
Sakari Tervo, Post-doctoral researcher
Department of Computer Science
Aalto University School of Science, Finland

Parametric Spatial Room Impulse Response 
Analysis and Synthesis: A High-Resolution 
Approach

Digital Audio Effects 2016 
Brno, Czech Republic
8th of September

Keynote



Introduction to 
parametric 
estimation



Parametric estimation
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Consider a note played with a bowed violin

The player played 
the note A3



The model
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Parametric estimation requires a model of the physical world. 

What defines a note?
Is it the fundamental frequency?
Which model describes the fundamental frequency?



Parametric estimation
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F0 ~ 440 Hz
Model 0
”The strongest 
mode”

Frequency

Probability



Parametric estimation
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F0 ~ 220 Hz Model 1
”First strong 
mode”

Frequency

Probability

Refining the model



Parametric estimation

8th of September 2016, DAFx 2016
Sakari.Tervo@aalto.fi

7

F0 ~ 221 Hz Model 2
”The average 
difference 
between strong 
modes”

Using a more accurate signal model

Frequency

Probability



Parametric estimation
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F0 ~ 221.5 Hz Model 3
”The average 
difference 
between the 
mean of strong 
modes”

Using a probability distribution

Frequency

Probability



Parametric estimation
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F0 ~ 221.7 Hz
Using a probability distribution with a noise

Frequency

Probability

Model 4
”The average difference 
between the mean of 
strong modes, given the 
background noise”



Parametric estimation
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https://www.youtube.com/watch?v=6JeyiM0YNo4

https://www.youtube.com/watch?v=6JeyiM0YNo4





Parametric estimation: Conclusions
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Requires a model for the signal and the noise
The model is defined by a set of parameters, which are to be estimated.
The selected model depends on the application.
In reality, after George Box

All models are wrong, some are less wrong

Typically the trade-off is

Complexity vs accuracy



Parameterization 
of room impulse 
responses
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Time-frequency dependency
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Room impulse responses are time and frequency dependent. 



High-resolution analysis
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Given a room impulse response x, what is the highest time-frequency 
resolution the analysis can have?

Fourier
x(ω)

frequency, ω

Time windowing

Inspect the signal in one time and frequency instant  x(t , ω )0 0

The time window of length L should include at least three
wavelengths of the inspected frequency L > 3 x 2 π/ω

time, t

x(t)



High-resolution analysis
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The signal at (t , ω ) in the continuous domains is therefore 
x(t) = a sin(ω t) in the time-domain and
x(ω) = a exp(-iω +φ ) δ(ω-ω ) in the frequency domain.0

0

0

time, t

x(t) a

0

x(ω) 

frequency, ω
ω

a/2

0

0 0

Re

Im ||x||
arg(x)



Parameterization of a room impulse response
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What kind of model can we assume for a time instant at one
frequency? Total response is expressed as the superposition of 
several sinusoids

i is the index of the acoustic event, e.g. i = 0 is the 
direct sound, and c is the complex response of the 
event.

x(ω ) = Σ c (ω ), where0 0ii

x(ω) = Σ c (ω),i
i

which describes the whole impulse response as a sum of 
sinusoidal signals.

time, t

x(t, ω ) 0

Since the room impulse response is linear
we can write:



Parameterization 
of spatial room 
impulse responses



Spatial room impulse response
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A room impulse measured with a microphone array. 
At t and in ω we have 0 0

Where M is the number of microphones.

time, t

x (t)1

time, t

x (t)M

x (t , ω )0 01

x (t , ω )0 0M

= x(t , ω )0 0

Image from mhacoustics.com



Spatial room impulse response
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Again, in the time-domain, the signals are sinusoids, but 
with different scaling and delay.

time, t

time, t

x (t, ω )01

x (t, ω )0M



Direction of arrival (DOA) Ω
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In general we require that M > 3, in order to obtain the Direction of 
Arrival Ω

Ω

Since the microphones are in different positions we can obtain the 
direction of arrival of a sound wave.



