearly
re-map the responses gathered in the sets 1 . . . 9 to fill out the
entire interval [0; 1] for each subject. Fig. 5 shows the medians and
corresponding 95% confidence intervals.

Both designs A and B yield monotonic curves. A pairwise
analysis of variance (ANOVA) of the data pooled over all sounds
reveals the directivity to be significant factor (p� 0.01) for A1...5.
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Figure 5: Median and corresponding 95% confidence intervals for
all directivity designs A, B, and C, pooled over all sounds and
normalized individually on directivities indicated by 1 and 7.
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Figure 6: Median and 95% confidence intervals for tested sounds
S1...3 in R1 with directivity design A.
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Figure 7: Median and corresponding 95% confidence intervals for
tested rooms R1...3 with directivity design A and signal S1.

For the design B, all directivities are significant (B1...7, p < 0.08).
By contrast, the curve obtained for C1...7 is not monotonic in the
proposed sequence. If we compare strength and angle of direct
sound and specular reflections arriving at the listener for direc-
tivities C4 and C7, cf. Fig. 4, we see more energy coming from
lateral directions for C4. The more diffuse sound field explains the
significant difference (p ≤ 0.04) for C2...6 compared to C7.

5. INFLUENCE OF THE SIGNAL

The influence of the signal S1...3 on the auditory source distance of
the design A in R1 is evaluated by the stimulus set 13 in Tab. 3. As
the directivity indices 1, 4, 7 of set 13 appear in the more detailed
stimulus sets 1 to 3, a more detailed statistical analysis can be given
in Fig. 6. Responses for indices 1, 4 and 7 (set 13) are supplemented
by the linearly re-mapped responses for 2, 3, 5, 6 (set 1 to 3) for
each subject, to fill out the ranges between the median values for
the indices 1, 4 or 4, 7, respectively.

Fig. 6 shows the median values and corresponding 95% confi-
dence intervals of the auditory source distance for the room R1 and
directivity designs A1...7. Along the indices, the distance impres-
sion exhibits a monotonic increase for all sounds until condition
A5. The ANOVA of neighboring values reveals conditions A2

to A5 as a significant factor (p < 0.03). By contrast, conditions
A5...7 do not yield a significant change (p ≥ 0.45), despite continu-
ously reducing the D/R-ratio. This seems to comply with a general
tendency to auditorily underestimate the physical distance [1].
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Figure 8: Median and corresponding 95% confidence intervals for
reverberation levels 0, 1, 2 in R1 with S1 and directivity design A.

A sound-wise comparison of the obtained data reveals the
significantly smaller auditory source distance for S2 than for S1 or
S3 (pS2/S1

� 0.01, pS2/S3
= 0.02). This seems to comply with

the finding in [14, 15] that the auditory source distance of broadband
signals decreases with the relative amount of high-frequency energy.

6. INFLUENCE OF THE ROOM

The influence of the room and the source-to-listener distance (R1...3)
is evaluated by the data of the set 14. Figure 7 shows the median
values and corresponding 95% confidence intervals, regarding sig-
nal S1 and directivity design A, supplemented by the linearly and
individually re-mapped responses of the sets 1, 10, and 11.

A smaller room with shorter T60 and sound source closer to
adjacent walls but with the same source-to-listener distance (R3)
leads to a flatter curve. Similar flattening accompanied by an ad-
ditional offset to bigger auditory source distances is achieved by
extending the source-to-listener distance (R2). Interestingly, for
all tested rooms R the directivity is a significant factor (pR1 <
0.09, pR2 < 0.03, pR3 < 0.04) in the range of A1...5. This signif-
icance is similar to the values obtained with pooled sounds S1...3

(p� 0.01, see Fig. 6).

7. INFLUENCE OF SINGLE-CHANNEL
REVERBERATION

In electro-acoustics reverberation effects are used to control depth
of sounds. To get an idea how this affects the perceived distance, ar-
tificial reverberation is added to signal S1 and tested with directivity
patterns A1,4,7 in room R1. Fig. 8 shows respective median values
together with corresponding 95% confidence intervals. According
to the ANOVA, the influence of reverberation on the auditory source
distance is significant (p < 0.05).

Individually and linearly re-mapped responses from the sets
1 and 12 were used supplementing the responses from set 15 to
provide a more detailed analysis for the reverberation levels 0, 1
in terms progression over the 7 design indices. Both reverberation
levels yield a similar progression with the known saturation for
A>5. Directivity is a significant factor (p < 0.09) for the dry
signal (rev. level 0) in the range of A1...5, and by the addition of
reverberation (rev. level 1), differences between the neighboring
conditions A1,2 and A2,3 are no longer significant (p ≥ 0.16).
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Figure 9: Comparison of Median and 95% confidence intervals for all conditions with predictors: D/R, LF, and 1− IACC.

8. MODELING THE AUDITORY SOURCE DISTANCE

This section discusses linear auditory source distance models for
the presented effect, based on characteristic metrics of the spatial
sound field and their regression to the experimental data.

8.1. Direct-to-reverberant energy ratio

The most obvious predictor in this context is the D/R-ratio. It is
widely accepted for prediction of auditory source distance [1] and
is defined as

D/R = 10 log10

∫ T
0ms

s2(t)dt∫∞
T
s2(t)dt

. (2)

By using s(t) =
∑
l hl(t), the D/R-ratio can be calculated based

on the loudspeaker impulse responses, with a time constant T re-
garding only direct sound.
Regression analysis fits a linear regression function f(D/R) =
kD/R + d depending on the D/R-ratio to the normalized experi-
mental data and yields k = −0.049 and d = 0.11. Figure 9 shows
the pooled data compared with f(D/R). Although the D/R-ratio
and the median values of the pooled data are highly correlated
(R2 = 0.93) their progression along the directivity indices is quali-
tatively different.

8.2. Inter-aural cross correlation coefficient

As reverberation caused by the room simulation introduces binaural
cues by altering the sound attributes at the two ears differentially,
the inter-aural cross correlation coefficient (IACC) is used as an
additional measure for auditory source distance. The IACC is based
on the inter-aural cross correlation function (IACF):

IACF(τ) =

∫ 80ms

0ms
sleft(t)sright(t+ τ)dt√

[
∫ 80ms

0ms
s2left(t)dt][

∫ 80ms

0ms
s2right(t)dt]

, (3)

with sleft(t) = hleft(t) ∗ s(t) and sright(t) = hright(t) ∗ s(t). The
binaural impulse response h(t) corresponds to responses for left
and right ear at φ = 0◦.
The IACC is defined as the maximum absolute value within τ =
±1 ms:

IACC = max
∀τ∈[−1ms;1ms]

|IAFC(τ)|. (4)

Simply stated, IACC is a powerful binaural cue of the similarity
between ear signals [3].

It is widely accepted that a lower IACC value leads to a bigger
spatial impression, and therefore 1− IACC is positively correlated
with the magnitude of perceived spatial impression.
With the IACC binaurally measured in the experimental setup,
linear regression yields f(1− IACC) = 2.23(1− IACC)− 0.87
to model the experimental data (R2 = 0.98, cf. Fig. 9).

8.3. Lateral energy fraction

The lateral energy fraction (LF) is another acoustic measure quanti-
fying the spatial impression. More specifically, it has been accepted
as a measure of the effect of source broadening [16, 17]. Simply
stated, LF is the ratio of the sum of the early lateral energy to the
sum of the early total energy:

LF =

∫ 80ms

5ms
s2lat(t)dt∫ 80ms

0ms
s2(t)dt

, (5)

with slat(t) =
∑
l hl(t) sin(φl) and φl as azimuthal angle of the

lth loudspeaker.
Linear regression yields f(LF) = 7.3LF− 0.54, cf. Fig. 9. This
LF-based linear model delivers the best matching results. This is
underlined by its sublime correlation of R2 = 0.99.

9. CONCLUSIONS

In this contribution, an investigation was carried out into the influ-
ence of various directivity patterns on the perceived auditory dis-
tance. Two-dimensional simulation of a variable-directivity sound
source was shown to provide control of the perceived auditory
distance from a single point in the room. Different beampattern de-
signs were proposed that cause pronounced and graduated distance
impressions. Additionally, the influence of auralized room, source-
to-receiver distance, signal, and single-channel reverberation was
studied.

The mapping of the directivity designs A1...7 and B1...7 to
perceived distance curves is sigmoid-shaped. It resembles the
compressive power functions described in [5] characterizing the
relation between physical and perceived distance. Moreover, agree-
ing with [14, 15], signals with an increased relative amount of
high-frequency energy appeared to be closer in the study.
Both decreasing the auralized room and increasing the source-to-
receiver distance yield a more compressed curve, which is slight
offset in case of the increased source-to-receiver distance. Despite
this, the range of discriminability is persistent.
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The use of single-channel reverberation is also effective at in-
creasing the perceived auditory distance, however, it narrows the
directivity-controllable range of distinguishable distance impres-
sions.

Finally, successful modeling of the experimental results was
presented. All models are highly correlated with the experimental
data. Interestingly, spatial measures used to quantify the apparent
source width provide very accurate predictions.
In a room, the physical distance to a source typically increases the
amount of reflected sound in relation to the direct sound. Conse-
quently, this affects the measures 1−IACC and LF for the apparent
source width, as the measurements in [18] showed. Our listening
experiments only asked for distance ratings. Further research is
required to determine to what extent the auditory distance and width
are separable.
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ABSTRACT

This article investigates the accuracy with which listeners can iden-
tify the spatial extent of distributed sound sources. Either the com-
plementary frequency bands comprising a source signal or the in-
dividual grains of a granular synthesis-based stimulus were dis-
tributed directly on discrete loudspeakers. Loudspeakers were ar-
ranged either on the horizontal or the vertical axis. The algorithms
were applied on white noise, an impulse train, and a rain drops
stimulus. Absolute judgments of spatial extent were obtained sep-
arately for each orientation, algorithm, and stimulus using three
different magnitudes of horizontal or vertical extent.

Horizontal spatial extent judgments varied systematically with
physical extent for all conditions in the experiment. The corre-
spondence between perceived and actual vertical extent was poor.
The time-based synthesis algorithm resulted in significantly larger
judgments of spatial extent irrespective of orientation and stimulus
compared to the frequency-based algorithm.

1. INTRODUCTION

Perceived spatial extent is a measure of the perceived spatial vol-
ume that may be occupied by an auditory event. The term was
proposed by [1] and may refer independently to width, height, and
potentially also depth. It is important to note here that although
most often in the literature the term Auditory or Apparent Source
Width (ASW) has been used to refer to the perceived horizontal
spatial extent of a sound, we use the term spatial extent here be-
cause it allows us to differentiate between spatial extent perception
along each of the three axes of the Cartesian coordinate system.
Furthermore, in the following, by spatial extent we refer exclu-
sively to the spatial extent of the perceived auditory object and not
of the sound producing object.

This study is motivated by the revived interest in algorithms
for the representation of auditory spatial extent in the last years.
This interest is justifiable if one considers that reliable represen-
tation of auditory spatial extent could be useful for both scien-
tific and artistic purposes. Concerning music for example, reli-
able representations of spatial extent could provide an extra design
parameter for composers, sound engineers, and music producers.
Concerning interactive systems, such algorithms could improve
and augment auditory representations in virtual and mixed reality
systems. Importantly, successful representation of horizontal and

∗ Contributions: Marian Weger and Georgios Marentakis designed the
experiment, performed the statistical analysis, and authored the article.
Marian Weger implemented and executed the evaluation study. Robert
Höldrich contributed essential knowledge on acoustic measurements and
predictors for apparent source width and provided useful comments and
corrections to the article. This work was supported by the Zukunftsfonds
Steiermark Klangräume Project (PN:6067) led by Georgios Marentakis.

vertical extent may pave the way for representing more complex
shapes with sound, which would be vital for assistive technologies
for example. In this article, we focus on the synthesis of relatively
small spatial extents, keeping an eye on applications for which the
space to deploy loudspeakers is limited. We proceed by first re-
viewing the literature and then presenting the experiment and their
results.

Perceived spatial extent is influenced by both spatial and non-
spatial acoustical features. Non-spatial features that affect the per-
ception of spatial extent include loudness, duration, and base fre-
quency of a sound. Increased sound pressure level and duration
and lower base frequency are generally associated with larger spa-
tial extent of sound generating sources [2, 3, 4]. Furthermore, deci-
sions about the shape and size of sounding objects can be reached
on the basis of spectral cues such as the (sometimes direct) rela-
tionship between the modal frequencies of vibrating objects and
their geometric shapes and size. In experiments, above chance
identification of auditory source shape solely based on spectral
cues has been observed [5, 6, 7].

Concerning spatial factors, studies have focused on the per-
ception of horizontal spatial extent (or ASW). This increases in
reverse proportion to the interaural cross-correlation coefficient
(IACC) [8, 2, 9].

A significant number of studies investigated the horizontal spa-
tial extent of the auditory event that emeges when simultaneous un-
correlated noise sources are distributed directly to individual loud-
speakers. Linear or circular loudspeaker arrangements were tested
[10, 11, 12, 13]. It was shown that the perceived horizontal ex-
tent of such stimuli varies in proportion to the actual spatial extent
occupied by the noise sources. The perceived horizontal spatial
extent is, however, narrower than the actual spatial extent [12, 11].
Increasing the noise bandwidth or center frequency [11, 14], or
the signal duration [13] results in a wider perceived spatial extent.
Furthermore, small gaps in the loudspeaker spatial distribution are
not easily noticed while the size of large gaps is often exaggerated
[12].

In practice, decorrelation techniques for arbitrary monophonic
signals are used to recreate a similar effect. A very promising
approach works by splitting an auditory signal into a number of
unique frequency bands which are then spatialized directly on loud-
speakers or as virtual sources [10, 15, 16, 17]. Most often, signals
are decomposed in bands whose bandwidth and center frequency
correspond to the Equivalent Rectangular Bandwidth (ERB) scale
[18, 10]. The way frequency bands are mapped to spatial posi-
tions is important as it influences both the center and the spatial
extent of the perceived auditory event [10, 19]. Convincing synthe-
sis of horizontal spatial extent has been achieved by using a Hal-
ton sequence [20] to map frequency bands to fixed locations [16].
In evaluation studies, this method resulted in perceived horizontal
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spatial extent proportional to the physical extent of the distributed
sound source. Impressions ranging from a narrow focused source
to sounds completely surrounding the listener were obtained using
a circular loudspeaker array. Sound quality was however strongly
signal dependent [16]; this is a common problem in decorrelation
techniques [21, 16, 17].

Another approach, originating in electroacoustic music, is to
create spatially extended sound sources using spatialized granular
synthesis [22, 23, 24]. Granular synthesis generates sounds by
combining short signals (grains) [25, 24]. It can result in a great
variety of sounds, including those of everyday events, such as rain,
applause, etc. As grains are in general short and may be designed
to have steep attacks they can be localized well. Their potential
for spatial extent synthesis is therefore high. This hypothesis has
however not been tested experimentally.

The two aforementioned algorithms, which from here on will
be called the frequency-based and the time-based algorithm, are
in a sense complementary to each other. While in the frequency-
based algorithm, the frequency bands of a monophonic input sig-
nal are spatialized independently to yield a coherent sound, in the
time-based algorithm this is achieved by using individually spatial-
ized temporal grains. In both cases, it is envisaged that the spatial
extent of the auditory event will relate to the spatial distribution
of the grains or frequency bands comprising the source. However,
both algorithms might be sensitive to the way grains or frequen-
cies are spatialized in addition to the size and geometry of the area
within which the signal content is distributed. It is reasonable to
hypothesize that the allocation of the individual grains/frequencies
to a single auditory event may be infeasible above a certain spatial
dispersion.

The above observations motivated us to design and imple-
ment an experiment that compares the aforementioned time- and
frequency-based spatial extent synthesis algorithms on the basis of
their ability to create the impression of spatially distributed sound
sources. Our experiment investigates the synthesis of both hori-
zontally and vertically extended sound sources, with extents that
are smaller compared to the ones used in the literature. The aim
was to understand the relevance of the aforementioned synthesis
techniques for fields other than surround music production, e.g.,
for Human Computer Interaction (HCI) applications.

2. EXPERIMENT

In the experiment, participants performed absolute judgments of
perceived spatial extent in conditions that manipulated the spatial
extent synthesis algorithm, the type of stimulus used, and the ori-
entation and length of the spatial distribution of the loudspeakers
that were used to distribute the stimuli. An overview of the vari-
ables is provided in Table 1 and a photo of the experiment setting
is provided in Figure 2.

With reference to Figure 2, small, medium, and large spatial
distributions were simulated by distributing signals on 3, 7, or 11
adjacent loudspeakers respectively using either the frequency- or
the time-based algorithm. Distribution orientation was either hor-
izontal or vertical. As the experiment targeted also the percep-
tion of vertical spatial extent, we opted to use discrete loudspeak-
ers instead of phantom sources. This was done specifically be-
cause panning algorithms are known to provide weak and inaccu-
rate perception of the vertical location of elevated phantom sources
[26, 27, 28, 29].

Table 1: The independent variables in the experiment.

Factor Levels
Spatial Distribution small

medium
large

Algorithm frequency-based (FB)
time-based (TB)

Stimulus white noise
impulse train
rain drops

Orientation horizontal
vertical

2.1. Stimuli

Three different stimuli were used in the experiment. The first two
were white noise and an impulse train. These were chosen because
they represent optimal scenarios for the frequency- and time-based
algorithms, respectively. The third stimulus was designed to cre-
ate the impression of strong rain and represented a more realistic
scenario.

To create this rain drops stimulus 48 different rain drop sam-
ples were used. These were extracted from a recording of rain and
normalized to the same amplitude. Average duration was 46 ms
(standard deviation SD=18 ms) with an approximate attack time1

of 2.2 ms (SD=1.8 ms). They were combined using a typical gran-
ular synthesis algorithm that selected grains by drawing samples
from a uniform distribution. The onset of the next event relative
to the onset of the current one was sampled from a normal distri-
bution with mean M=10 ms (100 Hz) and SD=3 ms. Occasional
negative delays were mirrored around zero to positive ones. Ran-
domizing delay helped to avoid the impression of a pitched sound.
The impulse train stimulus was implemented similar to the rain
drops stimulus, but with a Dirac impulse as a grain.