Direction of Arrival
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How many DOAs D can we find from a single measurement?

In general, D < M, but depends on the array and frequency.



Spatial room impulse response
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DOA
(Angular frequency)

Probability
Ωs

Ω

The measurement is affected by

Images from genelec.com and mhacoustics.com

l(ω)
source

h(ω)
medium

n(ω)
noise

s

a(Ω , ω)
array

Ω

s 



Source response
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Source response is different in each direction and 
at each distance l(Ω , r, ω)

Images from genelec.com and mhacoustics.com



Air absorption
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Depends on the frequency and travelled distance
Affected by the composition of air, temperature, humidity, etc. 

Images from Wikipedia

Air absorption



The acoustic path
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The sound in the acoustic path is altered by 
other phenomena besides air absorption, for example.

Images from Wikipedia

Reflections on the 
boundaries

Diffraction



Array response, i.e., steering vector or array 
manifold
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Image from researchgate

The transfer function a(Ω, ω), i.e., response of each microphone w.r.t. 
frequency and DOA
Can be measured or modelled. Measurement is recommended in the 
general case.



Noise

8th of September 2016, DAFx 2016
Sakari.Tervo@aalto.fi

27

Image from Wikipedia

Spatially white, independently and identically distributed. 
Cause by the thermal noise in the electronic devices, A/D conversion etc.



Plane-wave assumption
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When the source is in the far-field, the sound field is 
a plane wave from the array’s perspective

Probability
Ωs

DOA Ω

h(ω)l(ω) a(Ω, ω)



Spatial room impulse response
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What is simplest way of parameterizing this problem?

Probability
l(ω) a(Ω, ω)

Ωs

DOA Ω

h(ω)



A simple parameterization
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A source signal in directions(ω)

l(Ω ,ω) x h(ω)

Ωs

= s(ω)

a(Ω, ω)
Probability

Ωs

DOA Ω

s



Parametric model
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Noise is additive, the responses are convolved with each 
other

x (ω) =  a (Ω , ω)s(ω) + n (ω)1

x (ω) =  a (Ω , ω)s(ω) + n (ω)
M

..

.
...

x(ω) = s(ω)a(Ω ,ω) + n(ω)

1

M

1

M

In vector format

s 

s 

s 



More than one “source”
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a(Ω, ω)
Probability

Ω1

DOA Ω

Ω3Ω2x= sA(Ω) + n,
where

Ω = [Ω , Ω , Ω ]21 3

A(Ω) = [a(Ω ), a(Ω ), a(Ω )]21 3

s = [s , s , s ]21 3

For simplicity ω is omitted from the above notation. 



How general is the model?
The impulse response will always follow the deterministic model at a time 
instant and in a single frequency given that the array is in the far-field and 
that the array response is accurate. 
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Very General!



Parametric 
estimation



Unknown parameters

8th of September 2016, DAFx 2016
Sakari.Tervo@aalto.fi

35

x(ω) = s(ω)A(Ω,ω) + n(ω)

Unknown parameters in the model are DOAs Ω, source signals s, 
and noise variance σ .2



Assumptions on the covariances
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n(ω)

The noise is uncorrelated and identically distributed with a variance

E[n(ω)n (ω)] = σ I. H 2

σ 2

x(ω) = A(Ω, ω)s(ω) + n(ω).

The source signal is deterministic

E[x(ω)] = A(Ω, ω)s(ω), 

since

E[(x(ω)-E[x(ω)]) (x(ω)-E[x(ω)]) ] = σ I,  H 2

Thus

E[x(ω)x  (ω)] = A(Ω, ω)s(ω)s (ω)A (Ω, ω) + σ I
and

H 2HH



Maximum Likelihood (ML) Estimation

8th of September 2016, DAFx 2016
Sakari.Tervo@aalto.fi

37

This function is in general non-linear multidimensional and has
multiple minima.