While both white noise and impulse train stimuli have a flat
frequency spectrum up to half the sampling frequency, the aver-
aged spectral energy of the rain drops stimulus was concentrated
primarily in the region between 2 kHz and 7 kHz.

2.2. Algorithms

In case of the frequency-based algorithm, the condition-dependent
monophonic input signal was decomposed into frequency-bands
whose center frequency and bandwidth corresponded to the Equiv-
alent Rectangular Bandwidth (ERB) scale [30], according to the
algorithm proposed in [10] and [19]. 38 ERB-bands with center
frequencies from 142.5 Hz to 19.7 kHz were chosen. The comple-
mentary ERB-filters were implemented as rectangular windows in
the spectral domain using the short-time Fourier transform (STFT)
with an FFT size of 1024 samples. Hann-window and 75% overlap
were chosen to yield perfect reconstruction[31, p. 113].

To make sure that the ERB-bands are evenly distributed to all
active loudspeakers, and to ensure a reproducible distribution, the
output channel to which each individual ERB-band was mapped,
was chosen by using a Halton sequence [20], as proposed by [16].
In particular, a long (1000 elements) Halton sequence of base 2

1In this context the attack time was defined as the time to reach the
lowest maximum of all grain’s envelopes. The envelope of a signal was
computed as the absolute value of its discrete-time analytic signal (Hilbert
transform).
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Figure 1: Simplified block diagram of the signal chain for the gran-
ular synthesis-based stimuli (impulse train and rain drops). The
independent variables of the experiment are framed in dotted lines.
N: number of ERB-bands. M: number of output channels.

(without offset) was pre-computed. First, the resulting Halton se-
quence elements (that range between 0 and 1) were mapped to
the 11 loudspeakers of the linear loudspeaker array (counted from
left to right / top to bottom). This sequence was used to gener-
ate individual sequences for each condition. For each of those se-
quences, numbers corresponding to loudspeakers inactive for the
corresponding condition were removed. In a second step, direct
repetitions (neighboring bands in the same loudspeaker) were re-
moved from the resulting sequence and it was made sure that no
loudspeaker received more than one band than the rest to avoid
concentrating energy on one loudspeaker. The first 38 sequence
numbers of the remaining sequence were used to indicate the chan-
nels (from 1 to 11) in which the corresponding ERB-bands would
be rendered2. The signal to each loudspeaker was calculated using
3, 7, or 11 complementary filters containing the relevant frequency
bands. In all conditions, the simulated signal power difference be-
tween loudspeakers was less than 2 dBA.

In the case of the time-based algorithm, the individual grains
(Dirac impulses or rain drop samples) were simply routed to dis-
crete loudspeakers depending on the spatial distribution in each
condition. This was done during sound synthesis which provided
access to the individual grains. Each time a grain or impulse was
played from a given loudspeaker location, the location of the next
grain was selected again using a pre-defined sequence similar to
the one in the frequency-based algorithm. However, now the se-
quence lengths corresponded to the number of active loudspeakers
and each channel number was included once.3

A simplified overview of the complete signal chain for the
granular synthesis-based stimuli (impulse train and rain drops) is
illustrated in Figure 1.

When being processed by the frequency-based algorithm both
granular stimuli (rain drops and impulse train) were synthesized
as monophonic signals and a single monophonic white noise sig-
nal was used. The algorithm then did the filtering and the play-
back from the relevant channels in the same way for all stimuli.
When being processed by the time-based algorithm, each grain
(rain drop or click) of the two granular stimuli was allocated to
its corresponding channel as soon as it was generated. The white

2Small: 6,5,7,5,6,7,5,6,7,5,7,6,7,5,6,5,7,6,7,5,6,7,5,6,7,5,6,5 7,6,7,5,6,
5,7,6,7,5; Medium: 6,4,8,3,7,5,9,3,6,5,8,4,7,9,3,6,4,8,7,5,9,3,7,5,8,4,6,9,3,
6,4,8,7,5,9,3,7,5; Large: 6,3,9,2,7,5,10,1,4,8,11,1,6,4,9,2,8,5,10,7,3,11,1,
6,3,9,2,8,5,10,7,4,11,1,7,4,9,2

3Small: 6,7,5; Medium: 6,3,9,7,5,4,8; Large: 6,3,9,2,7,5,10,1,4,8,11

Figure 2: The planar loudspeaker array (left) and the experiment
setting (right).

noise stimulus was not processed by the time-based algorithm. In-
stead, each active loudspeaker depending on the condition played
statistically independent white noise. This exception served as a
control condition in the experiment. It was assigned to the time-
based algorithm to simplify the condition names in the experiment.

2.3. Apparatus

Twenty-one custom 2-inch broadband speakers and class-D ampli-
fiers were used [32], connected to Behringer ADA8000 DA con-
verters running at 44.1 kHz / 24 bit. The loudspeakers were ar-
ranged on two intersecting lines of 11 loudspeakers each, which
were aligned on the horizontal and vertical axis. The center speaker
was shared and placed at a height of 120 cm, roughly aligned with
the nose of the listeners. There was 10 cm distance between neigh-
boring membrane centers leading to a maximum distance of 1 m
between the two outmost speakers. Loudspeakers were aligned to
the direction of the listener and hidden behind a 2 by 1.5 m acous-
tically transparent projection screen4 installed 10 cm in front of
them (see Figure 2). The three different spatial distributions led to
physical extents of 25, 65, and 105 cm, or 7.2, 18.5, and 29.4 de-
grees.

Differences in distance to the listener were compensated by
loudspeaker-specific gain and delay corrections, and to protect the
loudspeakers all channels in all conditions were high-pass filtered
at 200 Hz. Equivalent Continuous Sound Level (Leq) was 55 dBA
at the listening position for all stimuli. The experiment took place
in an acoustically treated room of 4.3(w) × 6.2(l) × 3.4(h) m size,
with reverberation times between 0.15 and 0.22 s in the relevant
frequency range above 200 Hz. The direct-to-reverberant ratio
(DRR) [33] at the listening position was between 7 and 11 dB for
the individual loudspeakers.

Participants performed the experimental task using a toy gun
to indicate perceived horizontal or vertical extent. To achieve this,
infrared reflective markers were mounted on the gun and the pro-
jection screen and tracked using a NaturalPoint OptiTrack optical
motion capture system. The experiment and graphics were im-
plemented in Pure Data using the Extended View Toolkit [34] for
projection mapping.

4Gerriets OPERA® white perforated (PVC, 390 g/m2, 7 percent perfo-
ration area)
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Table 2: The results of a four-way (Stimulus × Algorithm × Spa-
tial Distribution × Orientation) repeated measures ANOVA on per-
ceived spatial extent. Non-significant main effects and interactions
(p>0.05) were omitted.

Stimulus F(2,34) = 20.749 p < 0.001
Algorithm F(1,17) = 47.679 p < 0.001
Spatial Distribution F(2,34) = 19.550 p < 0.001
Orientation F(1,17) = 16.852 p = 0.001
Algorithm × Spatial Distribution F(2,34) = 24.634 p < 0.001
Algorithm × Orientation F(1,17) = 44.511 p < 0.001
Spatial Distribution × Orientation F(2,34) = 15.171 p < 0.001
Algorithm × Spatial Distribution × Orient. F(2,34) = 18.897 p < 0.001

2.4. Procedure and Participants

Participants sat on a chair at a distance of 2 m from the loudspeaker
array. They went through the trials in a randomized order; there
was a 500 ms silence between trials, enough to reset short-term
echoic memory [35]. Each stimulus was presented continuously
until the trial was over, with a 5 ms linear fade in and fade out.
Horizontal and vertical orientation were tested in two separate trial
groups presented in a counterbalanced order. There were four rep-
etitions for each combination of algorithm, stimulus, and spatial
distribution, leading to a total of 72 stimuli for both orientations.

Participants were instructed to use the toy gun to draw a straight
line on the projection screen and to match its horizontal (or verti-
cal) spatial extent to the perceived auditory horizontal (or vertical)
spatial extent. They triggered the gun to indicate and adjust the
end points of the line and were able to perform corrections before
pressing a button on the gun to proceed to the next trial. 18 partic-
ipants (5 female, M=26.3 years, SD=5.4 years), participated and
received a small financial compensation. None of them had prior
knowledge or training in the specific task. The task was not re-
stricted in time.

2.5. Results

Perceived vs. physical spatial extent in the different conditions in
the experiment are illustrated in Figure 3. It is evident that in most
cases perceived extent was narrower in vertical compared to hor-
izontal orientation. In addition, it appears that the time-based al-
gorithm results in broader spatial extent perceptions compared to
the frequency-based algorithm. Finally, although results are sim-
ilar for the white noise and impulse train stimuli, the rain drops
stimulus appears to be perceived narrower than the other signals.

The judgments in the different conditions in the experiment
were verified to follow the normal distribution using the Lilliefors
test [36]. No outliers were detected by Grubbs’ test [37]. A four-
way (Stimulus × Algorithm × Spatial Distribution × Orientation)
repeated measures ANOVA on perceived spatial extent, as indi-
cated by the horizontal or vertical distance between selection end-
points, was used to analyze the results (see Table 2). No violations
of sphericity were observed.

2.5.1. Main effects

The main effects of Stimulus, Algorithm, Spatial Distribution, and
Orientation were significant. Pairwise t-tests showed that white
noise and impulse trains resulted in significantly broader perceived
extent in comparison to the rain drops (p<0.001). Pairwise t-tests
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Figure 3: Perceived vs. physical spatial extent in the different con-
ditions in the experiment. Error bars indicate standard error of the
mean.

showed that the small spatial distribution (3 loudspeakers) was per-
ceived to be significantly narrower than both the medium (7 loud-
speakers) and the large (11 loudspeakers) distributions and the
medium distribution narrower than the large (p<0.01). Finally,
judgments of vertical extent were significantly narrower than those
of horizontal extent, and the time-based algorithm resulted in sig-
nificantly broader judgments.

2.5.2. Algorithm and Spatial Distribution

The interaction between Algorithm and Spatial Distribution was
significant. This was because in the case of the time-based al-
gorithm, averaged over orientation and stimulus, perceived extent
was significantly different for the three spatial distributions tested
in the experiment, e.g., small was perceived as significantly nar-
rower than medium and large spatial distributions, and medium
significantly narrower than the large spatial distribution (p<0.001).
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This was not the case for the frequency-based algorithm, in which
case averaged over stimuli and orientation no statistically signifi-
cant differences in the perceived extent of different spatial distri-
butions were observed.

2.5.3. Algorithm and Orientation

The interaction between Algorithm and Orientation was signifi-
cant because in the case of the time-based algorithm, averaged over
Stimulus and Spatial Distribution, judgments of the horizontal ex-
tent were significantly wider compared to those of vertical extent
(t(17)=5.855, p<0.001), while for the frequency-based algorithm
there was no significant difference between the extent of the hori-
zontal and vertical judgments, arguably because they were narrow
in both cases.

2.5.4. Spatial Distribution and Orientation

The interaction between Spatial Distribution and Orientation was
also significant. This was because of two reasons. The first was
that when loudspeakers were arranged horizontally, perceived hor-
izontal extent was significantly influenced from the actual spatial
extent, i.e., variations in the spatial distributions resulted in signifi-
cantly different perceived spatial extent (pairwise-comparisons, at
least p<0.01). When loudspeakers were aligned vertically, how-
ever, the perceived vertical extent varied only little in response
to changes in the actual physical extent. Perceived spatial ex-
tents for the different spatial distributions were only marginally
significantly different to each other, small smaller than medium
(t(17)=−1.839, p=0.083), small smaller than large (t(17)=−1.865,
p=0.080), medium vs. large not significant. The second reason is
that for the smallest actual spatial distribution, the perceived hor-
izontal and vertical extent judgments were not different to each
other. However, perceived horizontal and vertical extent judg-
ments in the other two spatial distributions were significantly dif-
ferent to each other in the horizontal but not in the vertical orien-
tation.

2.5.5. Algorithm, Spatial Distribution, and Orientation

The three-way interaction between Algorithm, Spatial Distribu-
tion, and Orientation was also significant. This was because ir-
respective of stimulus and for spatial distributions other than the
small, the perceived spatial extent was significantly larger in the
case of the time-based spatialization for horizontally aligned stim-
uli in comparison to vertically aligned ones. This interpretation is
supported by the observation that the two-way interaction between
Orientation and Spatial Distribution was significant for the time-
based spatialization algorithm but not for the frequency-based when
analyzing the data averaged over stimuli.

3. PREDICTORS FOR APPARENT SOURCE WIDTH

For precise control of perceived spatial extent, predictors which
can be calculated on the basis of measurable signal properties are
sought. For vertical spatial extent no reliable predictors are known.
However, in the case of horizontal spatial extent, i.e., apparent
source width, interaural cross-correlation (IACC) and the lateral
energy fraction (LF) may provide acceptable results. LF is related
to IACC in the sense that a decorrelation between the two ear sig-
nals, yielding a low IACC (or high LF), could emerge on the one

hand from a spatial distribution of uncorrelated individual sound
sources, or on the other hand from room reflections [38]. On the
other hand, changes in IACC may not only result from changes
in the lateral energy arriving in the ears and may be the result of
decorrelation operations in the signals.

3.1. Lateral energy fraction (LF)

Although traditionally used to quantify spaciousness in concert
hall acoustics [8, p. 351], it was shown that the lateral energy frac-
tion could also serve as a predictor for auditory source width of
loudspeaker signals in short reverberation time environments [39].
The LF describes the ratio of the lateral energy to the total energy,
and is computed by contrasting the impulse responses measured by
an omni-directional microphone h◦ with that of a figure-eight mi-
crophone h◦◦ [40, 41]. Usually, in case of the omni-directional
microphone the first 5 ms of the impulse response are omitted
[42]. However, for phantom sources in the horizontal plane it was
shown that an adapted version, where both impulse responses start
from zero (see Equation 1), is a better predictor of auditory source
width, at least for pink noise signals [39]. Although this predictor
may appear to have limited potential for application in our data,
we include it here for completeness.

LF =

80 ms∫
0 ms

h2
◦◦ dt

80 ms∫
0 ms

h2
◦ dt

(1)

Measurements of the adapted LF for the individual loudspeak-
ers were performed with an NTi M2210 omni-directional micro-
phone and a Schoeps type CMC 5 with MK 8 capsule as a figure-
eight microphone. Both microphones were calibrated to compen-
sate sensitivity-differences. The center loudspeaker led to an LF
of 0.07, while the LF for the outmost left/right loudspeakers was
0.13. LF for the rest of the loudspeakers were obtained by linear
interpolation. As a result, the 3, 7, or 11 simultaneous loudspeak-
ers for the small, medium, or large spatial distribution led to an
overall LF of 0.08, 0.09, and 0.10, respectively. These values may
be interpreted to show a monotonically increasing LF for increas-
ing physical extent. However, their range is small compared to the
literature, e.g., [43] (0.025 compared to 0.15), and even less than
one just-noticeable difference (JND) [44]. As already suggested
by [43], it therefore appears that the LF is not a suitable predic-
tor for the apparent source width in our experiments, especially
as it is computed from impulse responses, ignoring the effects of
algorithm and stimulus type.

3.2. Interaural cross-correlation coefficient (IACC)

In previous studies, the IACC, which is the maximum of the cross-
correlation between the left and right channel of a binaural record-
ing [8], was shown to be a good predictor for perceived spatial
extent in the horizontal plane [2]. To verify this claim, binau-
ral measurements were performed with a head and torso simula-
tor (HATS, B&K type 4128C), which was placed at the listening
position. Subsequently the IACC was calculated using the record-
ings for all combinations of the independent variables Stimulus,
Algorithm, Spatial Distribution, and Orientation. While the IACC
for vertically extended sound sources was always constantly above
0.8, in horizontal orientation it varied systematically with the ap-
parent source width (see Figure 4).
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Figure 4: Apparent source width (ASW) as a function of the IACC
for the different conditions of the experiment. Error bars indicate
standard error of the mean.

It is evident in Figure 4 that the majority of the findings re-
ported earlier can be explained on the basis of the IACC algo-
rithms. In particular, larger spatial distributions led to a lower
IACC than smaller ones, and the time-based algorithm resulted
in lower IACC values and a smaller range of the values compared
to the frequency-based algorithm. Furthermore, the rain drops led
to always higher IACC than both white noise and impulse train
stimuli which produced similar values, which explains why this
was always judged to be narrower than the other two stimuli. The
correlation coefficient between IACC values for each spatial distri-
bution and the resulting perceived horizontal extent (ordinate and
abscissa in Figure 4) was calculated. In the case of the time-based
algorithm, a value of at least −0.996 was obtained when consid-
ering all three stimuli. In the case of the frequency based algo-
rithm, a value of at least −0.997 was obtained for the noise and
the rain stimuli, however the correlation for the impulse train was
poor (0.27). On a closer inspection, this relates to an unexpected
trend in the ASW value in the small spatial distribution for this
condition and stimulus combination (see also the behavioral data
in Figure 3).

Concluding, the IACC was found to be a good predictor for
perceived spatial extent in the horizontal plane, as it is highly cor-
related with the absolute judgments of perceived spatial extent.

4. DISCUSSION

The results of the experiments and the acoustic measurements al-
low certain conclusions to be made with respect to the possibility
of eliciting the perception of either vertically or horizontally ex-
tended sounds. In summary, even within the relatively small spa-
tial distributions used in this experiment, it was possible to create
the impression of horizontally extended sounds. This was not the
case for vertical extent. The algorithms used here can only par-
tially create the impression of vertical extent within the range of
spatial extents used in the experiments. Finally, irrespective of
orientation or stimulus type, the time-based algorithms resulted in
significantly larger perceptions of both horizontal and vertical ex-
tent.