If we assume that the noise is of Gaussian shape we can write a likelihood 
function, for simplicity ω is omitted 

|πΣ| exp([-(x-A(Ω)s) Σ (x-A(Ω)s) ]). H

p(Ω, Σ, s) = 
-1

Since we have the likelihood is presented as Σ = σ I2

p(Ω, σ, s) = 2 |πσ I| exp(-[(x-A(Ω)s) σ (x-A(Ω)s) ]) -12 -2 H

The minimum argument of the negative log-likelihood gives the 
ML estimates

log(|πσ I|) + log([(x-A(Ω)s) σ (x-A(Ω)s) ]) H-2Ω, σ, s = arg min
Ω, σ, s

( )̂ ̂ ̂2

2

-1

2



Concentrated ML estimation
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The source signal s is difficult to obtain via optimization because of the 
circularity of the phase.

P (Ω) = I – A(Ω)A (Ω), is the orthogonal projector to the null-space and A
┴ 

̂σ̂ (Ω) = 1/M Tr( P (Ω)R),    (1)     where2
A┴

†

R = x x, is the estimated covariance matrix of the microphones signals. 
Inserting the (1) into the likelihood gives a quadratic function

Ĥ

(x-A(Ω)s)(x-A(Ω)s)Ω, s = arg min
Ω, s

( )̂ ̂

When we assume that Ω and s are fixed, the noise is given as

H

One can only find the estimates via non-convex optimization.



Concentrated ML estimation
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When we minimize the quadratic function w.r.t. to s we obtain

s(Ω) = A (Ω)x. (2)†̂

Tr (P (Ω)R)Ω = arg min
Ω

( ).    (3)̂ ̂A
┴

Inserting (1) and (2) to the negative log-likelihood

log(|πσ I|) + log([(x-A(Ω)s) σ (x-A(Ω)s) ]) H-2Ω, σ, s = arg min
Ω, σ, s

( )̂ ̂ ̂2

2

returns

̂σ̂ (Ω) = 1/M Tr( P (Ω)R),    (1)2
A┴

2



Concentrated ML in Matlab
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function [nLogL, sigma2, s] = CML(Omega, M, x) 

R = x*x’; % Covariance matrix of the measurements

A = getSteeringVector(Omega); % Array Response

invA = pinv(A); % Pseudo-inverse of A

PIA = eye(M)-A*invA; % Orthogonal projector to the 
null-space

nLogL = trace(PIA*R); % Equation (3), negative log-
likelihood

sigma2 = 1/M*nLogL % Equation (1), variance

s = invA*y; % Equation (2), source signal

-

-
-

-
-

-

-

-

1

2
3

4
5

6

7

8



Example, two-way loudspeaker

8th of September 2016, DAFx 2016
Sakari.Tervo@aalto.fi

41

DOA

Probability
Ω1

Ω

Ω2

A two-way loudspeaker has two sources, different DOAs and different
source signals

Ω = [Ω , Ω ]21

A(Ω) = [a(Ω ), a(Ω )] 21

s = [s , s ]21



Example, two-way loudspeaker
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A two-way loudspeaker has two sources, different DOAs and different
source signals

Ω = [Ω , Ω ]21

A(Ω) = [a(Ω ), a(Ω )] 21

s = [s , s ]21

s(ω)

ω

Cross-over frequency



Microphone array
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Instead of commercial one we use a DIY array.
1. Buy a bottle of champagne
2. Share it with our colleagues
3. Attach microphones on the surface



Example, measurement of array response
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The steering vectors are measured in the far-field. Measurement is 
implemented in an office space, and windowing is applied to avoid
reflections.

a(Ω, ω) Probability
Ω1

DOA Ω



Example, measurement of steering vectors
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Steering vector  magnitude response for a microphone a(Ω, ω)