4.1. Time-based algorithm

Perceived horizontal extent created by the time-based algorithm
varied systematically with the actual extent of the spatial distribu-

tion irrespective of stimulus type as evidenced by the fact that the
different horizontal extents used in the study resulted in signifi-
cantly different distributions of perceived spatial extent. Interest-
ingly, actual horizontal extent was overestimated in the perceptual
judgments, especially at the smaller actual spatial extents. In the
vertical direction, however, perceived spatial extent varied less sys-
tematically with the actual one. Although a significant increase in
the perceived vertical spatial extent with increased actual vertical
spatial extent appeared for the white noise and the Dirac impulses,
the difference was consistently significant only when comparing
the smallest with largest displacement (t(17)=3.46, p=0.003 for
white noise and t(17)=2.43, p=0.047 for impulses) and no signif-
icant differences in perceived vertical extent when using the rain
drops stimulus were observed. In addition, judgments of perceived
vertical extent underestimated actual extent by far pointing to lim-
ited applicability in real-world applications.

4.2. Frequency-based algorithm

Concerning the frequency-based algorithm, although in general
perceived horizontal extent increased in proportion to the actual
horizontal extent, as a rule judgments underestimated the actual
horizontal extent of the spatial distribution and were significantly
narrower than the ones obtained by the time-based algorithm. In
addition, the algorithm failed to represent vertically extended sound
sources. This could be attributed to the different mechanisms that
operate and determine azimuth and elevation perception. While
azimuth perception operates on the basis of interaural time dif-
ferences, spectral cues and familiarity with source spectrum are
mainly responsible for elevation perception [45, 8]. It appears
therefore that while the combination of information from frequen-
cies at different azimuths to yield the impression of coherent spa-
tially extended auditory sources provides a functional basis for the
creation of horizontally extended sources, this mechanism fails for
vertically extended sources. This may be explained by the fact
that presenting signal frequencies at different elevations destroys
the consistency with which the signal spectrum is filtered by the
outer ear to result in the perception of elevation. This is a funda-
mental problem when it comes to representing vertical extent by
distributing signal frequencies in elevation that might be difficult
to overcome.

4.3. Stimuli

Performance for the white noise and the impulse train stimulus was
similar, both for horizontally and for vertically extended sources.
The rain drops were perceived to be consistently narrower. In ad-
dition, although differences in spatial extent represented with this
stimulus were well identified in the horizontal orientation, this was
not the case in the vertical one. The aforementioned difficulties
could arguably relate to the bandwidth of the rain drops stimu-
lus, which was smaller compared to other two. The difficulties in
vertical extent perception might relate to sound design issues that
need to be investigated further, such as optimization of the grains
to yield as good localization as possible.

4.4. Sound design

An aspect worth considering further is the overestimation of the
actual spatial extent that occurred for all stimuli in the horizontal
orientation in the case of the time-based and to a lesser extent in the
case of the frequency-based algorithm. This may be attributed to
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non-spatial factors pertaining to source-size perception, that may
confound spatial extent judgments. It appears that the creation of
predetermined spatial extent impressions requires the simultane-
ous calibration of both spatial and non-spatial factors. A general
solution to provide a specific spatial extent that is applicable to all
signals may therefore be difficult to achieve and perceptual cali-
bration might be necessary in order to improve the match between
actual and perceived spatial extent.

4.5. Predictors for apparent source width

The perceived spatial extent judgments in the horizontal orienta-
tion in the experiments could be explained on the basis of the
IACC. LF values did not correlate with spatial extent measure-
ments. This could be expected as room acoustics were the same
throughout the experiment and the distance between active loud-
speakers in the experiment was small. Listeners responded there-
fore on the basis of IACC and not LF. LF may be interpreted to
indicate the contribution of the interaction between loudspeaker
positioning and room on the judgments of spatial extent. The ob-
served values show that this contribution is negligible.

4.6. Loudspeaker array design

In the experiment, adjacent loudspeakers were used to create the
impression of spatially extended sources. This may appear uneco-
nomical as an auditory source width of at least 10 degrees for a sin-
gle loudspeaker emitting noise, depending on room acoustics and
loudspeaker model has been observed [39]. Furthermore, gaps of
up to 15 degrees in noise emitting loudspeaker arrays were found
to be difficult to notice [10, 13]. The loudspeakers we have used,
however, were smaller than the ones used in the aforementioned
studies. We opted out from introducing gaps in the distribution in
order to exclude the possibility of perceptual discontinuities in the
perceived auditory event. It may however well be that the results
of this experiment could be replicated with even less loudspeakers
than used here, given appropriate calibration.

It may be worth noting that the difficulties with vertical per-
ception in the experiment may originate in the small range of spa-
tial extents used. It would therefore be interesting to replicate this
study using larger spatial distributions in vertical orientation in or-
der to understand whether the limitations observed here reflect a
limitation in the algorithms used or a limitation in the perception of
vertical extent in the auditory system. Larger spatial distributions
and listener training may be interesting factors to vary in future
experiments targeting this aspect.

4.7. Applications

Concerning the auditory representation of horizontal extent the re-
sults are very promising. Participants could differentiate well even
in response to the small spatial distributions tested here. Design-
ers may therefore start to integrate horizontally extended sounds
in virtual and mixed reality applications. It also appears that musi-
cal compositions in which the spatial extent of sounds is explicitly
manipulated will become commonplace in the future. The results
of this study show that when extents of small magnitude need to
be used, time-based extent synthesis algorithms are preferable, as
they yield larger impressions of horizontal extent. The use of gran-
ular synthesis in this context appears to be a far reaching solution
for sound and interface designers.

5. CONCLUSION

We presented a study that investigated the perception of auditory
spatial extent using two spatial extent synthesis algorithms. The
algorithms aimed to create the impression of spatially extended ob-
jects by either distributing the frequencies or the grains comprising
a sound source in space. In a controlled experiment, the ability of
the algorithms to create spatially extended sound sources as a func-
tion of Spatial Distribution, Orientation, and Stimulus type was
tested. It was found that while both algorithms were successful in
generating the impression of horizontally extended sound sources,
the time-based algorithm resulted in broader perceptions of spatial
extent irrespective of Stimulus, Orientation, or actual Spatial Dis-
tribution. Furthermore, for similar spatial distributions, judgments
of horizontal extent were significantly larger than these of verti-
cal extent. Finally, judgments of horizontal extent overestimated
the physical extent, while judgments of vertical extent underesti-
mated the physical extent. Results could be explained on the basis
of measurements of the interaural cross-correlation in the different
conditions in the experiment.
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ABSTRACT

This paper proposes a sonification model for encoding visual 3D
information into sounds, inspired by the impact properties of the
objects encountered during blind navigation. The proposed model
is compared against two sonification models developed for orienta-
tion and mobility, chosen based on their common technical require-
ments. An extensive validation of the proposed model is reported;
five legally blind and five normally sighted participants evaluated
the proposed model as compared to the two competitive models
on a simplified experimental navigation scenario. The evaluation
addressed not only the accuracy of the responses in terms of psy-
chophysical measurements but also the cognitive load and emo-
tional stress of the participants by means of biophysiological sig-
nals and evaluation questionnaires. Results show that the proposed
impact sound model adequately conveys the relevant information
to the participants with low cognitive load, following a short train-
ing session.

1. INTRODUCTION

In audio-based software applications, such as auditory displays
and audio games, sonification is used to represent various actions,
objects or situations in order to virtually describe scenes.Sonifi-
cation can be defined as “a mapping of numerically represented
relations in some domain under study to relations in an acoustic
domain for the purposes of interpreting, understanding, or commu-
nicating relations in the domain under study” [1].

Sonification is also used in health care, for instance in motor
rehabilitation systems [2], electronic travel aids (ETAs, i.e., de-
vices which aid in independent mobility through obstacle detection
or help in orientation and navigation) [3], and other assistive tech-
nologies for visually impaired persons (VIPs). Most of these sys-
tems are still in their infancy and mostly still at a prototype stage.
Furthermore, available commercial products have limited function-
alities, small scientific/technological value and high cost [3].

Available ETAs for VIPs provide various information that
ranges from simple obstacle detection with a single range-finding
sensor, to more advanced feedback employing data generated from
visual representations of the scenes, acquired through camera tech-
nologies. The auditory outputs of such systems range from simple
binary alerts indicating the presence of an obstacle in the range
of a sensor, to complex sound patterns carrying almost as much

information as a graphical image [4]. Finding the most suitable
accuracy/simplicity trade-off in order to provide valuable informa-
tion about the environment surrounding the user through sound is
therefore a pivotal and challenging task.

This study aims to explore a novel scheme for translating 3D
representations of a scene or an environment, represented as a list
of objects with properties, into auditory feedback. The remainder
of the paper is organized as follows. Section 2 introduces the sound
model as well as two alternative models inspired by previous liter-
ature. Section 3 describes an experiment targeted at comparing the
performance of the three models in a navigation task, through both
psychophysical and psychophysiological measurements. Section 4
reports the results of the experiment, and Section 5 concludes the
paper.

2. MODEL-BASED OBSTACLE SONIFICATION

Different sonification approaches for representing visual scenes to
blind users have previously been studied. The most common nat-
ural mappings between object and sound properties are related to
the spatial position of the object; the most recurring are

• azimuth→ stereo panning / Head-Related Transfer Func-
tion (HRTF) filtering [5, 6, 7];

• elevation→ HRTF filtering [6] / pitch [8];

• distance→ amplitude [5, 9] / pitch [5, 9].

This Section provides details on a sonification model designed
by the authors with the help of blind volunteers and specialists in
training and rehabilitation of VIPs. Mappings within the model
were both inspired by the previous literature shown above and orig-
inal design. Parameter tuning was refined following a preliminary
investigation using psychophysical evaluation methods only [10].

2.1. Sonification through impact sounds

The model we propose treats each object in the frontal hemisphere
of the user as an independent virtual sound source that continu-
ously emits impact sounds, as if the VIP was hitting it with a white
cane. The pitch and timbre of the sound resulting from the im-
pact are considered dependent on the object’s width and category.
The distance between object and user is coded into loudness: the
closer the object, the higher the sound level. Furthermore, each
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sound is spatialized in accordance with the direction of the object
with respect to the user.

Single impact sounds are generated through a physical model
of non-linear impact between two modal objects. This model is
part of a number of sound models included in the Sound Design
Toolkit (SDT),1 an open-source (GPLv2) software package suit-
able for research and education in Sonic Interaction Design [11].
The SDT consists of a library of physics-based sound synthesis
algorithms, available as externals and patches for Max and Pure
Data.2 The Pure Data version was used in the development of this
model.

The physical model receives as input parameters related to the
striking object (modal object1) and the struck object (modal object
2), as well as the interaction between the two. The most relevant
fixed parameters are strike velocity, set to1.85 m/s, and striker
mass, set to0.6 kg. These were considered as reasonable parame-
ters for a long white cane and the act of striking with it. Parameters
of the struck object, i.e., the object that needs to be sonically repre-
sented, change with respect to the width and category of the object
itself.

In particular, width is directly mapped to the frequencyf of
the single mode of the struck object. In order to maximize the
available frequency range, this was chosen to vary from values as
low as50 Hz (very wide objects such as walls) to4 kHz (20-cm
narrow objects) according to the following mapping,

f =
840

w
[Hz] (1)

wherew is the actual width of the object in meters.
Different categories of objects are on the other hand repre-

sented by different decay times of the frequency mode. Catego-
rization of objects may follow different rules, e.g. be based on
object material (with rubber, wood, glass and steel having increas-
ing decay times [12]) or object type (simple objects, walls, poles
or trees, holes or ponds, and so on). Having defined category
C = 1, 2, 3, . . . , the mapping to the corresponding acoustic pa-
rameter, i.e. decay timetd, is

td = 0.02C [s] (2)

heuristically set in order to enable association to impacts on dif-
ferent materials [12]. Default parameters were used for the test
reported in this paper, with category 1 assigned to wall sounds
and category 5 assigned to wall edges (replacing two adjacent wall
sounds).

The absolute distancer between the subject and the object
is also considered as a parameter. Assuming all obstacles to be
sonified lying further than1 m (closer objects are in the reach of
the white cane), thus in the subject’s acoustic far field [13], this
is directly mapped into the amplitude of the sound by following
the classic1/r pressure attenuation law [14]. The overall number
n of objects present in the scene influences the repetition rate of
the impact sound instead: the periodT between two consecutive
impacts on the same object is set to

T = 0.2(n− 1) [s]. (3)

The point associated to the object is either the estimated barycenter
in the case of small objects, or the intersection between the closest

1http://soundobject.org/SDT/
2https://puredata.info/

surface and its normal vector crossing the observer in the case of
bigger objects, such as walls.

Last but not least, the direction of the object with respect to
the observer taken in angular coordinates (azimuth, elevation) is di-
rectly mapped to the corresponding parameters of a generic HRTF
filter provided through theearplug∼ Pure Data binaural synthe-
sis external. In particular, the filter renders the angular position
of the sound source relative to the subject by convolving the in-
coming signal with left and right HRTFs from the MIT KEMAR
database [15].3 This way, the sound is spatialized along the ac-
tual direction of the object. It has to be highlighted that spatial-
ization is non-individual; however, models for HRTF individual-
ization [16, 17] or individual HRTFs themselves can be integrated
(at an additional measurement cost) if higher spatial accuracy is
needed [18].

There were two reasons for choosing impact sounds to con-
vey information about objects. First, the ecological validity of
physics-based sounds, whose nature allows a direct association to
the virtual act of detecting the object by striking it with a cane.
Second, the peculiar pattern of impact sounds, whose rich fre-
quency content and short duration of the attack phase allow for
improved sound localization on the horizontal plane [19]. Further-
more, choices about the mappings between object and sound prop-
erties were either adopted from previous literature (distance and
direction) or based on the nature of the impact model. Actually,
the association of higher pitches to smaller objects and different
decay times to different categories, e.g. materials, has physical
ground [12].

The model was implemented as three Pure Data patches. Both
static scenes and simple dynamic scenes with a fixed number of
objects are supported. The main Pure Data patch receives as input
a text file containing one row per object present in the scene. Each
row includes information about the object ID, azimuth angle (be-
tween−90 and90 degrees [15]), elevation angle (between−40
and90 degrees [15]), distance (above1 m), width (above20 cm),
object category (1, 2, 3, . . . ), and mode (static= 0, dynamic= 1),
separated by spaces.

At the beginning, sources are ordered by increasing azimuth,
left to right. In order to avoid simultaneous impacts, the first im-
pact on a given object is played200 ms after the impact on the ob-
ject on its immediate left. In the case of a dynamic scene, impacts
corresponding to an object stop as soon as the object is behind the
listener (i.e., outside the[−90, 90] degree azimuth range).

2.2. Alternative sonification approaches

In the round of testing reported in this paper, the proposed model
is compared against two other competing models developed in pre-
vious literature in order to solve the same problem. These two
alternative approaches are now briefly described.

2.2.1. Depth scanning

The depth scanning model is a sonification method used in Bu-
jacz et al. [20]. The main inspiration for the model was the fact
that blind persons, especially those blind from birth, have a path-
based perception of their environment [21]. The core concept of
the method is a virtual scanning plane, i.e., a surface parallel to the
observer’s frontal plane that moves away from him/her through the
scene. As the surface intersects scene elements, sounds originating

3http://sound.media.mit.edu/resources/KEMAR.html
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from the points of intersection are released. The scanning surface
moves for5 m in 1.5 s, then after a0.5 s pause it restarts from
the observer. This was the default speed chosen by the majority of
the blind participants in previous prototype trials [20]. However,
in the experiment reported in this paper the scanning surface was
slightly sped up to fit3 cycles into5-second test samples. Further-
more, reference “tick” sounds are played each time the scanning
plane moves1 m away.

Sounds are designed to naturally correspond to object parame-
ters. Distance, as the most important parameter, is encoded redun-
dantly into the temporal delay inside each cycle as well as into the
loudness and pitch of the sound. For instance, if a distant object ap-
pears later in a scanning cycle, its sound will be less loud and have
lower pitch. The location of an object is encoded via HRTFs and
its size through sound duration. The sound coder uses audio files
pre-generated with a Microsoft General MIDI calliope synthesizer
(no. 83) modulated with5% noise (14 dB SNR), as previous trials
showed that the addition of noise improves spatial localization of
a sound [22]. The sounds were stored in collections of5-s wave
files of full tones from the diatonic scale (octaves2 to 4). Sounds
were spatially filtered using the MIT KEMAR generic HRTFs and
modulated with a simple ADSR envelope.

2.2.2. Horizontal sweep

The horizontal sweep approach was used in previous sonification
studies (e.g. Navbelt [5]), and is sometimes referred to as the “pi-
ano scan”. It basically translates the distance to pitch in several
directions from the observer. The sonification approach is very
similar to the one previously described for depth scanning with the
main difference being that of the scanning plane; instead of mov-
ing away from the frontal plane, it swings left to right around a
vertical axis passing through the observer. The scan sweeps from
−45 to 45 degrees in1.5 s. Reference “tick” sounds are played
each time the scanning plane moves by15 degrees.

This model generates sounds from scratch using a simple
Moog synthesizer and an ADSR envelope. Pitches are selected
from the middle three octaves of the pentatonic scale. A difference
with respect to the depth scan approach is that instead of smoothly
moving sound sources along the intersection of the sweeping plane
and walls, the scene was divided into discrete regions15 degrees
wide (according to the previously set reference ticks), and for each
region a sound was produced corresponding to the nearest object.

3. MATERIALS AND METHODS

An experiment was designed where the above described sonifica-
tion approaches were compared using methods from the fields of
behavioural psychology and psychophysiology, namely response
time and accuracy, electroencephalography (EEG), and monitor-
ing of electrodermal activity (EDA). The goal was to explore vari-
ous alternatives in rendering basic 3D visual scenes through sound
signals to be delivered to VIPs, through assessing both function-
ality (psychophysics) and cognitive performance (psychophysiol-
ogy). This study was accepted by the National Bioethical Commit-
tee of Iceland, with reference number VSN-15-107.

3.1. Participants

Five VIPs and five sighted students from the University of Iceland
participated in the experiment (6 female; average age =34 yrs,

range =21− 52 yrs) on voluntary basis. One VIP was fully blind,
two had vision less than5%, and two had vision between5% and
10%. Three of them were congenitally or early blind (first2−3 yrs
of life) and two had become blind later in life (generally after the
age of3). All participants spoke English fluently and reported hav-
ing no hearing impairment as well as no general health issues. Two
VIPs mentioned having some experience, one reported substantial
experience, and two said that they are very experienced with IT
technology. All participants gave free and informed consent.