Example, measurement setup
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Near-field measurements of the loudspeaker



Example, log-likelihood 
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Log-likelihood (DML) with D = 1 source



Example, log-likelihood 

8th of September 2016, DAFx 2016
Sakari.Tervo@aalto.fi

48

Log-likelihood (DML) with D  = 2 sources



Example, two-way loudspeaker

8th of September 2016, DAFx 2016
Sakari.Tervo@aalto.fi

49

Simulated two-way loudspeaker



Example, different two-way loudspeakers
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Transfer functions at different distance and angles with 3 loudspeakers types



Example, different two-way loudspeakers
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Transfer functions at different distance and angles with 3 loudspeakers types



Example, different two-way loudspeakers
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Transfer functions at different distance and angles with 3 loudspeakers types



Detection of 
reflections



Detection of reflections
Parametric estimation requires the knowledge of the number of 
reflections/sources.
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The number cannot be assumed to 
be known a priori in the general 
case, although, so far, it is always 
assumed in the literature.



Detection of reflections
Simultaneous detection and estimation detection methods are the only 
approaches that can be applied to the determenistic model in the coherent 
case.

Simultaneous estimation and detection algorithm:
Initialize D = 0
1. D = D + 1
2. Estimate the parameters
3. Calculate the test statistic for the parameters
4. Decide based on a priori distribution if the model fits the data

1. If the zero hypothesis cannot be accepted Goto 1
2. Else stop iteration
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Likelihood based detection

Cochran’s Theorem states that a normalized ML estimate of variance
follows Chi-squared distribution

R = 2M σ / σ = 2Tr( P (Ω)R)/σA
┴.2 2 ̂̂ .   2 ~ χ (v),2

D (H ) = 1 if  R < Chi-Inv-χ (v, γ),   e 0
2

where γ is a pre-defined significance level, e.g, 99 %.

̂

where is a consistent noise estimate and v is the degrees of 
freedom. The decision H  is accepted if

σ2.
0
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Likelihood-based detection in Matlab
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function D = LBD(x, sigma2c, M)

D = 0;

while 1

D = D + 1;

v = 2*(M-2*D); % Degrees of freedom

fun = @(Omega) CML(Omega, M, x); % Find DOAs

Omega = findMinimum(fun, [zeros(2*d,1)]);

nLogL = CML(Omega, M, x); % Likelihood

if nLogL/sigma2c < chi2inv(.99, v)

break; % Stop iteration if criteria met

end

end

-

-
-

-
-

-

-

-

1

2
3

4
5

6

7

8
-9
-10

-11

-12



Example: likelihood based estimation 
and detection
Measurement of a corner in a semi-anechoic room. 
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Example: Obtaining a reference

The reference is obtained by analyzing the impulse response with short 
time windows 64 samples at 48 kHz and assuming D = 1.
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Example: likelihood based estimation 
and detection
In the evaluation we use a rectangular window length of 256 samples with an 
overlap of 255 samples at 48 kHz, and analyze the response at 4 kHz. 

t =875t =1
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Example: likelihood based estimation 
and detection

The reference for the detection in a window of length L = 256 
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Example: Likelihood based estimation 
and detection

Detection rate 92.0 %
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Estimation results

Large errors in the 
reflection signal 
estimates
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Reproduction of 
spatial sound via 
room impulse 
responses



Spatial sound reproduction

Assign the estimated source signals s to the estimated direction Ω.̂ ̂
Playback the source signal with vector based amplitude panning, wavefield
synthesis, nearest neighbor, ambisonics (whatever order).
Convolve each loudspeaker with a source signal for spatial sound.
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Example: Nearest neighbour playback
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Thank you for your attention!

Sakari.Tervo@aalto.fi
https://mediatech.aalto.fi/en/research/virtual-acoustics

The research leading to these results has received funding from
 the Academy of Finland, project nos. [257099]
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