3.2. Psychophysiological approach

Electrodermal activity is a well-known indicator of physiological
arousal and stress activation [23]. EDA is more sensitive to emo-
tion related variations in arousal as opposed to physical stressors,
which can be better reflected in measurements of cardiovascular
activity such as heart rate. Electroencephalography, on the other
hand, can provide neurophysiological markers of cognitive and
emotional processes induced by stress and indicated by changes
in brain rhythmic activity [24]. Taking advantage of their inher-
ent and complementary properties, EEG and EDA signals were
collected and analysed concurrently with the more traditional be-
havioural measures of response time and accuracy.

A measurement of EDA is characterized by two types of be-
haviour: short-lasting phasic responses (which can be thought of
as rapidly changing peaks) and a long-term tonic level (which can
be thought of as the underlying slow-changing level in the absence
of phasic activity) [23]. Phasic responses are primarily elicited
by specific external stimuli, and are typically observed superposed
in states of high arousal or short interstimulus interval paradigms
such as those employed in cognitive research.

EDA was registered with the Empatica E4 wristband [25],
which measures skin conductance through two ventral (inner) wrist
electrodes (fs = 4 Hz). Signals were analysed with Ledalab, a
Matlab-based toolbox.4 Ledalab implements a signal decompo-
sition method based on standard deconvolution, which results in
one single continuous measure of phasic activity. Time-integration
over a specified window after the stimulus onset yields a simple
and unbiased (i.e., avoiding biases due to superposing peaks) indi-
cator of phasic EDA, namely integrated skin conductance response
(ISCR) [26]. ISCR can be thought of as the cumulative phasic ac-
tivity within the specified response time period. Our hypothesis
was that a pleasant, easy to understand, and less stressful sonifica-
tion mapping will generally elicit lower phasic activity as indexed
by ISCR.

Brain activity is characterized by rhythmic patterns (waves)
across distinct frequency bands, the definition of which can vary
among studies. Here we analysed EEG in five bands, namely theta
(4–7 Hz), alpha-1 (7.5–10 Hz), alpha-2 (10–12.5 Hz), beta (13–
30 Hz), and gamma (30–60 Hz). Beta activity is associated with
psychological and physical stress, whereas theta and alpha-1 fre-
quencies reflect response inhibition and attentional demands such
as phasic alertness [27]. Alpha-2 is related to task performance in
terms of speed, relevance, and difficulty [24]. Gamma waves are
involved in more complex cognitive functions such as multimodal
processing or object representation [28].

EEG was recorded using the Emotiv EPOC+, a wireless head-
set with 14 passive electrodes (channels) registering over the 10-20
system locations AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6,
F4, F8, and FC4 (sampling ratefs = 128 Hz) [29]. For each

4http://www.ledalab.de
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Figure 1: The six modules used in the experiment. The participant
always entered each model from the bottom. White areas represent
the virtual path and grey areas represent obstacles (delimited by
walls). All measures are in cm.

channel we studied the relative spectral power in each of the bands
described above over a specified time window following the stim-
ulus onset using the Fourier transform. The total power across all
bands (4–60 Hz) was also examined. Analyses were focused on a
subset of 6 channels, namely AF3, F7, T7, T8, F8, and FC4, which
are often considered suitable enough to monitor brain activity un-
der emotional stress [30]. Our hypothesis was that a less mentally
demanding and stressful sonification model will generally involve
lower power across the whole EEG spectrum, smaller theta activity
and larger alpha-2 power.

3.3. Setup and procedure

Participants of the virtual navigation task were instructed to use
their dominant hand to respond using the arrow keys of a key-
board: left arrow for turning left, up arrow for walking straight
and right arrow for turning right. The down arrow was removed
from the keyboard during the experiment to help avoid potential
confusion. All participants were blindfolded, and sound stimuli
were delivered through a pair of in-ear headphones.5 Information
and feedback concerning the progress of the experiment were also
presented to the participant through prerecorded audio files.

A virtual walk was designed, comprising6 different scenes
(modules) each representing a different configuration of a free path
between walls. The6 configurations can be seen in Fig. 1: the gray
blocks depict walls while the walkable path is in white. Auditory
representations of each configuration were created from each of
the tested sonification models (Model 1: impact model; Model 2:
horizontal sweep; Model 3: depth scanning).

Initially there was a training phase, where in order for the sub-
ject to comprehend the rationale of each sound model, a 3D repre-
sentation of the6 modules was created using Lego blocks. While
touching each block, the participant listened to the corresponding
stimulus along with prerecorded explanations of the task. This pro-
cedure was repeated two times for each of the sound models.

Subsequently, the physiological sensors were placed. Partici-
pants were asked to find a comfortable position and to avoid any

5https://earhero.com

unnecessary movement. EDA was recorded from the non-dominant
hand (wrist) of the participants to minimize motion artifacts largely
due to pressing response buttons [23]. EEG was recorded continu-
ously from the14 scalp electrodes of the EPOC headset. Signals
were transmitted from the headset via a USB wireless receiver to
proprietary Emotiv software running on a laptop.

The next three phases were repeated once for each of the three
tested sound models, whose order during the test was randomized
in order to avoid any bias.

3.3.1. Training

Upon setting up the sensors, a short training session started
wherein each module was presented to the participant four times
in random order. Responses were recorded but only used to pro-
vide feedback to the participant after each response and to calcu-
late their accuracy. If less than75% of the given responses were
correct, the training session was repeated but never more than two
times. Right after the training session, the participant was asked to
relax completely for300 s in order to record spontaneous resting
state physiological activity.

3.3.2. Testing

During the virtual walk, the participant always entered each mod-
ule from the bottom (see Fig. 1). The virtual walking speed was
chosen to be1 m/sec. For each module the participant had to
make a decision no later than5 m (5 s) after entering the module:
whether to turn (and into which direction) or to continue straight
ahead. Participants were instructed to respond as fast and as accu-
rately as possible. Each module was presented15 times in random
order. One full virtual walk lasted approximately6 to 10 minutes.

If the participant did not respond within the time limit (i.e.,
after 5 s), or if his decision was incorrect, the virtual walk was
stopped and a short sound indicating an error was played. After
0.5 seconds the virtual walk would start again. In the case of reg-
istering a correct response, the model stimulus was stopped and
the participant instantly moved to the next module where the same
procedure was repeated.

Upon completion of testing a model, participants were asked
to relax completely for120 s while their spontaneous physiologi-
cal activity was being registered.

3.3.3. Questionnaire

As soon as the resting period ended, the participant was asked to
evaluate the model on five 5-point Likert scales:

• Q1 - I found the sounds pleasant to the ear.

• Q2 - I could imagine the sounds originating from the envi-
ronment (as opposed to originating inside my head).

• Q3 - I found it easy to understand what each sound repre-
sents.

• Q4 - I found the task stressful (the sounds were too fast to
understand).

• Q5 - I think that, with sufficient training, I would under-
stand what each sound represents at even faster rates.

Subjects were also asked to freely comment on the functional-
ity and pleasantness of the sound stimuli. Verbal responses were
recorded.
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Figure 2: Violin plots of the probability density distribution of
learning time required by subjects. The white dot represents the
median value.

Once all models were tested, the participant was asked to
freely respond to the following question: “Which of the three soni-
fication approaches did you prefer? Can you explain why?”. Ver-
bal responses were again recorded. Finally, the EPOC and E4 sen-
sors were detached from the participant. During the experimental
session, the experimenter sat outside of the room and monitored
the stimulus presentation and the recorded physiological data. The
experiment lasted approximately90 minutes in total.

4. RESULTS

4.1. Model learnability

As described in the previous Section, the experiment involved a
short training session. Using response times from the training ses-
sions, we looked at the time required from all participants to “un-
derstand” each model (i.e., how the respective sounds mapped to
the different modules of the virtual walk task).

Figure 2 depicts the probability density of the learning interval
required for each model. From this representation, Model1 outper-
forms the other two, since it is the only one that required a median
learning interval equal to two minutes. Note that since the train-
ing section was not repeated more than two times, the difference
between Model1 and Models2 and3 is relevant, even if small.

4.2. Response time and accuracy

The average response time and accuracy were computed for each
model and compared using repeated measures ANOVA. Notice
from Fig. 1 that modules1 to 3 had only one correct response out
of three (left, ahead, right), while modules4 to 6 had two correct
responses out of three. This means that random responses would
lead to an average accuracy of0.33 and0.67 in the long run, re-
spectively. Therefore, the average random accuracy in the exper-
iment is0.5. A response is considered correct only when given
within the maximum response time of5 s.

The average response time (RT) was2441 ms (SD =991 ms)
for the visually impaired group and2780 ms (SD =1059 ms) for
the sighted group. The difference between these groups was not
significant [t(7.57) = 1.11, p = 0.303]. The average response
time divided by model and response type (left, ahead, right) is
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Figure 3: Average RTs by model and response type. Error bars
represent the within subjects standard error.
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Figure 4: Average accuracy by model and response type. Error
bars represent the within subjects standard error.

reported in Fig. 3. A two-way repeated measures ANOVA with
model and response type as factors revealed a significant main ef-
fect of response type [F (2, 18) = 6.08, p = 0.010] but not of
model [F (2, 18) = 2.65, p = 0.098] and significant interaction
between models and response type [F (4, 36) = 2.96, p = 0.033].

Average accuracy was0.73 (SD = 0.44) and is significantly
different from random [paired-t(9) = 6.44,p < 0.001]. The av-
erage accuracy was0.73 (SD = 0.45) for the visually impaired
group and0.74 (SD =0.44) for the sighted group. This very small
difference was not significant [t(4) = 0.51, p = 0.638]. The
average accuracy divided by model and response type is reported
in Fig. 4. A two-way repeated measures ANOVA with model and
response type as factors revealed a significant main effect of re-
sponse type [F (2, 18) = 6.71, p = 0.007] but not of model
[F (2, 18) = 2.24, p = 0.135], and the interaction was not sig-
nificant [F (4, 36) = 0.87, p = 0.491]. Accuracy was therefore
comparable across models.

4.3. Phasic electrodermal response

Prior to analysis, skin conductance data obtained from the E4 EDA
sensor were filtered with a first-order Butterworth low-pass filter
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Figure 5: Average cumulative phasic activity for each of the tested
models. Error bars represent the standard error of the mean. Star
signs (*) indicate statistically significant differences.

using a cutoff frequency of1 Hz to remove steep peaks stemming
from artifacts such as pressure exerted on the electrodes [23]. The
filtered time series were subsequently analyzed with Ledalab us-
ing the continuous decomposition method (see Section 3.2). As
sound stimuli were presented as soon as the response to the pre-
vious module was registered (i.e., variable interstimulus intervals),
a variable response window was considered, starting at1 s after
stimulus onset and ending at4 s after stimulus offset. Integrals of
the continuous phasic driver within a specified response time pe-
riod were normalized by means of dividing by the duration of the
respective window. To reduce inter-individual variation prior to
averaging, means were subtracted from the trial-by-trial ISCR val-
ues. The resulted data were further transformed using the formula
y = log(1 + x) to improve distributional characteristics.

Figure 5 depicts the average ISCR for each model computed
across all participants and all stimuli. It can be immediately ob-
served that phasic electrodermal activity was substantially higher
in Model 2 and lower in Model 3. To test whether these differences
were statistically significant, a repeated measures ANOVA with
models as factor was run. This analysis revealed a significant dif-
ference in physiological arousal between the three sonification al-
ternatives [F (2) = 10.6, p = 0.02, using the Greenhouse-Geisser
correction for sphericity]. Pairwise comparison of the means us-
ing Bonferroni post hoc tests showed that Model 2 is significantly
different from Models 1 and 3 [p = 0.04 andp = 0.05, respec-
tively], whereas the observed difference between Models 1 and 3
is marginally not significant [p = 0.06].

4.4. EEG power spectra

The Emotiv EPOC+ system involves a number of internal signal
conditioning steps. Analogue signals are first high-pass filtered
with a 0.16 Hz cut-off, pre-amplified, low-pass filtered with a83
Hz cut-off, and sampled at2048 Hz. Digital signals are then notch-
filtered at50/60 Hz and down-sampled to128 Hz prior to trans-
mission. Prior to analysis, the EEG data obtained from the headset
was baseline-normalized by subtracting for each participant and
for each channel the mean of the resting state registrations.

As described in the previous section, sound stimuli were pre-
sented as soon as the response to the previous module was regis-
tered. Considering the shortest interstimulus interval (3.4 s), EEG
epochs lasting3 s after stimulus onset were extracted for each
model-module condition, resulting in a total of2700 epochs per
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Figure 6: Mean relative and total band power for each of the tested
models in6 frontal electrode positions. Error bars represent the
standard error of the mean.

EEG channel. A Hann window was applied to each epoch to min-
imize spectral leakage, and then the Fourier transform of the win-
dowed data was used to calculate power spectral density estimates
in the theta (4–7 Hz), alpha-1 (7.5–10 Hz), alpha-2 (10–12.5 Hz),
beta (13–30 Hz), and gamma (30–60 Hz) bands as well as across
the total 4–60 Hz range. Individual band power estimates were
normalized by means of dividing by the across-band power. Be-
fore averaging, a logarithmic transformationy = log(1 + x) of
single-trial values was applied to improve their distributional char-
acteristics.

Figure 6 shows the average band power in the AF3, F7, T7,
T8, F8, and FC4 channels for each model, calculated across all
participants and modules. A first look at the different plots sug-
gests that Model1 resulted in better cognitive performance dur-
ing the experimental task than Models 2 and 3. Gamma activity,
related to information representation and processing, was particu-
larly low for Model 2, which had the largest total power. To test
whether model differences were statistically significant, a repeated
measures ANOVA with model as the between-subjects factor and
electrode location as the within-subjects factor was run for each
frequency range. Where appropriate,p-values were corrected by
means of the Greenhouse-Geisser method. Bonferroni post-hoc
tests were used for pairwise comparison of means.

There was a significant effect of model on total power [F (10)
= 61.14, p ≪ .001] and on relative power in each band [theta,
alpha-2, beta, gamma:F (10) ≥ 6.39, p ≪ .001; alpha-1:F (10)
= 3.31, p = .0013]. Total power for Model 1 was significantly
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Figure 7: Average scores across the five usability scales for each
of the tested models.

lower than for Models 2 and 3, and for Model 2 it was signifi-
cantly higher than for Model 3 [p ≪ .001]. This suggests that
participants were more cognitively engaged when responding to
Model 2 stimuli. However, gamma activity was significantly lower
for Model 2 than for the other two models [p ≪ .001] and no sig-
nificant difference between Models 1 and 3 was revealed [p =
1]. This would imply that the larger total power for Model 2 re-
flected its reduced ability to convey the relevant information [28].
Model 2 further resulted in higher theta [significant effect,p <
.001], alpha-1 [not significant,p ≥ .21], and beta [not signif-
icant, p ≥ .62] power than the other two models, suggesting
higher response inhibition, attentional demands, and stress. Model
1 had the smallest theta [significantly so than Model 2 but not
Model 3] and largest alpha-2 power [no significant differences be-
tween the three models,p ≥ .1], suggesting better cognitive per-
formance [24].

Analyses were repeated for all14 channels of the Emotiv head-
set. The same effects and differences were observed, thus confirm-
ing that the selected6 frontal electrode locations were suitable and
sufficient to assess stress-related cognitive performance [30].

4.5. User experience questionnaire

The majority of the participants (8 out of 10) preferred Model
1 over the other two models referring to it as the easiest to use.
The sounds in Model 1 were mainly described as pleasant and
none of the subjects seemed to have strong negative opinions about
their unpleasantness. Model 2 appeared to be the least favored
one as participants reported having trouble understanding what
the sounds were intended to convey. A few subjects thought the
sounds were too similar to each other and had difficulty telling
them apart, with some even describing them as confusing. De-
spite this, the majority of subjects found the model’s sounds to
be pleasant. A few participants had issues understanding some of
the sounds in Model 3 while others described it as functional and
easy to use. The sounds in this model were reported as the most
annoying and/or irritating although some found them pleasant.

Complementary to the analysis of the verbal comments, the
scores of each model in each of the 5 Likert-scales previously
described in Section 3.3.3 were computed. Figure 7 shows that
Model 1 was perceived as slightly more pleasant (Q1), easier to un-
derstand (Q3), less stressful (Q4), and easier to learn (Q5). Model
2, on the other hand, was characterized as the most natural sound-
ing (Q2).

5. DISCUSSION AND CONCLUSIONS

Psychophysical results show overall that the proposed impact
sound model (Model 1) adequately conveys the relevant informa-
tion to the participants, who are able to use this information to
guide their virtual walk. Although no significant differences in
RTs and accuracy were found in the comparison against two other
models, Model 2 was found to perform slightly worse, and Model
3 slightly better than Model 1. These results are consistent with the
event-related analysis of phasic EDA: Model 2 appears to elicit the
highest stress-related physiological arousal compared to Models 1
and 3, whereas Model 3 is shown to be marginally less stressful
than Model 1.

This last finding, however, appears to disagree with the per-
ceptions emerging from the verbal comments of the participants,
where Model 1 came out as the most preferred and was ranked
slightly higher than Model 3 in terms of functionality and pleas-
antness. Further analysis is necessary to examine the origins of
this discrepancy. Furthermore, Model 1 had the best cognitive per-
formance compared to the other two models. Finally, Model 1 was
the easiest to learn among the three models.

The above results suggest that the adopted sonification
approach may lead to improved results if adequate modifications,
either to the mapping schemes or to the chosen sound stimuli,
are performed. Ongoing work in this direction involves attempt-
ing to improve the model by combining impact sounds with the
depth scan paradigm. Future work related to the model presented
in this paper will therefore explore variations of the basic sound
components used for encoding (impact sounds) and the scanning
paradigm, as well as combining discrete encodings with contin-
uous encodings for various object categories (e.g. walls, stairs,
doors). We further plan to test the functionality and cognitive per-
formance of the model in indoor and outdoor navigation scenarios
using similar biosignal monitoring and analysis methods [31].
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